Impact of Climate Change on Precipitation Extremes over Ho Chi Minh City, Vietnam
Abstract
:1. Introduction
2. Study Area and Data Preparation
2.1. Study Area
2.2. Data Preparation
3. Methodology
3.1. Extreme Precipitation Indices
3.2. Trend Analysis
3.2.1. Mann-Kendall Test
3.2.2. Trend Strength and Stability
3.3. LARS-WG Downscaling Tool
3.4. Model Evaluation Metrics
3.5. Spatial Interpolation
4. Results and Discussion
4.1. Model Validation
4.2. The Historical Observation of the Extreme Precipitation Indices
4.3. Projected Future Extreme Precipitation Indices
4.4. Climate Change Impact on the Precipitation Extremes by the Averaged Multi-Model Ensemble
4.4.1. Variability in Inter-Annual Changes
4.4.2. Distribution of Spatial Changes
5. Discussion
6. Conclusions
- -
- The LARS-WG tool has presented adequate performance for reproducing the extreme precipitation indices in most stations during the historical period (1980–2017), especially for simulating the spatial distribution of those indices. Notwithstanding, the uncertainty in simulation results was probably inevitable. Notably, the simulation tended to underestimate extreme indices in some parts of the central and southern regions, while overestimating these indices in the northern regions. In addition, the performance for simulating intensity indices is better than that for duration and frequency indices, especially for CWD and R20mm.
- -
- In the historical period (1980–2017), the high values of temporally mean extreme indices were frequently observed in the central regions, while the low values of these indices were mainly distributed in the northern and southern regions. During this period, the decreasing trend in extreme indices were regularly observed at most stations in the study area. However, only 33% of this trend was significant and mainly distributed in the north and south parts of the study area.
- -
- In the future periods, the projected extreme precipitation indices were computed from the downscaling from five different GCMs (EC-EARTH, HadGEM2-ES, GFDL-ESM2M, MIROC5, and MPI-ESM-MR) under the RCP8.5 emission scenario. Afterwards, the multi-model ensemble mean was calculated for evaluating the spatiotemporal changes in the near (2021–2050) and intermediate (2051–2080) future extreme indices with respect to the simulated indices in the baseline period (1980–2009). Generally, in comparison with the historical period, the temporally relative changes in most extreme precipitation indices are predicted to be increased during both future periods (2021–2080), but the index CDD. In which, the extreme intensity and frequency indices present a stronger magnitude and statistically significant increasing trends than those of extreme duration indices during the future periods. The spatial distribution of changes in future projected extreme indices across the study area is relatively systematic. In which, the highest values of mean absolute changes are frequently observed in the southern regions, while the lowest values of mean absolute changes are regularly observed in the northern and central areas of the study area in the future periods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Economic Forum. The Global Risks Report 2019, 14th ed.; The World Economic Forum: Geneva, Switzerland, 2019; ISBN 978-1-944835-15-6. [Google Scholar]
- IPCC. Summary for Policymakers. In Intergovernmental Panel on Climate Change, editor. Clim Chang 2013—Phys Sci Basis [Internet]; Cambridge University Press: Cambridge, UK, 2013; pp. 1–30. Available online: https://www.cambridge.org/core/product/identifier/CBO9781107415324A009/type/book_part (accessed on 5 October 2020).
- IPCC. Summary for Policymakers. 2014. Available online: https://www.ipcc.ch/report/ar5/wg2/summary-for-policymakers (accessed on 5 October 2020).
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Bengtsson, L.; Rana, A. Long-term change of daily and multi-daily precipitation in southern Sweden. Hydrol. Process. 2014, 28, 2897–2911. [Google Scholar] [CrossRef]
- Du, H.; Xia, J.; Zeng, S.; She, D.; Liu, J. Variations and statistical probability characteristic analysis of extreme precipitation events under climate change in Haihe River Basin, China. Hydrol. Process. 2014, 28, 913–925. [Google Scholar] [CrossRef]
- Peñuelas, J.; Ciais, P.; Canadell, J.G.; Janssens, I.A.; Fernández-Martínez, M.; Carnicer, J.; Obersteiner, M.; Piao, S.; Vautard, R.; Sardans, J. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 2017, 1, 1438–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchison, C.; Gravel, D.; Guichard, F.; Potvin, C. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci. Rep. 2018, 8, 15443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, P.A.; Dunford, R.W.; Holman, I.P.; Cojocaru, G.; Madsen, M.S.; Chen, P.-Y.; Pedde, S.; Sandars, D. Differences between low-end and high-end climate change impacts in Europe across multiple sectors. Reg. Environ. Chang. 2019, 19, 695–709. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.R.; Bhandari, P.M.; Issa, R.; Neupane, D.; Gurung, S.; Khanal, V. Climate change and adverse health events: Community perceptions from the Tanahu district of Nepal. Environ. Res. Lett. 2015, 10, 034007. [Google Scholar] [CrossRef] [Green Version]
- Curtis, S.; Fair, A.; Wistow, J.; Val, D.V.; Oven, K. Impact of extreme weather events and climate change for health and social care systems. Environ. Health 2017, 16, 128. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Luderer, G.; Pietzcker, R.C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Chang. 2015, 5, 519–527. [Google Scholar] [CrossRef]
- Bauer, N.; Mouratiadou, I.; Luderer, G.; Baumstark, L.; Brecha, R.J.; Edenhofer, O.; Kriegler, E. Global fossil energy markets and climate change mitigation—An analysis with REMIND. Clim. Chang. 2016, 136, 69–82. [Google Scholar] [CrossRef]
- Carvajal, P.E.; Anandarajah, G.; Mulugetta, Y.; Dessens, O. Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—The case of Ecuador. Clim. Chang. 2017, 144, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Hassapoyannes, K. Mitigation Challenges and Options in Agriculture. In Global Challenges for Future Food and Agricultural Policies; Blandford, D., Hassapoyannes, K., Eds.; World Scientific: Singapore, 2019; pp. 249–266. [Google Scholar]
- Hassapoyannes, K.; Blandford, D. Agriculture and Climate Change: National and International Policy Response. In Global Challenges for Future Food and Agricultural Policies; Blandford, D., Hassapoyannes, K., Eds.; World Scientific: Singapore, 2019; pp. 217–248. [Google Scholar]
- Mendelsohn, R. Adapting to Climate Change in Agriculture: Challenges and Options. In Global Challenges for Future Food and Agricultural Policies; Blandford, D., Hassapoyannes, K., Eds.; World Scientific: Singapore, 2019; pp. 267–280. [Google Scholar]
- Halmstad, A.; Najafi, M.R.; Moradkhani, H. Analysis of precipitation extremes with the assessment of regional climate models over the Willamette River Basin, USA. Hydrol. Process. 2013, 27, 2579–2590. [Google Scholar] [CrossRef]
- Rana, A.; Moradkhani, H. Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios. Clim. Dyn. 2016, 47, 579–600. [Google Scholar] [CrossRef]
- Rana, A.; Uvo, C.B.; Bengtsson, L.; Sarthi, P.P. Trend analysis for rainfall in Delhi and Mumbai, India. Clim. Dyn. 2012, 38, 45–56. [Google Scholar] [CrossRef]
- ETCCDI Climate Change Indices. Available online: http://etccdi.pacificclimate.org/list_27_indices.shtml (accessed on 2 September 2018).
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary. In Weather Clim Extrem; Springer: Dordrecht, The Netherlands, 1999; pp. 3–7. Available online: http://link.springer.com/10.1007/978-94-015-9265-9_2 (accessed on 15 September 2020).
- Peterson, T.C.; Folland, C.C.; Gruza, G.; Hogg, W.; Mokssit, A.; Plummer, N. Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001; Springer: Southampton, UK, 2001; p. 144. [Google Scholar]
- Tian, Y.E.; Xu, Y.; Booij, M.J.; Zhang, Q.; Lin, S. Trends in precipitation extremes and long-term memory of runoff records in Zhejiang, east China. In IAHS Publication No. 344 (Hdro-climatology: Variability and Change); Franks, S.W., Boegh, E., Blyth, E., Hannah, D.M., Yilmaz, K.K., Eds.; IAHS Press: Wallingford, UK, 2011; pp. 227–232. [Google Scholar]
- Wilby, R.L.; Dawson, C.W. SDSM 4.2-A Decision Support Tool for the Assessment of Regional Climate Change Impacts, Version 4.2 User Manual; Lancaster University, Lancaster/Environment Agency of England and Wales: Lancaster, UK, 2007; pp. 1–94. [Google Scholar]
- Coupled Model Intercomparison Project Phase 5. Available online: https://pcmdi.llnl.gov/mips/cmip5/ (accessed on 20 August 2018).
- ADB. Ho Chi Minh City Adaptation to Climate Change. 2010. Available online: https://www.adb.org/publications/ho-chi-minh-city-adaptation-climate-change-summary-report (accessed on 25 September 2020).
- Pillai, P.; Philips, B.R.; Shyamsundar, P.; Ahmed, K.; Wang, L. Climate Risks and Adaptation in Asian Coastal Megacities: A Synthesis report (English); World Bank Group: Washington, DC, USA, 2010. [Google Scholar]
- KULP, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. Available online: http://www.nature.com/articles/s41467-019-12808-z (accessed on 25 September 2020).
- Storch, H.; Downes, N.; Thinh, N.-X.; Thamm, H.-P.; Phi, H.-L.; Thuc, T.; Thị Hiền Thuận, N.; Emberger, G.; Goedecke, M.; Welsch, J.; et al. Adaptation planning framework to climate change for the urban area of Ho Chi Minh City, Vietnam. In Proceedings of the Fifth Urban Research Symposium, ‘Cities and Climate Change: Responding to an Urgent Agenda’, Marseille, France, 28–30 June 2009. [Google Scholar]
- Lupikasza, E. Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int. J. Climatol. 2010, 30, 991–1007. [Google Scholar] [CrossRef]
- Wu, C.; Huang, G.; Yu, H.; Chen, Z.; Ma, J. Spatial and temporal distributions of trends in climate extremes of the Feilaixia catchment in the upstream area of the Beijiang River Basin, South China. Int. J. Climatol. 2014, 34, 3161–3178. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Wen, K.; Tian, Z.; Wei, P.; Zhang, B. Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res. 2018, 161, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Thinh, N.X.; Bräuer, A.; Teucher, V. Introduction into work package urban flooding of the bmbf megacity research project TP. Ho Chi Minh. Environ. Inform. Ind. Environ. Prot. Concepts Methods Tools 2009, 2009, 223–232. [Google Scholar]
- Van Leeuwen, C.J.; Dan, N.P.; Dieperink, C. The challenges of water governance in Ho Chi Minh City. Integr. Environ. Assess. Manag. 2016, 12, 345–352. [Google Scholar] [CrossRef]
- ETCCDI Climate Change Indices. RClimdex and RHtests Toolkits. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 2 September 2018).
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Khoi, D.N.; Trang, H.T. Analysis of changes in precipitation and extremes events in Ho Chi Minh City, Vietnam. Procedia Eng. 2016, 142, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245. Available online: https://www.jstor.org/stable/1907187?origin=crossref (accessed on 11 October 2020). [CrossRef]
- Kendall, M.G. Further contributions to the theory of paired comparisons. Biometrics 1955, 11, 43. Available online: https://www.jstor.org/stable/3001479?origin=crossref (accessed on 11 October 2020). [CrossRef]
- Sen, P.K. Robustness of some nonparametric procedures in linear models. Ann. Math. Stat. 1968, 39, 1913–1922. Available online: http://projecteuclid.org/euclid.aoms/1177698021 (accessed on 11 October 2020). [CrossRef]
- Zhang, Y.; Huang, G.; Wang, X.; Liu, Z. Observed changes in temperature extremes for the Beijing-Tianjin-Hebei region of China. Meteorol. Appl. 2017, 24, 74–83. [Google Scholar] [CrossRef] [Green Version]
- von Storch, H. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability: Applications of Statistical Techniques; von Storch, H., Navarra, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–26. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0921818112002032 (accessed on 11 October 2020). [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Semenov, M.A.; Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 2010, 41, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bian, H.; Lü, H.; Sadeghi, A.M.; Zhu, Y.; Yu, Z.; Ouyang, F.; Su, J.; Chen, R. Assessment on the Effect of Climate Change on Streamflow in the Source Region of the Yangtze River, China. Water 2017, 9, 70. [Google Scholar]
- Kumar, D.; Arya, D.S.; Murumkar, A.R.; Rahman, M.M. Impact of climate change on rainfall in Northwestern Bangladesh using multi-GCM ensembles. J. Climatol. 2014, 34, 1395–1404. [Google Scholar] [CrossRef]
- King, L.M.M.; Irwin, S.; Sarwar, R.; McLeod, A.I.A.; Simonovic, S.P.P. The Effects of Climate Change on Extreme Precipitation Events in the Upper Thames River Basin: A Comparison of Downscaling Approaches. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2012, 37, 253–274. Available online: https://www.tandfonline.com/doi/full/10.4296/cwrj2011-938 (accessed on 11 October 2020). [CrossRef]
- Lu, Y.; Qin, X.S.; Mandapaka, P.V. A combined weather generator and K-nearest-neighbour approach for assessing climate change impact on regional rainfall extremes. Int. J. Climatol. 2015, 35, 4493–4508. [Google Scholar] [CrossRef]
- Khoi, D.N.; Sam, T.T.; Nhi, P.T.T.; Quan, N.T.; Hung, B.V.; Phung, N.K.; Van Thinh, N. Uncertainty assessment for climate change impact on streamflow and water quality in the dong nai river basin, vietnam. In World Environmental and Water Resources Congress; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 366–373. Available online: http://ascelibrary.org/doi/10.1061/9780784482346.037 (accessed on 11 October 2020).
- Semenov, M.A. Simulation of extreme weather events by a stochastic weather generator. Clim. Res. 2008, 35, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Semenov, M.A.; Stratonovitch, P. Adapting wheat ideotypes for climate change: Accounting for uncertainties in CMIP5 climate projections. Clim. Res. 2015, 65, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Sam, T.T.; Khoi, D.N.; Thao, N.T.T.; Nhi, P.T.T.; Quan, N.T.; Hoan, N.X.; Nguyen, V.T. Impact of climate change on meteorological, hydrological and agricultural droughts in the Lower Mekong River Basin: A case study of the Srepok Basin, Vietnam. Water Environ. J. 2018. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Hadi, S.J.; Tombul, M. Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorol. Appl. 2018, 25, 445–455. [Google Scholar] [CrossRef] [Green Version]
- MONRE. Climate Change and Sea Level Rise Scenarios for Vietnam: Summary for Policymakers; Ministry of Natural Resources and Environment: Vietnam, Asia, 2016; p. 39.
- Ngo-Duc, T.; Tangang, F.T.; Santisirisomboon, J.; Cruz, F.; Trinh-Tuan, L.; Nguyen-Xuan, T.; Phan-Van, T.; Juneng, L.; Narisma, G.; Singhruck, P.; et al. Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX-Southeast Asia region. Int. J. Climatol. 2017, 37, 1634–1647. [Google Scholar] [CrossRef]
- Trinh-Tuan, L.; Matsumoto, J.; Tangang, F.; Juneng, L.; Cruz, F.; Narisma, G.; Santisirisomboon, J.; Phan-Van, T.; Gunawan, D.; Aldrian, E.; et al. Application of quantile mapping bias correction for mid-future precipitation projections over Vietnam. SOLA 2019, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tangang, F.; Supari, S.; Chung, J.X.; Cruz, F.; Salimun, E.; Ngai, S.T.; Juneng, L.; Santisirisomboon, J.; Santisirisomboon, J.; Ngo-Duc, T.; et al. Future changes in annual precipitation extremes over Southeast Asia under global warming of 2 °C. APN Sci. Bull. 2018, 8, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Zheng, F.; Gupta, H.; Maier, H.R. An inverse approach to perturb historical rainfall data for scenario-neutral climate impact studies. J. Hydrol. 2018, 556, 877–890. [Google Scholar] [CrossRef]
- Jianga, C.; Xionga, L.; Wangb, D.; Liua, P.; Guoa, S.; Xua, C.Y. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Kim, H.; David, W.; Marcouillerb, D.W.; Woosnam, K.M. Rescaling social dynamics in climate change: The implications of cumulative exposure, climate justice, and community resilience. Geoforum 2018, 96, 129–140. [Google Scholar] [CrossRef]
Types | Indices | Name | Definitions | Unit |
---|---|---|---|---|
Intensity indices | RX1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
RX5day | Max 5-day precipitation amount | Monthly maximum 5-day precipitation | mm | |
R95p | Very wet days | Annual total precipitation when precipitation > 95th percentile | mm | |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days | mm/day | |
Frequency indices | R20mm | Number of heavy precipitation days | Annual count of days when precipitation > 20 mm | days |
R25mm | Number of very heavy precipitation days | Annual count of days when precipitation > 25 mm | days | |
Duration indices | CDD | Consecutive dry days | Maximum number of consecutive days with precipitation < 1 mm | days |
CWD | Consecutive wet days | Maximum number of consecutive days with precipitation > 1 mm | days |
GCMs | Research Center | Country | Resolution |
---|---|---|---|
EC-EARTH | EC—Earth consortium | Europe | 1.125° × 1.125° |
HadGEM2-ES | UK Meteorological Office | UK | 1.25° × 1.88° |
GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory (NOAA GFDL) | USA | 2.5° × 2.0° |
MIROC5 | The University of Tokyo, National Institute for Environmental Studies, Japan Agency for Marine-Earth Science and Technology | Japan | 1.39° × 1.41° |
MPI-ESM-MR | Max Planck Institute for Meteorology | Germany | 1.85° × 1.88° |
Station | CDD | CWD | R20mm | R25mm | R95p | RX1day | RX5day | SDII | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paras | RB | MD | RB | MD | RB | MD | RB | MD | RB | MD | RB | MD | RB | MD | RB | MD |
Ben Cat | 6.8 | 6.0 | −20.4 | −2.1 * | −7.5 | −2.3 | −6.3 | −1.4 | −11 | 1.4 | 3.6 | 3.1 | −0.1 | −0.2 | −0.5 | −0.1 |
Bien Hoa | −32.2 | −33.2 * | 65.5 | 3.7 * | 16.3 | 3.9 * | 9.9 | 1.9 | 25.7 | 101.6 * | 6.2 | 6.1 | 7.3 | 11.6 | −15 | −2.8 * |
Binh Chanh | −7.9 | −6.9 | 5 | 0.4 | 9.5 | 2.3 | 16.5 | 3.0 * | −7.3 | −27.9 | 16.9 | 15.0 | 7.4 | 11.3 | 8.8 | 1.2 * |
Can Gio | 1.8 | 2.1 | −8.2 | −0.8 | −52.7 | −11.7 * | −35.2 | −3.8 * | −38 | −16.6 | 20.3 | 13.0 | −17.5 | −23.6 * | −35 | −6.0 * |
Cat Lai | −16.7 | −15.8 | 2.4 | 0.2 | −43.2 | −23.7 * | −49 | −22.5 * | −27 | −98.2 | 1.4 | 1.7 | −18.4 | −44.0 * | −37 | −11.9 * |
Cu Chi | −19.3 | −18.5 * | 0.4 | 0.0 | −1.4 | −0.4 | −1.4 | −0.3 | 7.9 | 44.4 | 25.9 | 22.0 * | 0.9 | 1.5 | −4.2 | −0.7 |
Hoc Mon | 1.5 | 1.4 | 6.5 | 0.5 | 3.7 | 0.8 | 8.4 | 1.4 | −3.2 | −0.5 | −1.7 | −1.6 | −4.5 | −6.9 | 1.6 | 0.2 |
Nha Be | −13.7 | −12.1 | 12.1 | 1.0 | 3.2 | 0.9 | −0.4 | −0.1 | −8.9 | −14.1 | −5.9 | −5.8 | −5.1 | −8.6 | 3.3 | 0.5 |
TS Hoa | −20.5 | −15.9 | 15.8 | 1.6 * | −4 | −1.3 | −3.1 | −0.8 | 5.6 | 24.4 | −0.2 | −0.3 | −7.4 | −13.4 | −1.8 | −0.3 |
TT Hiep | −11.2 | −11.2 | −11.6 | −1.0 | −0.6 | −0.2 | −4.5 | −0.9 | −14 | −48.6 | −5.5 | −5.3 | −10.1 | −17.4 | 0.1 | 0.0 |
Vung Tau | −24.5 | −27.6 * | −15.2 | −1.5 | 5.4 | 1.3 | 7.1 | 1.3 | 8.5 | 31.6 | 10.2 | 11.3 | 9.5 | 16.7 | 4.7 | 0.7 |
Indices | Stats | CDD | CWD | R20mm | R25mm | R95p | RX1day | RX5day | SDII |
---|---|---|---|---|---|---|---|---|---|
Unit | Mean ± SD | days | days | days | days | mm | mm | mm | mm/day |
Avg. Trend | days/year | days/year | days/year | days/year | mm/year | mm/year | mm/year | mm/day/year | |
North Region | |||||||||
Cu Chi | Mean ± SD | 97.1 ± 37.8 | 8.4 ± 3.6 | 28.4 ± 6 | 22.1 ± 5.1 | 343.9 ± 192 | 86.7 ± 27.6 | 161.7 ± 34.9 | 16.9 ± 3.1 |
Avg. Trend | −0.44 | −0.11 | −0.24 * | −0.18 * | −12.63 * | 0.37 | −1.78 * | −0.09 * | |
Hoc Mon | Mean ± SD | 86.5 ± 43.6 | 7.9 ± 3.5 | 23.6 ± 8.8 | 17.2 ± 7.3 | 327.6 ± 211.5 | 90.1 ± 25.9 | 153.4 ± 42.7 | 15 ± 4 |
Avg. Trend | −1.12 | 0.06 | 0.26 | 0.22 | 3.07 | 0.22 | 0.15 | −0.09 | |
Central Region | |||||||||
Binh Chanh | Mean ± SD | 82 ± 41.6 | 8.9 ± 2.7 | 24.8 ± 6.5 | 17.9 ± 5.9 | 370.9 ± 226.8 | 88 ± 33.5 | 155 ± 39.8 | 13.7 ± 2.1 |
Avg. Trend | −1.28 | 0.01 | 0.2 | 0.22 * | 3.05 | −0.35 | 0.63 | 0.01 | |
Cat Lai | Mean ± SD | 89.8 ± 38.6 | 6.8 ± 3.6 | 53.5 ± 14.5 | 44.2 ± 13.1 | 405.7 ± 322.5 | 114.2 ± 32.2 | 232 ± 67.4 | 31.3 ± 5.2 |
Avg. Trend | −0.63 | −0.11 * | −0.21 | −0.4 | −14.91 * | −0.56 | −2.83 | −0.37 * | |
Nha Be | Mean ± SD | 84.1 ± 41.7 | 8.5 ± 2.3 | 28.2 ± 7.2 | 21.6 ± 5.9 | 411.1 ± 251.6 | 98.8 ± 33.1 | 172.1 ± 41.1 | 15.7 ± 2.4 |
Avg. Trend | −0.67 | −0.06 | −0.2 | −0.16 | −0.89 | 0.04 | 0.03 | −0.05 | |
Tan Son Hoa | Mean ± SD | 73.8 ± 38 | 10.2 ± 2.5 | 32.4 ± 5.7 | 25.1 ± 4.6 | 464.2 ± 205.1 | 104 ± 28.4 | 185.6 ± 39.8 | 15.5 ± 1.7 |
Avg. Trend | −0.32 | −0.07 * | −0.05 | −0.02 | 3.87 | 0.39 | −0.44 | 0.01 | |
South Region | |||||||||
TT Hiep | Mean ± SD | 93.1 ± 45.1 | 9.2 ± 3.6 | 26.2 ± 5 | 19.7 ± 4.7 | 364.8 ± 160.4 | 97.4 ± 39.8 | 168.8 ± 48.4 | 15.8 ± 2.4 |
Avg. Trend | −1.67 * | 0.13 * | −0.01 | −0.03 | 1.51 | −0.39 | −0.89 | −0.15 * | |
Can Gio | Mean ± SD | 120.3 ± 32.9 | 8.9 ± 3.4 | 22.3 ± 8.2 | 11.9 ± 7.1 | 288.7 ± 255.7 | 69.7 ± 39 | 138.5 ± 34.3 | 16.4 ± 2.1 |
Avg. Trend | −0.08 | −0.03 | −0.04 | 0.4 * | 16.62 * | 2.01 * | 1.97 * | −0.14 * | |
Neighborhood Region | |||||||||
Ben Cat | Mean ± SD | 89.3 ± 35.9 | 10.1 ± 3.3 | 30.7 ± 7.5 | 22.1 ± 6.4 | 389.2 ± 233.1 | 90.4 ± 33.5 | 160.6 ± 38.4 | 15.8 ± 2 |
Avg. Trend | −0.13 | −0.05 | 0.22 | 0.22 * | 4.9 | 0.16 | 0.58 | 0.02 | |
Bien Hoa | Mean ± SD | 95.2 ± 42.2 | 6.6 ± 2.9 | 25.6 ± 8.5 | 20.3 ± 6.7 | 331.2 ± 189.5 | 100.6 ± 29.4 | 162 ± 50 | 17.5 ± 2.8 |
Avg. Trend | −2.35 * | 0.22 * | 0.62 * | 0.45 * | 8.11 * | 0.55 | 2.68 * | −0.11 * | |
Vung Tau | Mean ± SD | 108.9 ± 38.4 | 9.7 ± 3.4 | 23.1 ± 5.2 | 17.5 ± 4.2 | 358.5 ± 127.1 | 110.1 ± 44.1 | 173.5 ± 49.6 | 15.1 ± 2 |
Avg. Trend | −0.49 | 0.03 | −0.29 * | −0.19 * | −3.84 | −1.52 | −1.38 | −0.11 * |
Period | CDD | CWD | R20mm | R25mm | R95p | RX1day | RX5day | SDII |
---|---|---|---|---|---|---|---|---|
2021–2050 | 2.02 | −0.25 | −0.77 | −0.34 | −5.54 | −0.69 | 2.21 | −0.55 |
2051–2080 | 0.83 | 1.04 | −0.26 | 1.82 | 0.28 | 0.79 | 2.69 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoi, D.N.; Trong Quan, N.; Thi Thao Nhi, P.; Nguyen, V.T. Impact of Climate Change on Precipitation Extremes over Ho Chi Minh City, Vietnam. Water 2021, 13, 120. https://doi.org/10.3390/w13020120
Khoi DN, Trong Quan N, Thi Thao Nhi P, Nguyen VT. Impact of Climate Change on Precipitation Extremes over Ho Chi Minh City, Vietnam. Water. 2021; 13(2):120. https://doi.org/10.3390/w13020120
Chicago/Turabian StyleKhoi, Dao Nguyen, Nguyen Trong Quan, Pham Thi Thao Nhi, and Van Thinh Nguyen. 2021. "Impact of Climate Change on Precipitation Extremes over Ho Chi Minh City, Vietnam" Water 13, no. 2: 120. https://doi.org/10.3390/w13020120
APA StyleKhoi, D. N., Trong Quan, N., Thi Thao Nhi, P., & Nguyen, V. T. (2021). Impact of Climate Change on Precipitation Extremes over Ho Chi Minh City, Vietnam. Water, 13(2), 120. https://doi.org/10.3390/w13020120