Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review
Abstract
:1. Introduction
2. Classification of MCDM Methods
3. Materials and Methods
3.1. Bibliographic Search Engine Databases
- Web of science core collections (WoS) (https://apps.webofknowledge.com)
- Science Direct (SD) (http://www.sciencedirect.com)
- Scopus (http://www.scopus.com)
- Google Scholar (GS) (http://scholar.google.com)
3.2. Data Extraction and Procedures
Selecting Research Literature Using Formal Strings
4. Results
4.1. Distribution of Research Papers Based on Publication Year
4.2. Distribution of Publications Based on the Study Region
4.3. Distribution of Publication Based on Aspects
4.4. Distribution of Decision Technique Methods Based on Publication Year
4.5. Distribution of Publications Based on Water Problem Classifications
4.6. Description of Water Problems and MCDM Methods Application to Solve Water Resource Allocation Problems
4.6.1. MCDM Methods Application to Solve Water Shortage Problems
4.6.2. MCDM Methods Application to Solve Water Use Management Problems
4.6.3. MCDM Method Applications to Solve Water Quality Problems
4.6.4. MCDM Methods Application to Solve Water Ecosystem Problems
4.6.5. MCDM Methods Application to Solve Flood Risk Problems
4.6.6. MCDM Methods Application to Solve Combined Water Problems
Water Shortage and Water Quality Problems
Water Shortage and Flood Problems
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AHP | analytic hierarchy process |
AVF | additive value function |
CCM | compound cloud model |
DE | differential evolution |
DM | dynamic modeling |
ELECTREE | elimination and choice expressing reality |
e-NSGAII | epsilon dominance non-dominated sorted genetic algorithm-II |
FAHP | fuzzy analytic hierarchy process |
GA | genetic algorithm |
GP | goal programming |
GRASP | greedy randomized adaptive search procedure |
IPCC | intergovernmental Panel on Climate Change |
IQP | inexact quadratic programming |
ITSP | inexact two-stage stochastic programming |
LP | linear programming |
MADM | multi-attribute decision-making |
MAUT | multi-attribute utility theory |
MCDM | multi-criteria decision-making |
MFSC | modified fuzzy social choice |
MFSP | multi-stage fuzzy stochastic programming |
MIP | mixed-integer programming |
MOABC | multi-objective artificial bee colony-based optimization approach |
MoBCDM | multi-objective best compromise decision model |
MODM | multi-objective decision-making |
Model DSS | Innovative modeling approaches model (decision support system) |
MOGM | multi-objective game-theory model |
PROMETHEE | preference ranking organization method for enrichment evaluation |
SA | simulating annealing |
TOPSIS | technique for order of preference by similarity to ideal solution |
WSM | weighted sum method |
References
- Cassardo, C.; Jones, J.A.A. Managing Water in a Changing World. Water 2011, 3, 618–628. [Google Scholar] [CrossRef] [Green Version]
- Du Plessis, A. Freshwater Challenges of South Africa and Its Upper Vaal River: Global Context of Freshwater Resources; Springer International Publishing: New York, NY, YSA, 2017; 164p. [Google Scholar]
- FAO. Water for Sustainable Food and Agriculture Water for Sustainable Food and Agriculture. A Report Produced for the G20 Presidency of Germany; FAO: Rome, Italy, 2017. [Google Scholar]
- WWAP. The United Nations World Water Development Report 2018: Nature–Based Solutions for Water. 2018. Available online: https://doi.org/https://unesdoc.unesco.org/ark:/48223/pf0000261424 (accessed on 18 July 2020).
- De Brito, M.M.; Evers, M. Multi–Criteria Decision–Making for Flood Risk Management: A Survey of the Current State of the Art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Archibald, T.W.; Marshall, S.E. Review of Mathematical Programming Applications in Water Resource Management Under Uncertainty. Environ. Model. Assess. 2018, 23, 753–777. [Google Scholar] [CrossRef] [Green Version]
- Hajkowicz, S.; Collins, K. A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Kangas, J.; Kangas, A. Multiple criteria decision support in forest management—The approach, methods applied, and experiences gained. For. Ecol. Manag. 2005, 207, 133–143. [Google Scholar] [CrossRef]
- Estrella, R.; Cattrysse, D.; Van Orshoven, J. Comparison of Three Ideal Point-Based Multi-Criteria Decision Methods for Afforestation Planning. Forests 2014, 5, 3222–3240. [Google Scholar] [CrossRef] [Green Version]
- Veintimilla-Reyes, J.; De Meyer, A.; Cattrysse, D.; Tacuri, E.; Vanegas-Peralta, P.; Cisneros, F.; Van Orshoven, J.; Veintimilla-Reyes, J.; Meyer, D.; Van Orshoven, J. MILP for Optimizing Water Allocation and Reservoir Location: A Case Study for the Machángara River Basin, Ecuador. Water 2019, 11, 1011. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Jusoh, A.; Nor, K.M.D.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications—A review of the literature from 2000 to 2014. Econ. Res. EkonomskaIstraživanja 2015, 28, 516–571. [Google Scholar] [CrossRef]
- Sitorus, F.; Cilliers, J.J.; Brito-Parada, P.R. Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends. Expert Syst. Appl. 2019, 121, 393–417. [Google Scholar] [CrossRef]
- Leake, C.; Malczewski, J. GIS and Multicriteria Decision Analysis; Wiley: New York, NY, USA, 2000; Volume 51. [Google Scholar] [CrossRef]
- Zimmermann, H.-J.; Gutsche, L. Multi-Criteria Analysis; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Churchman, C.W.; Ackoff, R.L. An Approximate Measure of Value. J. Oper. Res. Soc. Am. 1954, 2, 172–187. [Google Scholar] [CrossRef]
- Pokehar, S.D.; Ramachandran, M. Application of multi-criteria decision making to Sustainable Energy Planning. Renew. Sustain. Energy 2004, 8, 365–381. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Huang, J.J. Multiple Attribute Decision Making: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011; 335p. [Google Scholar]
- Brans, J.P.; Vincke, P. A Preference Ranging Organization Method. The PROMETHEE Method for MCDM. Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Rouyendegh, B.D.; Erol, S. Selecting the Best Project Using the Fuzzy ELECTRE Method. Math. Probl. Eng. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Hwang, C.L.; Kwangsun, Y. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Baležentis, T.; Zagurskaitė, F.; Streimikiene, D.; Makutėnienė, D. Multicriteria Approach towards the Sustainable Selection of a Teahouse Location with Sensitivity Analysis. Sustainability 2018, 10, 2926. [Google Scholar] [CrossRef] [Green Version]
- De Meyer, A.; Cattrysse, D.; Rasinmäki, J.; Van Orshoven, J. Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renew. Sustain. Energy Rev. 2014, 31, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Belton, V.; Stewart, T.J. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer Academic Publications: Boston, MA, USA, 2002. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Villar, K.K. Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future. Energies 2014, 7, 7640–7672. [Google Scholar] [CrossRef] [Green Version]
- Boeker, M.; Vach, W.; Motschall, E. Google Scholar as replacement for systematic literature searches: Good relative recall and precision are not enough. BMC Med Res. Methodol. 2013, 13, 131. [Google Scholar] [CrossRef] [Green Version]
- Harzing, A.W. Publish or Perish. 2007. Available online: http://www.harzing.com/pop.htm (accessed on 16 April 2020).
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Waltman, L. A review of the literature on citation impact indicators. J. Inf. 2016, 10, 365–391. [Google Scholar] [CrossRef] [Green Version]
- Tober, M. PubMed, Science Direct, Scopus or Google Scholar—Which is the best search engine for an effective literature research in laser medicine? Med Laser Appl. 2011, 26, 139–144. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduña-Malea, E.; Thelwall, M.; López-Cózar, E.D. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Inf. 2018, 12, 1160–1177. [Google Scholar] [CrossRef] [Green Version]
- Bakkalbasi, N.; Bauer, K.; Glover, J.; Wang, L. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomed. Digit. Libr. 2006, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Neuhaus, C.; Daniel, H.D. Data sources for performing citation analysis: An overview. J. Doc. 2008, 64, 193–210. [Google Scholar] [CrossRef]
- Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, J.; Franco, O.H. Optimal Database Combinations for Literature Searches in Systematic Reviews: A Prospective Exploratory Study. Syst. Rev. 2017, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Google Scholar’s Dramatic Coverage Improvement Five Years after Debuta. Ser. Rev. 2010, 36, 221–226. [Google Scholar] [CrossRef]
- Orduna–Malea, E.; Ayllón, J.M.; Martin-Martin, A.; López-Cózar, E. Methods for Estimating the Size of Google Scholar. Scientometrics 2015, 104, 931–949. [Google Scholar] [CrossRef] [Green Version]
- Chavarro, D.; Ràfols, I.; Tang, P. To what extent is inclusion in the Web of Science an indicator of journal ‘quality’? Res. Eval. 2018, 27, 106–118. [Google Scholar] [CrossRef]
- Hoseth, A. Google Scholar. Charlest. Advis. 2011, 12, 36–39. [Google Scholar] [CrossRef]
- Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature. J. Inf. 2017, 11, 823–834. [Google Scholar] [CrossRef]
- Niazi, M. Do Systematic Literaure Reviews Outperform Informal Literature Reviews in the Software Engineering Domain? An Initial Case Study. Arab. J. Sci. Eng. 2015, 40, 845–855. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. Npj Clean Water 2019, 2, 2. [Google Scholar] [CrossRef]
- UNEP. Global International Waters Assessment. International Waters Regional Assessments in a Global Perspective; United Nations Environment Programme: Stockholm, Sweden, 2006. [Google Scholar]
- EM-DAT. EM-DAT International Disaster Database. Available online: http://www.emdat.be (accessed on 6 June 2019).
- Shatanawi, M.; Naber, S. Valuing Water from Social, Economic and Environmental Perspective. Dialogues Mediterr. Water Challenges Ration. Water Use, Water Price Versus Value Lessons Learn. from Eur. Water Framew. Dir. 2011, 117, 109–117. [Google Scholar]
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution. Water Futures and Solution—Fast Track Initiative (Final Report); IIASA Working Paper WP-16-006; IASA: Laxenburg, Austria, 2016. [Google Scholar]
- Tundisi, J.G. Water Resources in the Future: Problems and Solutions. EstudosAvançados 2008, 22, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chan, F.K.S.; Holden, J.; Zhao, Y.; Guan, D. China’s water management—Challenges and solutions. Environ. Eng. Manag. J. 2013, 12, 1311–1321. [Google Scholar] [CrossRef]
- GWP. Integrated Water Resources Management in Central America: The Over–Riding Challenge of Managing Transboundary Waters; Global Water Partnership: Stockholm, Sweden, 2016. [Google Scholar]
- Martin-Ortega, J.; Berbel, J. Using multi-criteria analysis to explore non-market monetary values of water quality changes in the context of the Water Framework Directive. Sci. Total. Environ. 2010, 408, 3990–3997. [Google Scholar] [CrossRef]
- Backer, H.; Leppänen, J.-M.; Brusendorff, A.C.; Forsius, K.; Stankiewicz, M.; Mehtonen, J.; Pyhälä, M.; Laamanen, M.; Paulomäki, H.; Vlasov, N.; et al. HELCOM Baltic Sea Action Plan—A regional programme of measures for the marine environment based on the Ecosystem Approach. Mar. Pollut. Bull. 2010, 60, 642–649. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Díaz, R.J.; Levin, L.A.; Turner, R.E.; Gilbert, D.; Zhang, J. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 2010, 7, 585–619. [Google Scholar] [CrossRef] [Green Version]
- Zmijewski, N.; Wörman, A. Trade-Offs between Phosphorous Discharge and Hydropower Production Using Reservoir Regulation. J. Water Resour. Plan. Manag. 2017, 143, 04017052. [Google Scholar] [CrossRef]
- UNESCO. Report on the UNESCO–IHP Regional Consultation Meeting on “Water Quality in Europe: Challenges and Bestpractices”; UNESCO-IHP: Koblenz, Germany, 2015. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Cindy, O. Asian Ecology: Pressing Problems and Research Challenges. Bull. Ecol. Soc. Am. 2002, 83, 189–194. [Google Scholar]
- ESCAP/CED. Key Environment Issues, Trends and Challenges in the Asia–Pacific Region. In Environmental Challenges in the Context of the Implementation of the 2030 Agenda for Sustainable Development; United Nations Economic and Social Council: Bangkok, Thailand, 2018. [Google Scholar]
- Liu, J.; Liu, Q.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 2016, 60, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Satoh, Y.; Kahil, T.; Byers, E.; Burek, P.; Fischer, G.; Tramberend, S.; Greve, P.; Flörke, M.; Eisner, S.; Hanasaki, N.; et al. Multi-model and multi-scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative. Earth’s Futur. 2017, 5, 823–852. [Google Scholar] [CrossRef] [Green Version]
- FAO. Coping with Water Scarcity an Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; Volume 38, Available online: https://doi.org/http://www.fao.org/docrep/016/i3015e/i3015e.pdf (accessed on 24 March 2020).
- Mekonnen, M.M.; Hoekstra, Y.A. Four Billion People Facing Severe Water Scarcity. Am. Assoc. Adv. Sci. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Uen, T.-S.; Chang, F.-J.; Zhou, Y.; Tsai, W.-P. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Sci. Total. Environ. 2018, 633, 341–351. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Chu, J.; Fu, G.; Tang, R.; Qi, W. Use of Many-Objective Visual Analytics to Analyze Water Supply Objective Trade-Offs with Water Transfer. J. Water Resour. Plan. Manag. 2017, 143, 05017006. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction. Hydrol. Earth Syst. Sci. 2015, 19, 3557–3570. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Song, W.; Zhang, Y. Forecast and optimal allocation of production, living and ecology water consumption in Zhangye, China. Phys. Chem. Earth, Parts ABC 2016, 96, 16–25. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, C.; Yao, L.; Li, L.; Li, C. A multi-objective optimization model with conditional value-at-risk constraints for water allocation equality. J. Hydrol. 2016, 542, 330–342. [Google Scholar] [CrossRef]
- Lai, C. A Multi-objective Optimal Water Strategy Using Time Series Analysis and Improved Genetic Algorithm. J. Inf. Comput. Sci. 2015, 12, 2229–2239. [Google Scholar] [CrossRef]
- Fowe, T.; Nouiri, I.; Ibrahim, B.; Karambiri, H.; Paturel, J.E. OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems. Water Resour. Manag. 2015, 29, 3841–3861. [Google Scholar] [CrossRef]
- Niu, G.; Li, Y.P.; Huang, G.H.; Liu, J.; Fan, Y.R. Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties. Agric. Water Manag. 2016, 166, 53–69. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, G.D.; Gao, Y.G.; Long, A.H.; Xu, Z.M.; Li, X.; Chen, H.; Barker, T. Optimal Water Resource Allocation in Arid and Semi-Arid Areas. Water Resour. Manag. 2007, 22, 239–258. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Chu, H.L.; Stewardson, M.; Kompas, T. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia. Water Resour. Res. 2011, 47, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Elmahdi, A.; McFarlane, D.J. A decision support system for sustainable groundwater management. Case study: Gnangara sustainability strategy—Western Australia. Water Resour. Manag. V 2009, 125, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Roozbahani, R.; Abbasi, B.; Schreider, S.; Ardakani, A. A Multi-objective Approach for Transboundary River Water Allocation. Water Resour. Manag. 2014, 28, 5447–5463. [Google Scholar] [CrossRef]
- Roozbahani, R.; Abbasi, B.; Schreider, S. Optimal allocation of water to competing stakeholders in a shared watershed. Ann. Oper. Res. 2015, 229, 657–676. [Google Scholar] [CrossRef]
- Song, W.-Z.; Yuan, Y.; Jiang, Y.-Z.; Lei, X.-H.; Shu, D.-C. Rule-based water resource allocation in the Central Guizhou Province, China. Ecol. Eng. 2016, 87, 194–202. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Wang, X.; Li, G.C.; Tan, Q. An inexact programming approach for supporting ecologically sustainable water supply with the consideration of uncertain water demand by ecosystems. Stoch. Environ. Res. Risk Assess. 2011, 25, 721–735. [Google Scholar] [CrossRef]
- Shang, S.H. A general multi-objective programming model for minimum ecological flow or water level of inland water bodies. J. Arid. Land 2015, 7, 166–176. [Google Scholar] [CrossRef]
- Alamanos, A.; Mylopoulos, N.; Loukas, A.; Gaitanaros, D. An Integrated Multicriteria Analysis Tool for Evaluating Water Resource Management Strategies. Water 2018, 10, 1795. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Yu, C.-Y.; Chiang, P.-C.; Hou, C.-H. Water–Energy Nexus for Multi-Criteria Decision Making in Water Resource Management: A Case Study of Choshui River Basin in Taiwan. Water 2018, 10, 1740. [Google Scholar] [CrossRef] [Green Version]
- Cambrainha, G.M.; Fontana, M.E. A multi-criteria decision making approach to balance water supply-demand strategies in water supply systems. Production 2018, 28. [Google Scholar] [CrossRef] [Green Version]
- Loucks, D.P.; Van, B.E. Water Resources Planning and Management: An Overview. In Water Resource Systems Planning and Management; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Duncan, A.E.; De Vries, N.; Nyarko, K.B. The effectiveness of water resources management in Pra Basin. Hydrol. Res. 2019, 21, 787–805. [Google Scholar] [CrossRef]
- OECD. Water Resources Allocation: Sharing Risks and Opportunities. Water Intell. Online 2015, 14. [Google Scholar] [CrossRef]
- Amprako, J.L. Water for a Sustainable World; UNESCO: Paris, France, 2015. [Google Scholar]
- Hurford, A.P.; Huskova, I.; Harou, J.J. Using many-objective trade-off analysis to help dams promote economic development, protect the poor and enhance ecological health. Environ. Sci. Policy 2014, 38, 72–86. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, P.; Wang, Y.; Jiang, D.; Dai, H.; Mao, J.; Wang, M. Multi-objective optimization of cascade reservoirs using NSGA-II: A case study of the Three Gorges-Gezhouba cascade reservoirs in the middle Yangtze River, China. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 814–835. [Google Scholar] [CrossRef]
- Hajiabadi, R.; Zarghami, M. Multi-Objective Reservoir Operation with Sediment Flushing; Case Study of Sefidrud Reservoir. Water Resour. Manag. 2014, 28, 5357–5376. [Google Scholar] [CrossRef]
- Lewis, A.; Randall, M. Solving multi-objective water management problems using evolutionary computation. J. Environ. Manag. 2017, 204, 179–188. [Google Scholar] [CrossRef]
- Martin, D.M.; Powell, S.J.; Webb, J.A.; Nichols, S.J.; Poff, N.L. An Objective Method to Prioritize Socio-Environmental Water Management Tradeoffs Using Multi-Criteria Decision Analysis. River Res. Appl. 2016, 33, 586–596. [Google Scholar] [CrossRef]
- Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water allocation under climate change. Sci. Total. Environ. 2017, 607–608, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cai, Y.; Qian, J. A multi-stage fuzzy stochastic programming method for water resources management with the consideration of ecological water demand. Ecol. Indic. 2018, 95, 930–938. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Q.; Li, C.; Wang, X.; Cai, Y.; Cui, G.; Yang, Z. An improved multi-objective optimization model for supporting reservoir operation of China’s South-to-North Water Diversion Project. Sci. Total. Environ. 2017, 575, 970–981. [Google Scholar] [CrossRef]
- Dhaubanjar, S.; Davidsen, C.; Bauer-Gottwein, P. Multi-Objective Optimization for Analysis of Changing Trade-Offs in the Nepalese Water–Energy–Food Nexus with Hydropower Development. Water 2017, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tang, D.; Bai, Y.; Xia, Z. A compound cloud model for harmoniousness assessment of water allocation. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Li, M.; Guo, P.; Ren, C. Water Resources Management Models Based on Two-Level Linear Fractional Programming Method under Uncertainty. J. Water Resour. Plan. Manag. 2015, 141, 05015001. [Google Scholar] [CrossRef]
- Rousta, B.A.; Araghinejad, S. Development of a Multi Criteria Decision Making Tool for a Water Resources Decision Support System. Water Resour. Manag. 2015, 29, 5713–5727. [Google Scholar] [CrossRef]
- Wijenayake, W.M.H.K.; Amarasinghe, U.S.; De Silva, S.S. Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development: Case study from Sri Lanka. Aquacultur 2016, 459, 26–35. [Google Scholar] [CrossRef]
- UNCED. Agenda 21, Chapter 18. Protection of the Quality and Supply of Freshwater Resources: Application of Integrated Approaches to the Development, Management and Use of Water Resources. United Nations Conference on Environment and Development; United Nations: Rio de Janeiro, Brazil, 1992. [Google Scholar]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.V. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani-Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water Pollution: Effects, Prevention, and Climatic Impact. In Water Challenges of an Urbanizing World; IntechOpen: Rijeka, Crotia, 2018. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Schoups, G.; Van De Giesen, N. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Sci. Rep. 2017, 7, 43289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunca, A.-M. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania). J. Chem. 2018, 2018, 9073763. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lin, C.; Wang, Y.; Gao, X.; Xie, T.; Hai, R.; Wang, X.; Zhang, X. Multi-criteria evaluation method for site selection of industrial wastewater discharge in coastal regions. J. Clean. Prod. 2017, 161, 1143–1152. [Google Scholar] [CrossRef]
- Raei, E.; Nikoo, M.R.; Pourshahabi, S. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory. J. Hydrol. 2017, 551, 407–422. [Google Scholar] [CrossRef]
- Pérez, C.J.; Vega-Rodríguez, M.A.; Reder, K.; Flörke, M. A Multi-Objective Artificial Bee Colony-based optimization approach to design water quality monitoring networks in river basins. J. Clean. Prod. 2017, 166, 579–589. [Google Scholar] [CrossRef]
- Karterakis, S.M.; Karatzas, G.P.; Nikolos, I.K.; Papadopoulou, M.P. Application of linear programming and differential evolutionary optimization methodologies for the solution of coastal subsurface water management problems subject to environmental criteria. J. Hydrol. 2007, 342, 270–282. [Google Scholar] [CrossRef]
- Regneri, M.; Klepiszewski, K.; Ostrowski, M.; Vanrolleghem, P.A. Fuzzy Decision Making for Multi-Criteria Optimization in Integrated Wastewater System Management. In Proceedings of the 6th International Conference on Sewer Processes and Networks, Gold Coast, Australia, 7–10 November 2010. [Google Scholar]
- Meng, C.; Wang, X.; Li, Y. An Optimization Model for Water Management Based on Water Resources and Environmental Carrying Capacities: A Case Study of the Yinma River Basin, Northeast China. Water 2018, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; De Groot, R.; Sutton, P.C.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- UNEP. Global Environment Outlook. GEO 4 Environment for Development. United Nations Environment Programme; Progress Press Ltd.: Valletta, Malta, 2014; Volume 9. [Google Scholar] [CrossRef]
- Brussard, P.F.; Reed, J.M.; Tracy, C.R. Ecosystem management: What is it really? Landsc. Urban Plan. 1998, 40, 9–20. [Google Scholar] [CrossRef]
- UNEP. Wetlands and Ecosystem Services World Wetlands Day; CBD Press Brief: Montreal, QC, Canada, 2015. [Google Scholar]
- Xepapadeas, A. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Kumar, P., Ed.; Earthscan: London, UK; Washington, DC, USA, 2011; ISBN 978-1-84971-212-5. [Google Scholar]
- Yang, W. A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China’s Yellow River Delta. Ecol. Model. 2011, 222, 261–267. [Google Scholar] [CrossRef]
- Akhbari, M.; Grigg, N.S. Water Management Trade-offs between Agriculture and the Environment: A Multi objective Approach and Application. J. Irrig. Drain. Eng. 2014, 140, 05014005. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, F.; Gallerano, F. Multi-objective analysis of dam release flows in rivers downstream from hydropower reservoirs. Appl. Math. Model. 2012, 36, 2868–2889. [Google Scholar] [CrossRef] [Green Version]
- Haimes, Y. On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE Trans. Syst. Man Cybern. 1971, 1, 296–297. [Google Scholar] [CrossRef]
- Lee, C.-S. Multi-objective game-theory models for conflict analysis in reservoir watershed management. Chemosphere 2012, 87, 608–613. [Google Scholar] [CrossRef]
- Carraro, C.; Marchiori, C.; Sgobbi, A. Negotiating on water: Insights from non-cooperative bargaining theory. Environ. Dev. Econ. 2007, 12, 329–349. [Google Scholar] [CrossRef]
- Xu, X.; Bin, L.; Pan, C.; Ding, A.; Chen, D. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits. Water 2014, 6, 796–812. [Google Scholar] [CrossRef] [Green Version]
- USAID. Overarching Guide: Incorporating Climate Change Adaptation in Infrastructure Planning and Design. In Executive Summary; USAID: Washington, DC, USA, 2015. [Google Scholar]
- Jia, B.; Simonovic, S.P.; Zhong, P.; Yu, Z. A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System. Water Resour. Manag. 2016, 30, 3363–3387. [Google Scholar] [CrossRef]
- Amorocho-Daza, H.; Cabrales, S.; Santos, R.; Saldarriaga, J. A New Multi-Criteria Decision Analysis Methodology for the Selection of New Water Supply Infrastructure. Water 2019, 11, 805. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Combating Waterborne Disease at the Household Level; WHO: Geneva, Switherland, 2007. [Google Scholar]
- Yang, J.-S.; Chung, E.-S.; Kim, S.U.; Kim, T.W. Prioritization of water management under climate change and urbanization using multi-criteria decision making methods. Hydrol. Earth Syst. Sci. 2012, 16, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Chung, E.-S.; Lee, K.S. Identification of Spatial Ranking of Hydrological Vulnerability Using Multi-Criteria Decision Making Techniques: Case Study of Korea. Water Resour. Manag. 2009, 23, 2395–2416. [Google Scholar] [CrossRef]
- Chung, E.-S.; Lee, K.S. Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. J. Environ. Manag. 2009, 90, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Pourmand, E.; Mahjouri, N. A fuzzy multi-stakeholder multi-criteria methodology for water allocation and reuse in metropolitan areas. Environ. Monit. Assess. 2018, 190, 444. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Lei, Y.; Sha, J.; Zhang, G.; Yan, J.; Lin, X.; Pan, X. Dynamic simulation of water resource management focused on water allocation and water reclamation in Chinese mining cities. Hydrol. Res. 2016, 18, 844–861. [Google Scholar] [CrossRef]
- IPCC 2014. Climate Change, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. 2014. Available online: https://www.eea.europa.eu/data-and-maps/indicators/vector-borne-diseases-1/ipcc-2014-climate-change-2014 (accessed on 24 March 2020).
- De Almeida, A.T.; Cavalcante, C.A.V.; Alencar, M.H.; Ferreira, R.J.P.; De Almeida-Filho, A.T.; Garcez, T.V. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis; Springer: Cham, Switzeland, 2015. [Google Scholar] [CrossRef]
- Men, B.; Wu, Z.; Li, Y.; Liu, H. Reservoir Operation Policy based on Joint Hedging Rules. Water 2019, 11, 419. [Google Scholar] [CrossRef] [Green Version]
- Veintimilla-Reyes, J.; De Meyer, A.; Cattrysse, D.; Van Orshoven, J. A linear programming approach to optimise the management of water in dammed river systems for meeting demands and preventing floods. Water Supply 2017, 18, 713–722. [Google Scholar] [CrossRef]
- UN Water. World Water Development Report: Water and Climate Change; UNESCO World Water Assessment Programme (WWAP): Paris, France, 2020. [Google Scholar]
Type | Features | What Is Included? | Search Results | Strength | Weakness | Publisher | Year of Data Availability | References |
---|---|---|---|---|---|---|---|---|
Web of Science (WoS) | Interdisciplinary platform with many databases of sciences. It covers agriculture in the broadest sense, including veterinary medicine | Journal articles, conference proceedings | Reliable sorting. Searches are reproducible and reportable | Ability to analyze search results by author, affiliation, country, journal/book title, and broad subject categories. | Poorer coverage of interdisciplinary journals | Thomson Reuters/ Clarivate Analytics | Established 1973 but data contains since 1900 | [28,29,30,31] |
Science Direct (SD) | Science, technology, and medicine | Journal articles, and books | Reliable and retrievable | Easy to search journal articles and provide full-text access | Low coverage of interdisciplinary sciences | Elsevier | 1997 | [32] |
Scopus | Biomedical sciences, natural sciences, engineering, social sciences, arts, and humanities | Journal articles, conference proceedings | Reliable sorting. Searches are reproducible and reportable | Tools for analyzing search results by author, affiliation, country, journal title, and broad subject categories | Medium coverage of interdisciplinary journals | Elsevier | Launched in 2004 but article indexing coverage goes back to 1970 | [29,30,31,33] |
Google Scholar (GS) | All subject areas | Includes all types of documents, e.g., tutorials, posters, presentations | Search results are not reproducible and reportable | International and interdisciplinary coverage (all types of documents) | Few sorting options; many non-peer-reviewed sources | Unknown | [28,29,34] |
WoS | SD | Scopus | GS | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Strings Category | Strings | hits | sel | hits | sel | hits | sel | hits | sel | sel |
Water–Environment allocation | ||||||||||
W1 | TI = ((“Water resource allocation” or “optimization”) and (“ecosystem service”or “ecology”or “agriculture productivity” or“environmental management”)) | 16 | 2 | 57 | 7 | 2291 | 53 | 2 | 1 | 63 |
W2 | TI = ((“Multi criteria decision making of water resource use”or “allocation”) and (“ecosystem service”or “ecology”or “agriculture productivity” or “environmental management”)) | 17 | 1 | 11 | 1 | 762 | 32 | 171 | 8 | 46 |
Total | 109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water 2021, 13, 125. https://doi.org/10.3390/w13020125
Gebre SL, Cattrysse D, Van Orshoven J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water. 2021; 13(2):125. https://doi.org/10.3390/w13020125
Chicago/Turabian StyleGebre, Sintayehu Legesse, Dirk Cattrysse, and Jos Van Orshoven. 2021. "Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review" Water 13, no. 2: 125. https://doi.org/10.3390/w13020125
APA StyleGebre, S. L., Cattrysse, D., & Van Orshoven, J. (2021). Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water, 13(2), 125. https://doi.org/10.3390/w13020125