Distribution Uniformity in Intensive Horticultural Systems of Almería and Influence of the Production System and Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Description
2.2. Experimental Design
2.3. Determinations
2.3.1. Uniformity Distribution (DU)
- Selection of the greenhouse.
- Selection within the greenhouse installation of the most representative irrigation unit (in the case where there were more than 1) being considered as the most representative the one that met the average values (size closest to 5000 m2).
- Selection of the most representative sub-unit within that unit (size closest to 1000 m2) (Figure 3).
- Performing flow measurements at the 16 established points according to the Merriam and Keller [27] methodology.
2.3.2. Distribution of Irrigation Water (DW)
2.4. Statistical Analysis
3. Results
3.1. Distribution Uniformity (DU)
3.1.1. Average Distribution Uniformity (ADU)
3.1.2. Distribution Uniformity According to the Production System
3.1.3. Distribution Uniformity According to the Water Quality
3.2. Distribution of Irrigation Water in the Greenhouse (DW)
3.2.1. Average of Irrigation Water in the Greenhouse (ADW)
3.2.2. Distribution of Irrigation Water in the Greenhouse According to the Production System
3.2.3. Distribution of Irrigation Water in the Greenhouse According to the Water Quality
4. Discussion
4.1. Distribution Uniformity (DU)
4.2. Distribution of Irrigation Water in the Greenhouse (DW)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- UNESCO. The United Nations World Water Development Report 2020—Water and Climate Change. World Water Assessment Programme; UNESCO: Paris, France, 2020. [Google Scholar]
- Evans, R.G. Micro Irrigation; 24106 North Bunn Roas Prosser; Washington State University, Irrigated Agriculture Research and Extension Center: Washington, DC, USA, 2002. [Google Scholar]
- Contreras, J.I.; Alonso, F.; Cánovas, G.; Baeza, R. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects. Agric. Water Manag. 2017, 183, 26–34. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef] [Green Version]
- Lozano, D.; Ruiz, N.; Baeza, R.; Contreras, J.I.; Gavilán, P. Effect of Pulse Drip Irrigation Duration on Water Distribution Uniformity. Water 2020, 12, 2276. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Li, Y. Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions. Agric. Water Manag. 2013, 124, 37–51. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Guan, H. Evaluation of Drip Irrigation System Uniformity on Cotton Yield in an Arid Region using a Two-Dimensional Soil Water Transport and Crop Growth Coupling Model. Irrig. Drain. 2017, 66, 351–364. [Google Scholar] [CrossRef]
- Pérez-Ortolá, M.; Daccache, A.; Hess, T.; Knox, J.W. Simulating impacts of irrigation heterogeneity on onion (Allium cepa L.) yield in a humid climate. Irrig. Sci. 2015, 33, 1–14. [Google Scholar] [CrossRef]
- Contreras, J.I.; Baeza, R.; Alonso, F.; Cánovas, G.; Gavilán, P.; Lozano, D. Effect of Distribution Uniformity and Fertigation Volume on the Bio-Productivity of the Greenhouse Zucchini Crop. Water 2020, 12, 2183. [Google Scholar] [CrossRef]
- Bordovsky, J.P.; Porter, D.O. Effect of Subsurface Drip Irrigation System Uniformity on Cotton Production in the Texas High Plains. Appl. Eng. Agric. 2008, 24, 465–472. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Li, Y.; Yin, J. Effects of drip system uniformity on yield and quality of Chinese cabbage heads. Agric. Water Manag. 2012, 110, 118–128. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Agricultura Ecológica. Estadísticas 2016. 2017. Available online: https://www.mapa.gob.es/es/alimentacion/temas/produccion-eco/estadisticas_ae_2016defin_tcm30-429288.pdf (accessed on 22 December 2020).
- Sistema de Información Sobre la Producción Ecológica en Andalucía (SIPEA). Dirección General de Calidad, Industria Agroalimentaria y Producción Ecológica. Junta de Andalucía. 2018. Available online: https://ws142.juntadeandalucia.es/agriculturaypesca/roae/ (accessed on 5 April 2018).
- Contreras, J.I.; Cánovas, G.; Alonso, F.; Lao, M.T.; Baeza, R. Aspectos Limitantes en el Manejo de la Fertilización en Agricultura Ecológica de Invernadero. In Proceedings of the X Seminario Agroecología. Cambio Climático y Agroturismo; Innovación Agroecológica y Cambio Climático, Orihuela (Alicante), Spain, 19–20 October 2017. [Google Scholar]
- Baeza, R.; Contreras, J.I. Evaluation of Thirty-Eight Models of Drippers Using Reclaimed Water: Effect on Distribution Uniformity and Emitter Clogging. Water 2020, 12, 1463. [Google Scholar] [CrossRef]
- García-Delgado, C.; Eymar, E.; Contreras, J.I.; Segura, M.L. Effects of fertigation with purified urban wastewater on soil and pepper plant (Capsicum annuum L.) production, fruit quality and pollutant contents. Span. J. Agric. Res. 2012, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Segura, M.L.; París, J.I.C.; Plaza, B.M.; Lao, M.T. Assessment of the Nitrogen and Potassium Fertilizer in Green Bean Irrigated with Disinfected Urban Wastewater. Commun. Soil Sci. Plant. Anal. 2012, 43, 426–433. [Google Scholar] [CrossRef]
- Contreras, J.I. Optimización de las Estrategias de Fertirrigacion de Cultivos Hortícolas en Invernadero Utilizando Aguas de Baja Calidad (Agua Salina Y Regenerada) en Condiciones del Litoral de Andalucia. Ph.D. Thesis, Universidad de Almería, Almeria, Spain, November 2014. [Google Scholar]
- Nederhoff, E.; Stanghellini, C. Water Use Efficiency of Tomatoes. J. Pract. Hydroponics Greenh. 2010, 115, 52. [Google Scholar]
- Baeza, R.; Gavilán, P.; Del Castillo, N.; Berenguel, P.; López, J.G. Programa de evaluación y asesoramiento en instalaciones de riego en invernadero con uso de dos fuentes distintas de agua: Subterránea y regenerada. In Proceedings of the XXVIII Congreso Nacional de Riegos, León, Spain, 15–17 June 2010; pp. 111–112. [Google Scholar]
- Baeza, R.; Cánovas, G.; Alonso, F.; Contreras, J.I. Evaluación de las instalaciones de riego en cultivos hortícolas intensivos del sureste de Andalucía. In El Agua en Andalucía. El Agua, Clave Medioambiental y Socioeconómica. Tomo II; SIAGA; Instituto Geológico y Minero de España: Málaga, Spain, 2015. [Google Scholar]
- Lozano, D.; Ruiz, N.; Gavilán, P. Efecto de la Pendiente en la Calidad de un Riego Localizado. Formato Digital (e-Book); Consejería de Agricultura, Pesca y Desarrollo Rural, Instituto de Investigación y Formación Agraria y Pesquera (Junta de Andalucia): Córdoba, Spain, 2018; pp. 1–20. [Google Scholar]
- Gavilán, P.; Ruiz, N.; Lozano, D. Innovación y cambio tecnológico en los sistemas agrarios intensivos mediterráneos. In El Regadío en el Mediterráneo Español. Una Aproximación Multidimensional, 1st ed.; Garrido, A., Pérez-Pastor, A., Eds.; Cajamar- Caja Rural: Almeria, Spain, 2019; Volume 38, pp. 181–206. [Google Scholar]
- Consejería de Agricultura, Pesca y Desarrollo Rural. Cartografía de Invernaderos en Almería, Granada y Málaga. 2017, p. 24. Available online: https://www.juntadeandalucia.es/export/drupaljda/Cartografia%20_inv_AL_GR_MA_SEE.pdf (accessed on 5 April 2018).
- Caracterización de los Invernaderos de Andalucia. 2015- Observatorio de Precious y Mercados. Agencia. AGAPA. Consejería de Agricultura Pesca y Desarrollo Rural. p. 113. Available online: http://www.juntadeandalucia.es/agriculturaypesca/observatorio/servlet/FrontController?action=DownloadS&table=12030&element=1586185&field=DOCUMENTO (accessed on 5 April 2018).
- Del Castillo, N. Caracterización y Evaluación de las Instalaciones de Riego Localizado en la Comarca del Campo de Dalías. Diploma Thesis, Universidad de Almería, Almeria, Spain, September 2009. [Google Scholar]
- Junta de Andalucia. Boletin oficial de la Junta de Andalucia-BOJA. Reglamento específico Orden 10.10.2007 (Boja nº 211 de 25.10.07). ORDEN de 10 de Octubre de 2007, por la que se Aprueba el Reglamento Específico de Producción Integrada de Cultivos Hortícolas Protegidos (Tomate, Pimiento, Berenjena, Judía, Calabacín, Pepino, Melón y Sandía). Available online: https://juntadeandalucia.es/boja/2007/211/boletin.211.pdf (accessed on 22 December 2020).
- Merriam, J.L.; Keller, J. Farm Irrigation System Evaluation: A Guide for Management; UTAH State University: Logan, UT, USA, 1978. [Google Scholar]
- Gilbert, R.; Nakayama, F.; Bucks, D.; French, O.; Adamson, K. Trickle irrigation: Emitter clogging and other flow problems. Agric. Water Manag. 1981, 3, 159–178. [Google Scholar] [CrossRef]
- Pitts, D.J.; Haman, D.Z.; Smajstrla, A.G. Causes and Prevention of Emitter Plugging in Micro Irrigation Systems; Bulletin 258; Florida Cooperative Extension Service Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 1990. [Google Scholar]
- Coelho, R.D.; Resende, R.S. Biological clogging of Netafim’s drippers and recovering process through chlorination impact treatment. In Proceedings of the 2001 ASAE Annual Meeting, Sacramento, CA, USA, 29 July–1 August 2001. [Google Scholar] [CrossRef]
- Ravina, I.; Paz, E.; Sofer, Z.; Marm, A.; Schischa, A.; Sagi, G.; Yechialy, Z.; Lev, Y. Control of clogging in drip irrigation with stored treated municipal sewage effluent. Agric. Water Manag. 1997, 33, 127–137. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Li, Y. Comparison of Clogging in Drip Emitters During Application of Sewage Effluent and Groundwater. Trans. ASABE 2009, 52, 1203–1211. [Google Scholar] [CrossRef]
- Baeza, R.; Contreras, J.I. Caracterización de las instalaciones de fertirriego utilizadas en cultivos hortícolas bajo abrigo de Almería. Actas Hortic. 2014, 66, 148–153. [Google Scholar]
- París, J.C.; Expósito, L.G.; Fernández, G.C.; Cano, R.B. EFECTO DEL NÚMERO DE CICLOS DE USO EN LA UNIFORMIDAD DE DISTRIBUCIÓN DE CAUDAL EN CINTAS DE RIEGO. XXXIII Congr. Nac. Riegos 2015, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Cano, R.B.; Sierra, A.Z.; López, F.A.; Guerrero, A.F.; París, J.C. Comportamiento de 13 Modelos de Cinta de Riego en Condiciones de Invernadero con Agua Regenerada. In Proceedings of the XXXIV Congreso Nacional de Riegos, Sevilla, Sevilla, 7–9 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Baeza, R.; Cánovas, G.; Contreras, J.I. Evaluación de productos desincrustantes para la limpieza de obturaciones biológicas y químicas en emisores de riego en agricultura ecológica. In Proceedings of the X Congreso SEAE. VI Encuentro Iberoamericano de Agroecología, Albacete, Spain, 26–29 September 2012; Available online: https://www.agroecologia.net/recursos/publicaciones/actas/cd-actas-xcongresoseae/actas/comunicaciones/37-desincrustantes-baeza.pdf (accessed on 22 December 2020).
- Zhou, B.; Zhou, H.; Puig-Bargués, J.; Li, Y. Using an anti-clogging relative index (CRI) to assess emitters rapidly for drip irrigation systems with multiple low-quality water sources. Agric. Water Manag. 2019, 221, 270–278. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, T.; Li, Y.; Bralts, V. Effects of microbial community variation on bio-clogging in drip irrigation emitters using reclaimed water. Agric. Water Manag. 2017, 194, 139–149. [Google Scholar] [CrossRef]
- Song, P.; Li, Y.; Zhou, B.; Zhou, C.; Zhang, Z.; Li, J. Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water. Agric. Water Manag. 2017, 184, 36–45. [Google Scholar] [CrossRef]
- Baeza, R.; Salvatierra, B.; López, J.G.; Gavilan, P. Líneas de trabajo para la mejora de la eficiencia del uso del agua en Andalucia. Programa de evaluación de instalaciones de riego. In Proceedings of the V Congresso Internacional Ordenamento do Território, Lisbon, Portugal, 27–28 October 2010. [Google Scholar]
- Reyes-Requena, R.; Baeza-Cano, R.; Cánovas-Fernández, G.; López-Segura, J.G.; Roldán-Cañas, J.; Moreno-Pérez, M.F. Determinación en laboratorio de las características hidráulicas de una selección de dieciséis modelos comerciales de emisores de riego localizado. Ibérica 2019, 3, 400. [Google Scholar]
- Liu, L.; Niu, W.; Guan, Y.; Wu, Z.; Ayantobo, O.O. Effects of Urea Fertigation on Emitter Clogging in Drip Irrigation System with Muddy Water. J. Irrig. Drain. Eng. 2019, 145. [Google Scholar] [CrossRef]
Parameter | Average Value | Range |
---|---|---|
Turbidity (NTU) | 4.2 | 3.8–4.4 |
Suspended solids (mg L−1) | 3.8 | 3.5–4.0 |
pH | 7.8 | 7.7–7.9 |
Biochemical oxygen demand—BOD5 (mg O2 L−1) | <5 | <5 |
Chemical oxygen demand—COD (mg O2 L−1) | 22.1 | 20.1–25.3 |
Electrical conductivity—EC (dS m−1) | 1.89 | 1.80–1.93 |
DU | Classification |
---|---|
>95% | Excellent |
85%–95% | Good |
80%–85% | Fair |
70%–80% | Poor |
<70% | Unacceptable |
DU (%) | Classification | ||
---|---|---|---|
Average | 79.8 | ||
Greenhouse Distribution (%) | |||
9.1 | >95 | Excellent | |
47.2 | 85–95 | Good | |
7.4 | 80–85 | Fair | |
14.2 | 70–80 | Poor | |
22.2 | <70 | Unacceptable |
DU (%) | Standard Deviations | |
---|---|---|
System | * | |
Conventional/integrated | 87.8 a | 17.0 |
Organic | 48.0 b | 24.5 |
DU (%) | Standard Deviations | |
---|---|---|
Quality water | ns | |
Groundwater | 86.3 a | 15.5 |
Reclaimed | 76.4 a | 20.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, J.I.; Roldán-Cañas, J.; Moreno-Pérez, M.F.; Gavilán, P.; Lozano, D.; Baeza, R. Distribution Uniformity in Intensive Horticultural Systems of Almería and Influence of the Production System and Water Quality. Water 2021, 13, 233. https://doi.org/10.3390/w13020233
Contreras JI, Roldán-Cañas J, Moreno-Pérez MF, Gavilán P, Lozano D, Baeza R. Distribution Uniformity in Intensive Horticultural Systems of Almería and Influence of the Production System and Water Quality. Water. 2021; 13(2):233. https://doi.org/10.3390/w13020233
Chicago/Turabian StyleContreras, Juana Isabel, José Roldán-Cañas, Maria Fatima Moreno-Pérez, Pedro Gavilán, David Lozano, and Rafael Baeza. 2021. "Distribution Uniformity in Intensive Horticultural Systems of Almería and Influence of the Production System and Water Quality" Water 13, no. 2: 233. https://doi.org/10.3390/w13020233
APA StyleContreras, J. I., Roldán-Cañas, J., Moreno-Pérez, M. F., Gavilán, P., Lozano, D., & Baeza, R. (2021). Distribution Uniformity in Intensive Horticultural Systems of Almería and Influence of the Production System and Water Quality. Water, 13(2), 233. https://doi.org/10.3390/w13020233