Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Experimental Design
3. Results and Discussion
3.1. Methylene Blue Discoloration by PMS/UV, TiO2/UV and Fe2+/UV as a Reference
3.2. Methylene Blue Discoloration by the PMS/Fe2+/UV System
3.3. Methylene Blue Discoloration by the PMS/TiO2/UV System
3.4. Methylene Blue Discoloration by the PMS/TiO2/Fe2+/UV System
3.5. Statistical Analysis of the Influence of Variables
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Chueca, J.; Guerra-Rodríguez, S.; Raez, J.M.; López-Muñoz, M.-J.; Rodríguez, E. Assessment of different iron species as activators of S2O82− and HSO5− for inactivation of wild bacteria strains. Appl. Catal. B Environ. 2019, 248, 54–61. [Google Scholar] [CrossRef]
- Chueca, J.J.R.; Ormad, M.P.; Mosteo, R.; Canalis, S.; Ovelleiro, J.L. Escherichia coli Inactivation in Fresh Water Through Photocatalysis with TiO2-Effect of H2O2 on Disinfection Kinetics. CLEAN–Soil Air Water 2016, 44, 515–524. [Google Scholar] [CrossRef]
- Pueyo, N.; Rodríguez-Chueca, J.; Ovelleiro, J.L.; Ormad, M.P. Limitations of the Removal of Cyanide from Coking Wastewater by Treatment with Hydrogen Peroxide. Water Air Soil Pollut. 2016, 227, 1–10. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Mediano, A.; Pueyo, N.; García-Suescun, I.; Mosteo, R.; Ormad, M.P. Degradation of chloroform by Fenton-like treatment induced by electromagnetic fields: A case of study. Chem. Eng. Sci. 2016, 156, 89–96. [Google Scholar] [CrossRef]
- Ghanbari, F.; Giannakis, S.; Lin, K.-Y.A.; Wu, J.; Madihi-Bidgoli, S. Acetaminophen degradation by a synergistic peracetic acid/UVC-LED/Fe(II) advanced oxidation process: Kinetic assessment, process feasibility and mechanistic considerations. Chemosphere 2020, 263, 128119. [Google Scholar] [CrossRef]
- Casado, C.; Moreno-SanSegundo, J.; De la Obra, I.; García, B.E.; Pérez, J.A.S.; Marugán, J. Mechanistic modelling of wastewater disinfection by the photo-Fenton process at circumneutral pH. Chem. Eng. J. 2020, 403, 126335. [Google Scholar] [CrossRef]
- Tak, S.; Vellanki, B.P. Comparison of O3-BAC, UV/H2O2-BAC, and O3/H2O2-BAC treatments for limiting the formation of disinfection byproducts during drinking water treatment in India. J. Environ. Chem. Eng. 2020, 8, 104434. [Google Scholar] [CrossRef]
- Liu, M.; Yin, W.; Qian, F.-J.; Zhao, T.-L.; Yao, Q.-Z.; Fu, S.-Q.; Zhou, G.-T. A novel synthesis of porous TiO2 nanotubes and sequential application to dye contaminant removal and Cr(VI) visible light catalytic reduction. J. Environ. Chem. Eng. 2020, 8, 104061. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Ferreira, L.C.; Fernandes, J.R.; Tavares, P.B.; Lucas, M.S.; Peres, J.A. Photocatalytic discolouration of Reactive Black 5 by UV-A LEDs and solar radiation. J. Environ. Chem. Eng. 2015, 3, 2948–2956. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Garcia-Cañibano, C.; Sarro, M.; Encinas, Á.; Medana, C.; Fabbri, D.; Calza, P.; Marugán, J. Evaluation of transformation products from chemical oxidation of micropollutants in wastewater by photoassisted generation of sulfate radicals. Chemosphere 2019, 226, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Assessment of Sulfate Radical-Based Advanced Oxidation Processes for Water and Wastewater Treatment: A Review. Water 2018, 10, 1828. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Ince, N.; Tezcanli, G.; Belen, R.; Apikyan, I. Ultrasound as a catalyzer of aqueous reaction systems: The state of the art and environmental applications. Appl. Catal. B Environ. 2001, 29, 167–176. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Marjanovic, M.; Giannakis, S.; Grandjean, D.; de Alencastro, L.F.; Pulgarin, C. Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water. Water Res. 2018, 140, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.; Liu, Y.; Yang, X.; Liang, Q. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2019, 384, 123265. [Google Scholar] [CrossRef]
- Karimian, S.; Moussavi, G.; Fanaei, F.; Mohammadi, S.; Shekoohiyan, S.; Giannakis, S. Shedding light on the catalytic synergies between Fe(II) and PMS in vacuum UV (VUV/Fe/PMS) photoreactors for accelerated elimination of pharmaceuticals: The case of metformin. Chem. Eng. J. 2020, 400, 125896. [Google Scholar] [CrossRef]
- Chueca, J.J.R.; Amor, C.; Mota, J.; Lucas, M.S.; Peres, J. Oxidation of winery wastewater by sulphate radicals: Catalytic and solar photocatalytic activations. Environ. Sci. Pollut. Res. 2017, 24, 22414–22426. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Andrés, J.; Farinango, G.; Romero-Martínez, L.; Acevedo-Merino, A.; Nebot, E. Application of persulfate salts for enhancing UV disinfection in marine waters. Water Res. 2019, 163, 114866. [Google Scholar] [CrossRef]
- Solís, R.R.; Rivas, F.J.; Chávez, A.M.; Dionysiou, D.D. Peroxymonosulfate/solar radiation process for the removal of aqueous microcontaminants. Kinetic modeling, influence of variables and matrix constituents. J. Hazard. Mater. 2020, 400, 123118. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Nakamura, S.; Sillanpää, M. Application of UV-C LED activated PMS for the degradation of anatoxin-a. Chem. Eng. J. 2016, 284, 122–129. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Dionysiou, D.D.; Kumar, V. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chem. Eng. J. 2015, 276, 193–204. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Silva, T.; Fernandes, J.R.; Lucas, M.S.; Puma, G.L.; Peres, J.A.; Sampaio, A. Inactivation of pathogenic microorganisms in freshwater using HSO5−/UV-A LED and HSO5−/Mn+/UV-A LED oxidation processes. Water Res. 2017, 123, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Song, H.; Liu, Y.; Wang, L.; Li, D.; Liu, C.; Gong, M.; Zhang, Z.; Yang, T.; Ma, J. Remarkable enhancement of a photochemical Fenton-like system (UV-A/Fe(II)/PMS) at near-neutral pH and low Fe(II)/peroxymonosulfate ratio by three alpha hydroxy acids: Mechanisms and influencing factors. Sep. Purif. Technol. 2019, 224, 142–151. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Tufano, T.P.; Dionysiou, D.D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Res. 2008, 42, 2899–2910. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Chueca, J.; Amor, C.; Silva, T.; Dionysiou, D.D.; Puma, G.L.; Lucas, M.S.; Peres, J.A. Treatment of winery wastewater by sulphate radicals: HSO5−/transition metal/UV-A LEDs. Chem. Eng. J. 2017, 310, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Chueca, J.; Barahona-García, E.; Blanco-Gutiérrez, V.; Isidoro-García, L.; Dos Santos-García, A. Magnetic CoFe2O4 ferrite for peroxymonosulfate activation for disinfection of wastewater. Chem. Eng. J. 2020, 398, 125606. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Alonso, E.; Singh, D.N. Photocatalytic Mechanisms for Peroxymonosulfate Activation through the Removal of Methylene Blue: A Case Study. Int. J. Environ. Res. Public Health 2019, 16, 198. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Ahmed, M.B.; Zhou, J.L.; Altaee, A. Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere 2019, 243, 125366. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Liu, D.; Wang, S.; Li, H.; Ni, J.; Li, X.; Tian, J.; Wang, Q. Visible-light-induced activation of peroxymonosulfate by TiO2 nano-tubes arrays for enhanced degradation of bisphenol A. Sep. Purif. Technol. 2020, 253, 117510. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Li, L.; Dong, X.; Zhang, X. Enhanced activation of peroxymonosulfate by nitrogen-doped graphene/TiO2 under photo-assistance for organic pollutants degradation: Insight into N doping mechanism. Chemosphere 2019, 244, 125526. [Google Scholar] [CrossRef]
- Nengzi, L.-C.; Yang, H.; Hu, J.-Z.; Zhang, W.-M.; Jiang, D.-A. Fabrication of SnS/TiO2 NRs/NSs photoelectrode as photoactivator of peroxymonosulfate for organic pollutants elimination. Sep. Purif. Technol. 2020, 249, 117172. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.; Xiao, H.; Hong, C.; Zhu, F.; Yao, Y.; Xue, Z. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 2012, 193–194, 290–295. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Ghanbari, F.; Yousefi, M.; Madihi-Bidgoli, S. Photocatalytic degradation of food dye by Fe3O4–TiO2 nanoparticles in presence of peroxymonosulfate: The effect of UV sources. J. Environ. Chem. Eng. 2017, 5, 2459–2468. [Google Scholar] [CrossRef]
- Shaham-Waldmann, N.; Paz, Y. Away from TiO 2: A critical minireview on the developing of new photocatalysts for degradation of contaminants in water. Mater. Sci. Semicond. Process. 2016, 42, 72–80. [Google Scholar] [CrossRef]
- Bianchi, C.; Colombo, E.; Gatto, S.; Stucchi, M.; Cerrato, G.; Morandi, S.; Capucci, V. Photocatalytic degradation of dyes in water with micro-sized TiO2 as powder or coated on porcelain-grès tiles. J. Photochem. Photobiol. A: Chem. 2014, 280, 27–31. [Google Scholar] [CrossRef]
- Ling, L.; Zhang, D.; Fan, C.; Shang, C. A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms. Water Res. 2017, 124, 446–453. [Google Scholar] [CrossRef]
- Tan, C.; Dong, Y.; Shi, L.; Chen, Q.; Yang, S.; Liu, X.; Ling, J.; He, X.; Fu, D. Degradation of Orange II in ferrous activated peroxymonosulfate system: Efficiency, situ EPR spin trapping and degradation pathway study. J. Taiwan Inst. Chem. Eng. 2018, 83, 74–81. [Google Scholar] [CrossRef]
- Rao, Y.; Xue, D.; Pan, H.; Feng, J.; Li, Y. Degradation of ibuprofen by a synergistic UV/Fe(III)/Oxone process. Chem. Eng. J. 2016, 283, 65–75. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, J.; Qu, R.; Feng, M.; Wang, Z. Degradation of octafluorodibenzo-pdioxin by UV/Fe(II)/potassium monopersulfate system: Kinetics, influence of coexisting chemicals, degradation products and pathways. Chem. Eng. J. 2017, 319, 98–107. [Google Scholar] [CrossRef]
- Rastogi, A.; Al-Abed, S.R.; Dionysiou, D.D. Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B Environ. 2009, 85, 171–179. [Google Scholar] [CrossRef]
- Durango-Usuga, P.; Guzmán-Duque, F.; Mosteo, R.; Vazquez, M.V.; Peñuela, G.; Torres-Palma, R.A. Experimental design approach applied to the elimination of crystal violet in water by electrocoagulation with Fe or Al electrodes. J. Hazard. Mater. 2010, 179, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, S.; Vasquez, L.; Costa, D.; Romero, A.; Santos, A. Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 2014, 101, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.R.; Nascimento, C.C.; Júnior, E.C.S.; Mendes, D.T.; Gimenez, I. ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions. J. Alloy. Compd. 2017, 710, 557–566. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; Durán, A.; Martín, I.S.; Acevedo, A.M. A novel combined solar pasteurizer/TiO2 continuous-flow reactor for decontamination and disinfection of drinking water. Chemosphere 2017, 168, 1447–1456. [Google Scholar] [CrossRef]
- Tichapondwa, S.; Newman, J.; Kubheka, O. Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys. Chem. Earth Parts A/B/C 2020, 118–119, 102900. [Google Scholar] [CrossRef]
- Yao, H.; Pei, J.; Wang, H.; Fu, J. Effect of Fe(II/III) on tetracycline degradation under UV/VUV irradiation. Chem. Eng. J. 2017, 308, 193–201. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Li, X.; He, H.; Yang, C. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants. Chem. Eng. J. 2018, 353, 533–541. [Google Scholar] [CrossRef]
- Jiao, Y.; Shang, H.; Scott, J.A. A UVC based advanced photooxidation reactor design for remote households and communities not connected to a municipal drinking water system. J. Environ. Chem. Eng. 2021, 9, 105162. [Google Scholar] [CrossRef]
Variable | Low Level, −1 | Central Point | High Level, +1 |
---|---|---|---|
[PMS] (mg/L) | 0 | 250 | 500 |
[TiO2] (mg/L) | 0 | 250 | 500 |
[Fe2+] (mg/L) | 0 | 14 | 28 |
Experimental | PMS (mg/L) | TiO2 (mg/L) | Fe2+ (mg/L) | Discoloration (%) | |
---|---|---|---|---|---|
UV-A | UV-C | ||||
1 | 0 | 0 | 28 | 1 | 9 |
2 | 250 | 250 | 14 | 72 | 48 |
3 | 0 | 500 | 0 | 1 | 61 |
4 | 500 | 500 | 0 | 62 | 96 |
5 | 0 | 0 | 0 | 0 | 7 |
6 | 500 | 500 | 28 | 100 | 100 |
7 | 500 | 500 | 28 | 100 | 100 |
8 | 500 | 0 | 0 | 21 | 54 |
9 | 0 | 0 | 28 | 1 | 18 |
10 | 0 | 500 | 28 | 27 | 85 |
11 | 500 | 500 | 0 | 58 | 99 |
12 | 0 | 500 | 28 | 21 | 84 |
13 | 0 | 0 | 0 | 0 | 7 |
14 | 500 | 0 | 28 | 63 | 100 |
15 | 500 | 0 | 28 | 63 | 100 |
16 | 0 | 500 | 0 | 8 | 45 |
17 | 500 | 0 | 0 | 20 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Quiles, R.; de Andrés, J.M.; Rodríguez-Chueca, J. Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate. Water 2021, 13, 2860. https://doi.org/10.3390/w13202860
González-Quiles R, de Andrés JM, Rodríguez-Chueca J. Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate. Water. 2021; 13(20):2860. https://doi.org/10.3390/w13202860
Chicago/Turabian StyleGonzález-Quiles, Rodrigo, Juan Manuel de Andrés, and Jorge Rodríguez-Chueca. 2021. "Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate" Water 13, no. 20: 2860. https://doi.org/10.3390/w13202860
APA StyleGonzález-Quiles, R., de Andrés, J. M., & Rodríguez-Chueca, J. (2021). Study of the Photocatalytic Activity of TiO2 and Fe2+ in the Activation of Peroxymonosulfate. Water, 13(20), 2860. https://doi.org/10.3390/w13202860