Improving Household Agriculture with Roof-Harvested Rainwater: A Case Study in Sydney and Nairobi
Abstract
:1. Introduction
2. Materials and Methods
- Rainfall in mm/day;
- Maximum and minimum temperature in °C;
- Dew point temperature in °C, used to calculate relative humidity;
- Solar radiation in MJ/m2/day; and
- Wind velocity in m/s.
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousefi, M.; Ghalehaskar, S.; Asghari, F.B.; Ghaderpoury, A.; Dehghani, M.H.; Ghaderpoori, M.; Mohammadi, A.A. Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran. Regul. Toxicol. Pharmacol. 2019, 107, 104408. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Suitability of roof harvested rainwater for potential potable water production: A scoping review. J. Clean. Prod. 2020, 248, 119226. [Google Scholar] [CrossRef]
- Stoeglehner, G.; Edwards, P.; Daniels, P.; Narodoslawsky, M. The water supply footprint (WSF): A strategic planning tool for sustainable regional and local water supplies. J. Clean. Prod. 2011, 19, 1677–1686. [Google Scholar] [CrossRef]
- Awange, J.; Hu, K.; Khaki, M. The newly merged satellite remotely sensed, gauge and reanalysis-based Multi-Source Weighted-Ensemble Precipitation: Evaluation over Australia and Africa (1981–2016). Sci. Total Environ. 2019, 670, 448–465. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Feasibility analysis of a small-scale rainwater harvesting system for drinking water production at Werrington, New South Wales, Australia. J. Clean. Prod. 2020, 270, 122437. [Google Scholar] [CrossRef]
- Aladenola, O.O.; Adeboye, O.B. Assessing the Potential for Rainwater Harvesting. Water Resour. Manag. 2010, 24, 2129–2137. [Google Scholar] [CrossRef]
- AbdelKhaleq, R.A.; Ahmed, I.A. Rainwater harvesting in ancient civilizations in Jordan. Water Sci. Technol. Water Supply 2007, 7, 85–93. [Google Scholar] [CrossRef]
- Gómez, Y.D.; Teixeira, L.G. Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility. Resour. Conserv. Recycl. 2017, 127, 56–67. [Google Scholar] [CrossRef]
- Lani, N.H.M.; Yusop, Z.; Syafiuddin, A. A Review of Rainwater Harvesting in Malaysia: Prospects and Challenges. Water 2018, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.P.; Hunt, W.F. Performance of rainwater harvesting systems in the southeastern United States. Resour. Conserv. Recycl. 2010, 54, 623–629. [Google Scholar] [CrossRef]
- Amos, C.; Rahman, A.; Gathenya, J.; Friedler, E.; Karim, F.; Renzaho, A. Roof-Harvested Rainwater Use in Household Agriculture: Contributions to the Sustainable Development Goals. Water 2020, 12, 332. [Google Scholar] [CrossRef] [Green Version]
- Russ Grayson, A.R.R.; Bradley, K. Urban Farming. In Organic Gardener; ABC Books: St Leonards, Australia, 2017. [Google Scholar]
- Marshall, T. On the Verge. In Organic Gardener; ABC Books: St Leonards, Australia, 2017. [Google Scholar]
- Pollard, G.; Ward, J.; Roetman, P. Water Use Efficiency in Urban Food Gardens: Insights from a Systematic Review and Case Study. Horticulturae 2018, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Goddard, M.; Dougill, A.; Benton, T. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Lupia, F.; Pulighe, G. Water use and urban agriculture: Estimation and water saving scenarios for residential kitchen gardens. Agric. Agric. Sci. Procedia 2015, 4, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Sydney, C.O. Footpath Gardening Policy. Australia; 2017. Available online: www.cityofsydney.nsw.gov (accessed on 9 March 2019).
- Mok, H.-F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, F.; Hamilton, A.J. Strawberry fields forever? Urban agriculture in developed countries: A review. Agron. Sustain. Dev. 2013, 34, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.J.; Burry, K.; Mok, H.-F.; Barker, F.; Grove, J.R.; Williamson, V.G. Give peas a chance? Urban agriculture in developing countries. A review. Agron. Sustain. Dev. 2014, 34, 45–73. [Google Scholar] [CrossRef] [Green Version]
- Billingsley, R.; Mothunyane, M.; Thabane, M.; McLean, S. Lessons from Lesotho: How ‘Joined-Up’Approach, Centred on Key-Hole Gardens, Is Tackling Linked Issues of Hunger, Nutrition and Poverty, Hunger, Nutrition, Climate Justice, a New Dialogue: Putting People at the Heart of Global Developmen. Dublin. 2013. Available online: https://www.mrfcj.org/wp-content/uploads/2015/09/2013-04-16-Lesotho.pdf (accessed on 9 March 2019).
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Parece, T.E.; Lumpkin, M.; Campbell, J.B. Irrigating Urban Agriculture with Harvested Rainwater: Case Study in Roanoke, Virginia, USA. In The Hand Book of Environmental Chemistry; Younos, T., Parece, T.E., Eds.; Springer: Cham, Switzerland, 2016; Volume 3, pp. 154–196. [Google Scholar]
- Abbasi, T.; Abbasi, S.A. Sources of pollution in rooftop rainwater harvesting systems and their control: Critical review. Environ. Sci. Technol. 2011, 41, 2097–2167. [Google Scholar] [CrossRef]
- Hejazi, M.I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 2014, 18, 2859–2883. [Google Scholar] [CrossRef] [Green Version]
- Despins, C.; Farahbakhsh, K.; Leidl, C. Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. J. Water Supply Res. Technol.-AQUA 2009, 58, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. D05109. [Google Scholar]
- Doorenbos, J.; Kassam, A. FAO 33: Yield response to water. Irri. Drain. Pap. 1979, 33, 257. [Google Scholar]
- Amos, C.C.; Rahman, A.; Gathenya, J.M. Economic Analysis of Rainwater Harvesting Systems Comparing Developing and Developed Countries: A Case Study of Australia and Keny. J. Clean. Prod. 2018, 172 (Suppl. C), 196–207. [Google Scholar] [CrossRef]
- BASIX. Data Reporting Period: July 2005–June 2015. 2016. Available online: http://datareporting.planning.nsw.gov.au/reporting/basix/pdf.action (accessed on 12 March 2019).
- Rabin, J.; Zinati, G.; Nitzsche, P. Yield expectations for mixed stand, Small-Scale Agriculture. Sustain. Farm. Urban Fringe 2012, 7, 1–4. [Google Scholar]
- Foeken, D.W.J.; Owuor, S.; Klaver, W. Crop Cultivation in Nakuru Town, Kenya: Practice and Potential; ASC Working Papers; African Studies Centre: Nairobi, Kenya, 2002. [Google Scholar]
- NASA. NASA Power Data Access Viewer 2019. 2019. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 12 March 2019).
- Munzimi, Y.A.; Hansen, M.C.; Adusei, B.; Senay, G.B. Characterizing Congo Basin Rainfall and Climate Using Tropical Rainfall Measuring Mission (TRMM) Satellite Data and Limited Rain Gauge Ground Observations. J. Appl. Meteorol. Clim. 2015, 54, 541–555. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Momin, I.M.; Pai, D.S.; Rajagopal, E.N.; Basu, S. Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period. J. Hydrometeorol. 2015, 16, 346–362. [Google Scholar] [CrossRef]
- Ciabatta, L.; Brocca, L.; Moramarco, T.; Wagner, W. Comparison of different satellite rainfall products over the Italian territory. In Engineering Geology for Society and Territory; Springer: Cham, Switzerland, 2015; Volume 3, pp. 623–626. [Google Scholar]
- Li, D.; Ding, X.; Wu, J. Simulating the regional water balance through hydrological model based on TRMM satellite rainfall data. Hydrol. Earth Syst. Sci. 2015, 12, 2497–2525. [Google Scholar]
- Eccel, E. Estimating air humidity from temperature and precipitation measures for modelling applications. Meteorol. Appl. 2012, 19, 118–128. [Google Scholar] [CrossRef]
- FAO. CLIMWAT 2019. 19 November 2019. Available online: http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/ (accessed on 12 March 2019).
- WMO. World Weather Information Service: Nakuru. Kenya 2019. 4 December 2019. Available online: http://worldweather.wmo.int/en/city.html?cityId=518 (accessed on 12 March 2019).
- Fewkes, A.; Butler, D. Simulating the performance of rainwater collection and reuse systems using behavioural models Building Services. Int. J. Eng. Res. Technol. 2000, 21, 99–106. [Google Scholar]
- Hajani, E.; Rahman, A. Reliability and cost analysis of a rainwater harvesting system in periurban regions of Greater Sydney, Australia. Water 2014, 6, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Iannotti, M. How Much to Plant Per Person in the Vegetable Garden. 29 September 2019. Available online: https://www.thespruce.com/how-many-vegetables-per-person-in-garden-1403355 (accessed on 12 March 2019).
Location | Period of Data | Average Annual Rainfall (mm) | ETo |
---|---|---|---|
Parramatta (Sydney) | 1965–2020 | 960 | 1351 |
Wilson (Nairobi) | 1959–1988 | 891 | 1703 |
Location | Roof | Rainfed | 1 | 3 | 5 | 7 | 10 | Full |
---|---|---|---|---|---|---|---|---|
Sydney | 120 | 67 | 125 | 141 | 145 | 146 | 146 | 146 |
Sydney | 200 | 67 | 129 | 143 | 146 | 146 | 146 | 146 |
Nairobi | 120 | 44 | 84 | 103 | 114 | 122 | 129 | 146 |
Nairobi | 200 | 44 | 88 | 111 | 121 | 129 | 135 | 146 |
Location | Plot Size (m2) | Max. Crop Yield (kg/m2/Year) |
---|---|---|
Sydney a | 20 | 7.3 |
Nairobi a | 20 | 7.3 |
Nakuru b | 20 | 7.21 |
Nakuru b | 10–99 | 4.73 |
Nakuru b | 100 | 6.50 |
East Poket b | 20 | 7.21 |
East Poket b | 40–60 | 5.21 |
East Poket b | 100 | 4.85 |
New Jersey, USA c | Mixed (mode) | 7.2 |
New Jersey, USA c | Mixed (upper) | 6.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amos, C.C.; Rahman, A.; Jahan, S.; Gathenya, J.M.; Alim, M.A. Improving Household Agriculture with Roof-Harvested Rainwater: A Case Study in Sydney and Nairobi. Water 2021, 13, 2920. https://doi.org/10.3390/w13202920
Amos CC, Rahman A, Jahan S, Gathenya JM, Alim MA. Improving Household Agriculture with Roof-Harvested Rainwater: A Case Study in Sydney and Nairobi. Water. 2021; 13(20):2920. https://doi.org/10.3390/w13202920
Chicago/Turabian StyleAmos, Caleb Christian, Ataur Rahman, Sayka Jahan, John Mwangi Gathenya, and Mohammad A. Alim. 2021. "Improving Household Agriculture with Roof-Harvested Rainwater: A Case Study in Sydney and Nairobi" Water 13, no. 20: 2920. https://doi.org/10.3390/w13202920
APA StyleAmos, C. C., Rahman, A., Jahan, S., Gathenya, J. M., & Alim, M. A. (2021). Improving Household Agriculture with Roof-Harvested Rainwater: A Case Study in Sydney and Nairobi. Water, 13(20), 2920. https://doi.org/10.3390/w13202920