Removal of Aqueous Para-Aminobenzoic Acid Using a Compartmental Electro-Peroxone Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Experimental Apparatus and Conditions
2.3. Analytical Methods
3. Results and Discussion
3.1. Degradation of PABA
3.2. Effects of Operational Parameters
3.2.1. Model Building and Statistical Analyses
3.2.2. Response Surface and Counter Plots
3.2.3. Optimization of Compartmental E-Peroxone Process
3.3. Possible Oxidation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, I.B.; Pawlowski, S.; Kellermann, M.Y.; Petersen-Thiery, M.; Moeller, M.; Nietzer, S.; Schupp, P.J. Toxic effects of UV filters from sunscreens on coral reefs revisited: Regulatory aspects for “reef safe” products. Environ. Sci. Eur. 2021, 33, 1–13. [Google Scholar] [CrossRef]
- Astel, A.; Stec, M.; Rykowska, I. Occurrence and Distribution of UV Filters in Beach Sediments of the Southern Baltic Sea Coast. Water 2020, 12, 3024. [Google Scholar] [CrossRef]
- Cahova, J.; Blahova, J.; Plhalova, L.; Svobodova, Z.; Faggio, C. Do Single-Component and Mixtures Selected Organic UV Filters Induce Embryotoxic Effects in Zebrafish (Danio rerio)? Water 2021, 13, 2203. [Google Scholar] [CrossRef]
- Khan, J.; Sayed, M.; Shah, N.; Khan, S.; Zhang, Y.; Boczkaj, G.; Khan, H.; Dionysiou, D.D. Synthesis of eosin modified TiO2 film with co-exposed {001} and {101} facets for photocatalytic degradation of para-aminobenzoic acid and solar H2 production. Appl. Catal. B-Environ. 2020, 265, 118557. [Google Scholar] [CrossRef]
- Dromgoole, S.H.; Maibach, H.I. Sunscreening agent intolerance: Contact and photocontact sensitization and contact urticaria. J. Am. Acad. Dermatol. 1990, 22, 1068–1078. [Google Scholar] [CrossRef]
- Tsoumachidou, S.; Lambropoulou, D.; Poulios, I. Homogeneous photocatalytic oxidation of UV filter para-aminobenzoic acid in aqueous solutions. Environ. Sci. Pollut. Res. 2016, 24, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Tsoumachidou, S.; Velegraki, T.; Poulios, I. TiO2photocatalytic degradation of UV filter para-aminobenzoic acid under artificial and solar illumination. J. Chem. Technol. Biotechnol. 2015, 91, 1773–1781. [Google Scholar] [CrossRef]
- Faka, V.; Tsoumachidou, S.; Moschogiannaki, M.; Kiriakidis, G.; Poulios, I.; Binas, V. ZnWO4 nanoparticles as efficient photocatalyst for degradation of para-aminobenzoic acid: Impact of annealing temperature on photocatalytic performance. J. Photochem. Photobiol. A Chem. 2020, 406, 113002. [Google Scholar] [CrossRef]
- Nie, M.; Zhang, W.; Yan, C.; Xu, W.; Wu, L.; Ye, Y.; Hu, Y.; Dong, W. Enhanced removal of organic contaminants in water by the combination of peroxymonosulfate and carbonate. Sci. Total Environ. 2018, 647, 734–743. [Google Scholar] [CrossRef]
- Yao, J.; Yu, B.; Li, H.; Yang, Y. Interfacial catalytic and mass transfer mechanisms of an electro-peroxone process for selective removal of multiple fluoroquinolones. Appl. Catal. B Environ. 2021, 298, 120608. [Google Scholar] [CrossRef]
- Kishimoto, N.; Nakagawa, T.; Asano, M.; Abe, M.; Yamada, M.; Ono, Y. Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte. Water Res. 2008, 42, 379–385. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Z.; Wang, Y. Effective degradation of methylene blue by a novel electrochemically driven process. Electrochem. Commun. 2013, 29, 48–51. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, R.; Lu, G.; Lin, Q.; Liu, F.; Li, Y. Degradation of Octocrylene Using Combined Ozonation and Electrolysis Process: Optimization by Response Surface Methodology. CLEAN—Soil Air Water 2017, 45, 1500664. [Google Scholar] [CrossRef]
- Yao, W.; Fu, J.; Yang, H.; Yu, G.; Wang, Y. The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process. Water Res. 2019, 157, 209–217. [Google Scholar] [CrossRef]
- Li, Y.; Shen, W.; Fu, S.; Yang, H.; Yu, G.; Wang, Y. Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process. Chem. Eng. J. 2014, 264, 322–328. [Google Scholar] [CrossRef]
- Wu, D.; Lu, G.; Yao, J.; Zhou, C.; Liu, F.; Liu, J. Adsorption and catalytic electro-peroxone degradation of fluconazole by magnetic copper ferrite/carbon nanotubes. Chem. Eng. J. 2019, 370, 409–419. [Google Scholar] [CrossRef]
- Wu, D.; Lu, G.; Zhang, R.; Lin, Q.; Yao, J.; Shen, X.; Wang, W. Effective degradation of diatrizoate by electro-peroxone process using ferrite/carbon nanotubes based gas diffusion cathode. Electrochim. Acta 2017, 236, 297–306. [Google Scholar] [CrossRef]
- Bakheet, B.; Yuan, S.; Li, Z.; Wang, H.; Zuo, J.; Komarneni, S.; Wang, Y. Electro-peroxone treatment of Orange II dye wastewater. Water Res. 2013, 47, 6234–6243. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bakheet, B.; Yuan, S.; Li, X.; Yu, G.; Murayama, S.; Wang, Y. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process. J. Hazard. Mater. 2015, 294, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhou, C.; Lu, G.; Zhou, Y.; Shen, Y. Simultaneous membrane fouling mitigation and emerging pollutant benzophenone-3 removal by electro-peroxone process. Sep. Purif. Technol. 2019, 227, 115715. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, S.; Zhang, Y.; Ren, G.; Pan, Y.; Zhang, Q.; Zhou, M. Simultaneous removal of tetracycline and disinfection by a flow-through electro-peroxone process for reclamation from municipal secondary effluent. J. Hazard. Mater. 2019, 368, 771–777. [Google Scholar] [CrossRef]
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Sellers, R.M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 1980, 105, 950–954. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- García-Morales, M.; Roa-Morales, G.; Barrera-Díaz, C.E.; Bilyeu, B.; Rodrigo, M.A. Synergy of electrochemical oxidation using boron-doped diamond (BDD) electrodes and ozone (O3) in industrial wastewater treatment. Electrochem. Commun. 2012, 27, 34–37. [Google Scholar] [CrossRef]
- Li, K.; Xu, L.; Zhang, Y.; Cao, A.; Wang, Y.; Huang, H.; Wang, J. A novel electro-catalytic membrane contactor for improving the efficiency of ozone on wastewater treatment. Appl. Catal. B Environ. 2019, 249, 316–321. [Google Scholar] [CrossRef]
- Nawrocki, J.; Kasprzyk-Hordern, B. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B Environ. 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Niazmand, R.; Jahani, M.; Sabbagh, F.; Rezania, S. Optimization of Electrocoagulation Conditions for the Purification of Table Olive Debittering Wastewater Using Response Surface Methodology. Water 2020, 12, 1687. [Google Scholar] [CrossRef]
- Hamid, M.A.A.; Aziz, H.A.; Yusoff, M.S.; Rezan, S. Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate. Water 2020, 12, 247. [Google Scholar] [CrossRef] [Green Version]
- Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Von Sonntag, C.; von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment from Basic Principles to Applications; IWA Publishing: London, UK, 2012. [Google Scholar]
- Lee, Y.; Kovalova, L.; McArdell, C.S.; von Gunten, U. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res. 2014, 64, 134–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Yu, Q.; Lei, L. The preparation and characterization of a graphite–PTFE cathode system for the decolorization of C.I. Acid Red 2. Dye. Pigment. 2008, 77, 129–136. [Google Scholar] [CrossRef]
Common Name | Chemical Structure | MW (g/mol) |
---|---|---|
p-Aminobenzoic acid (C7H7NO2) | 137.14 |
Exp. no. | Initial pH | O3 Dosage (mg/L) | Current Density (mA/cm2) | Reaction Temperature (°C) | Removal Efficiency (%) |
---|---|---|---|---|---|
1 | 5 | 25 | 20 | 25 | 74.9 |
2 | 9 | 15 | 20 | 25 | 84.9 |
3 | 5 | 25 | 40 | 15 | 61.2 |
4 | 9 | 25 | 40 | 15 | 69.1 |
5 | 7 | 20 | 30 | 20 | 82.0 |
6 | 9 | 15 | 20 | 15 | 59.1 |
7 | 7 | 20 | 30 | 20 | 81.5 |
8 | 7 | 30 | 30 | 20 | 85.5 |
9 | 9 | 25 | 20 | 25 | 89.1 |
10 | 7 | 20 | 30 | 30 | 93.0 |
11 | 5 | 25 | 40 | 25 | 79.2 |
12 | 5 | 25 | 20 | 15 | 58.1 |
13 | 7 | 20 | 30 | 20 | 81.1 |
14 | 5 | 15 | 20 | 25 | 72.5 |
15 | 7 | 20 | 30 | 20 | 81.6 |
16 | 9 | 15 | 40 | 15 | 65.3 |
17 | 7 | 20 | 50 | 20 | 76.2 |
18 | 11 | 20 | 30 | 20 | 87.8 |
19 | 7 | 20 | 30 | 20 | 81.8 |
20 | 9 | 25 | 20 | 15 | 64.4 |
21 | 7 | 20 | 30 | 20 | 81.7 |
22 | 5 | 15 | 20 | 15 | 44.9 |
23 | 7 | 20 | 10 | 20 | 72.6 |
24 | 5 | 15 | 40 | 25 | 77.3 |
25 | 3 | 20 | 30 | 20 | 58.6 |
26 | 7 | 20 | 30 | 10 | 50.7 |
27 | 5 | 15 | 40 | 15 | 57.1 |
28 | 9 | 25 | 40 | 25 | 94.9 |
29 | 9 | 15 | 40 | 25 | 88.0 |
30 | 7 | 10 | 30 | 20 | 69.9 |
Source | Sum of Squares | Degree of Freedom | Mean Square | f-Value | p-Value |
---|---|---|---|---|---|
Model | 4689.39 | 14 | 334.96 | 38.79 | <0.0001 |
x1 | 912.67 | 1 | 912.67 | 105.68 | <0.0001 |
x2 | 222.04 | 1 | 222.04 | 25.71 | 0.0001 |
x3 | 110.08 | 1 | 110.08 | 12.75 | 0.0028 |
x4 | 2952.60 | 1 | 2952.60 | 341.90 | <0.0001 |
x1x2 | 0.12 | 1 | 0.12 | 0.014 | 0.9068 |
x1 x3 | 1.32 | 1 | 1.32 | 0.15 | 0.7011 |
x1 x4 | 16.81 | 1 | 16.81 | 1.95 | 0.1833 |
x2 x3 | 4.41 | 1 | 4.41 | 0.51 | 0.4858 |
x2 x4 | 7.56 | 1 | 7.56 | 0.88 | 0.3642 |
x3 x4 | 4.20 | 1 | 4.20 | 0.49 | 0.4961 |
x12 | 186.91 | 1 | 186.91 | 21.64 | 0.0003 |
x22 | 60.52 | 1 | 60.52 | 7.01 | 0.0183 |
x32 | 146.41 | 1 | 146.41 | 16.95 | 0.0009 |
x42 | 238.36 | 1 | 238.36 | 27.60 | <0.0001 |
Residual | 129.54 | 15 | 8.64 | ||
Lack of fit | 129.07 | 10 | 12.91 | 137.80 | <0.0001 |
Pure error | 0.47 | 5 | 0.094 | ||
Corr. total | 4818.93 | 29 | |||
R2 = 0.9731 R2Adj = 0.9480 R2pre = 0.8456 C.V.% = 3.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Li, Y.; Lu, G.; Lin, Q.; Wei, L.; Zhang, P. Removal of Aqueous Para-Aminobenzoic Acid Using a Compartmental Electro-Peroxone Process. Water 2021, 13, 2961. https://doi.org/10.3390/w13212961
Wu D, Li Y, Lu G, Lin Q, Wei L, Zhang P. Removal of Aqueous Para-Aminobenzoic Acid Using a Compartmental Electro-Peroxone Process. Water. 2021; 13(21):2961. https://doi.org/10.3390/w13212961
Chicago/Turabian StyleWu, Donghai, Yuexian Li, Guanghua Lu, Qiuhong Lin, Lei Wei, and Pei Zhang. 2021. "Removal of Aqueous Para-Aminobenzoic Acid Using a Compartmental Electro-Peroxone Process" Water 13, no. 21: 2961. https://doi.org/10.3390/w13212961
APA StyleWu, D., Li, Y., Lu, G., Lin, Q., Wei, L., & Zhang, P. (2021). Removal of Aqueous Para-Aminobenzoic Acid Using a Compartmental Electro-Peroxone Process. Water, 13(21), 2961. https://doi.org/10.3390/w13212961