Vegetated Buffer Zone Restoration Planning in Small Urban Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Investigation
2.3. Plant Arrangement Selection
2.4. VBZ Delineation
2.4.1. Reference Buffer Zone
2.4.2. Data Source
2.4.3. Determination of VBZ Boundaries
- Model of buffer width
- 2.
- VBZ mapping based on GIS
3. Results
3.1. Plant Arrangements Optimization
3.2. VBZ Delineation and Design
3.2.1. Reference Buffer
3.2.2. Normal Buffer Width Identification
3.2.3. High Efficiency Buffer Width Identification
3.2.4. VBZ Design
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; et al. Water Quality Functions of Riparian Forest Buffers in Chesapeake Bay Watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar] [CrossRef]
- Liu, X.; Mang, X.; Zhang, M. Major factors influencing the efficacy of vegetated buffers on sediment trapping: A review and analysis. J. Environ. Qual. 2008, 37, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.A.; Osmond, D.L.; Moorman, C.E.; Stucky, J.M.; Gilliam, J.W. Effect of vegetation management on bird habitat in Riparian buffer zones. Southeast. Nat. 2008, 7, 277–288. [Google Scholar] [CrossRef]
- Barton, D.R.; Taylor, W.D.; Biette, R.M. Dimensions of Riparian Buffer Strips Required to Maintain Trout Habitat in Southern Ontario Streams. N. Am. J. Fish. Manag. 1985, 5, 364–378. [Google Scholar] [CrossRef]
- Carluer, N.; Lauvernet, C.; Noll, D.; Munoz-Carpena, R. Defining context-specific scenarios to design vegetated buffer zones that limit pesticide transfer via surface runoff. Sci. Total Environ. 2017, 575, 701–712. [Google Scholar] [CrossRef]
- Vought, L.B.M.; Pinay, G.; Fuglsang, A.; Ruffinoni, C. Structure and function of buffer strips from a water-quality perspective in agricultural landscapes. Landsc. Urban Plan. 1995, 31, 323–331. [Google Scholar] [CrossRef]
- Sliva, L.; Williams, D.D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res. 2001, 35, 3462–3472. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management1. J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Lees, A.C.; Peres, C.A. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 2008, 22, 439–449. [Google Scholar] [CrossRef]
- Sabo, J.L.; Sponseller, R.; Dixon, M.; Gade, K.; Harms, T.; Heffernan, J.; Jani, A.; Katz, G.; Soykan, C.; Watts, J.; et al. Riparian zones increase regional species richness by harboring different, not more, species. Ecology 2005, 86, 56–62. [Google Scholar] [CrossRef]
- Collins, M.G.; Steiner, F.R.; Rushman, M.J. Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environ. Manag. 2001, 28, 611–621. [Google Scholar] [CrossRef]
- Li, S.; Gu, S.; Tan, X.; Zhang, Q. Water quality in the upper Han River basin, China: The impacts of land use/land cover in riparian buffer zone. J. Hazard. Mater. 2009, 165, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Hwang, S.-J.; Lee, S.-B.; Hwang, H.-S.; Sung, H.-C. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landsc. Urban Plan. 2009, 92, 80–89. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J.G. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Potschin, M.; Haines-Young, R. Landscapes, sustainability and the place-based analysis of ecosystem services. Landsc. Ecol. 2013, 28, 1053–1065. [Google Scholar] [CrossRef]
- Wu, J.; Xiang, W.-N.; Zhao, J. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2014, 125, 222–233. [Google Scholar] [CrossRef]
- Broadmeadow, S.; Nisbet, T.R. The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [Google Scholar] [CrossRef]
- Castelle, A.J.; Johnson, A.W.; Conolly, C. Wetland and Stream Buffer Size Requirements—A Review. J. Environ. Qual. 1994, 23, 878–882. [Google Scholar] [CrossRef] [Green Version]
- Dosskey, M.G. Toward quantifying water pollution abatement in response to installing buffers on crop land. Environ. Manag. 2001, 28, 577–598. [Google Scholar] [CrossRef]
- Mankin, K.R.; Ngandu, D.M.; Barden, C.J.; Hutchinson, S.L.; Geyer, W.A. Grass-shrub riparian buffer removal of sediment, phosphorus, and nitrogen from simulated runoff. J. Am. Water Resour. Assoc. 2007, 43, 1108–1116. [Google Scholar] [CrossRef]
- Bu, X.; Xue, J.; Zhao, C.; Wu, Y.; Han, F.; Zhu, L. Sediment and nutrient removal by integrated tree-grass riparian buffers in Taihu Lake watershed, eastern China. J. Soil Water Conserv. 2016, 71, 129–136. [Google Scholar] [CrossRef]
- Lee, P.; Smyth, C.; Boutin, S. Quantitative review of riparian buffer width guidelines from Canada and the United States. J. Environ. Manag. 2004, 70, 165–180. [Google Scholar] [CrossRef]
- Kuglerova, L.; Agren, A.; Jansson, R.; Laudon, H. Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. For. Ecol. Manag. 2014, 334, 74–84. [Google Scholar] [CrossRef]
- Tilak, A.S.; Burchell, M.R.; Youssef, M.A.; Lowrance, R.R.; Williams, R.G. Field testing the riparian ecosystem management model on a riparian buffer in the North Carolina upper coastal plain. J. Am. Water Resour. Assoc. 2014, 50, 665–682. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Qi, J.; Xing, Z.; Meng, F. Assessing impacts of riparian buffer zones on sediment and nutrient loadings into streams at watershed scale using an integrated REMM-SWAT model. Hydrol. Process. 2017, 31, 916–924. [Google Scholar] [CrossRef]
- Williams, R.D.; Nicks, A.D. Using CREAMS to simulate filter strip effectiveness in erosion control. J. Soil Water Conserv. 1988, 43, 108–112. [Google Scholar]
- Muñoz-Carpena, R.; Parsons, J.E.; Gilliam, J.W. Modeling hydrology and sediment transport in vegetative filter strips. J. Hydrol. 1999, 214, 111–129. [Google Scholar] [CrossRef]
- Lin, X.; Tang, J.; Li, Z.; Li, H. Finite Element Simulation of Total Nitrogen Transport in Riparian Buffer in an Agricultural Watershed. Sustainability 2016, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Hanh, N.H.; Recknagel, F.; Meyer, W. Water Quality Control Options in Response to Catchment Urbanization: A Scenario Analysis by SWAT. Water 2018, 10, 1846. [Google Scholar] [CrossRef] [Green Version]
- Klemas, V. Remote Sensing of Riparian and Wetland Buffers: An Overview. J. Coast. Res. 2014, 30, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.D. An evaluation of the factors determining the effectiveness of water quality buffer zones. J. Hydrol. 1989, 107, 133–145. [Google Scholar] [CrossRef]
- Xiang, W.N. GIS-based riparian buffer analysis: Injecting geographic information into landscape planning. Landsc. Urban Plan. 1996, 34, 1–10. [Google Scholar] [CrossRef]
- Xiang, W.N.; Stratton, W.L. The b-function and variable stream buffer mapping: A note on ‘A GIS method for riparian water quality buffer generation. Int. J. Geogr. Inf. Syst. 1996, 10, 499–510. [Google Scholar] [CrossRef]
- Novoa, J.; Chokmani, K.; Lhissou, R. A novel index for assessment of riparian strip efficiency in agricultural landscapes using high spatial resolution satellite imagery. Sci. Total Environ. 2018, 644, 1439–1451. [Google Scholar] [CrossRef]
- Li, C.-H.; Wang, Y.-K.; Ye, C.; Wei, W.-W.; Zheng, B.-H.; Xu, B. A proposed delineation method for lake buffer zones in watersheds dominated by non-point source pollution. Sci. Total Environ. 2019, 660, 32–39. [Google Scholar] [CrossRef]
- SBurke, M.; Mitchell, N. People as ecological participants in ecological restoration. Restor. Ecol. 2007, 15, 348–350. [Google Scholar] [CrossRef]
- Liang, M.-Q.; Zhang, C.-F.; Peng, C.-L.; Lai, Z.-L.; Chen, D.-F.; Chen, Z.-H. Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecol. Eng. 2011, 37, 309–316. [Google Scholar] [CrossRef]
- Hefting, M.M.; Clement, J.C.; Bienkowski, P.; Dowrick, D.; Guenat, C.; Butturini, A.; Topa, S.; Pinay, G.; Verhoeven, J.T.A. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecol. Eng. 2005, 24, 465–482. [Google Scholar] [CrossRef]
- Yuan, Y.; Bingner, R.L.; Locke, M.A. A Review of effectiveness of vegetative buffers on sediment trapping in agricultural areas. Ecohydrology 2009, 2, 321–336. [Google Scholar] [CrossRef]
- Neilen, A.D.; Chen, C.R.; Parker, B.M.; Faggotter, S.J.; Burford, M.A. Differences in nitrate and phosphorus export between wooded and grassed riparian zones from farmland to receiving waterways under varying rainfall conditions. Sci. Total Environ. 2017, 598, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. An Ecosystem Perspective of Riparian Zones. Bioscience 1991, 41, 540. [Google Scholar] [CrossRef]
- Stoddard, J.L.; Larsen, D.P.; Hawkins, C.P.; Johnson, R.K.; Norris, R.H. Setting expectations for the ecological condition of streams: The concept of reference condition. Ecol. Appl. 2006, 16, 1267–1276. [Google Scholar] [CrossRef]
- Irvine, K. Classifying ecological status under the European Water Framework Directive: The need for monitoring to account or natural variability. Aquat. Conserv.-Mar. Freshw. Ecosyst. 2004, 14, 107–112. [Google Scholar] [CrossRef]
- Davies, S.P.; Jackson, S.K. The biological condition gradient: A descriptive model for interpreting change in aquatic ecosystems. Ecol. Appl. 2006, 16, 1251–1266. [Google Scholar] [CrossRef]
- Luo, K. The Riparian Vegetation Buffer Width Planning Study in Chongming Island, Shanghai, China. Master’s Thesis, East China Normal University, Shanghai, China, 2009. [Google Scholar]
- Zuo, J. The Quantitative Planning of Riparian Vegetation Buffer Strip in Plain River Network: A Case Study in Dishui Lake Watershed. Doctoral Thesis, East China Normal University, Shanghai, China, 2011. [Google Scholar]
- Phillips, M.J.; Swift, L.W.; Blinn, C.R. Best Management Practices for Riparian Areas. In Riparian Management in Forests of the Continental Eastern United States; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Elowson, S. Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land. Biomass Bioenergy 1999, 16, 281–290. [Google Scholar] [CrossRef]
- Aronsson, P.; Perttu, K. Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. For. Chron. 2001, 77, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Stackpoole, S.M.; Kosola, K.R.; Workmaster, B.A.A.; Guldan, N.M.; Browne, B.A.; Jackson, R.D. Looking beyond fertilizer: Assessing the contribution of nitrogen from hydrologic inputs and organic matter to plant growth in the cranberry agroecosystem. Nutr. Cycl. Agroecosyst. 2011, 91, 41–54. [Google Scholar] [CrossRef]
- Li, X.; Hou, L.; Liu, M.; Zheng, Y.; Yin, G.; Lin, X.; Cheng, L.; Li, Y.; Hu, X. Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland. Environ. Sci. Technol. 2015, 49, 11560–11568. [Google Scholar] [CrossRef] [PubMed]
- Zak, D.; Kronvang, B.; Carstensen, M.V.; Hoffmann, C.C.; Kjeldgaard, A.; Larsen, S.E.; Audet, J.; Egemose, S.; Jorgensen, C.A.; Feuerbach, P.; et al. Nitrogen and Phosphorus Removal from Agricultural Runoff in Integrated Buffer Zones. Environ. Sci. Technol. 2018, 52, 6508–6517. [Google Scholar] [CrossRef] [Green Version]
- Thomas, I.A.; Jordan, P.; Mellander, P.E.; Fenton, O.; Shine, O.; Huallachain, D.O.; Creamer, R.; McDonald, N.T.; Dunlop, P.; Murphy, P.N.C. Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution. Sci. Total Environ. 2016, 556, 276–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
Test Groups | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | |
---|---|---|---|---|---|---|---|
A1 | Salix matsudana Koidz. | √ | √ | √ | |||
A2 | Prunus padus L. | √ | √ | √ | √ | ||
A3 | Fraxinus mandschurica Rupr. | √ | √ | √ | |||
S1 | Amorpha fruticosa Linn. | √ | √ | √ | √ | ||
S2 | Spiraea japonica Gold Mound. | √ | √ | √ | √ | √ | |
S3 | Swida alba Opiz. | √ | √ | ||||
H1 | Medicago sativa Linn. | √ | √ | √ | |||
H2 | Trifolium repens Linn. | √ | √ | √ | √ | √ | |
H3 | Festuca arundinacea | √ | √ |
Data Type | Data Source | Data Usage | Type |
---|---|---|---|
Hydrology | Changchun river map; field survey | River network raster image | Grid 2.5 m × 2.5 m |
DEM | Elevation point cloud | Slope raster | Grid 2.5 m × 2.5 m |
Land use | Sentinel-2 multispectral image (https://scihub.copernicus.eu/, 3 April 2020); field survey | Manning coefficient raster | Grid 10 m × 10 m |
Soil type | UN Food and Agriculture Organization (FAO) | Saturated hydraulic conductivity raster and soil moisture storage capacity raster | Grid 1 km × 1 km |
Reference buffer parameters | Field survey | Basic parameters | ASCII text |
UAV image | UAV shooting | Assist field survey | JPG |
Reference Buffer Index | Value |
---|---|
Width (Lr) | 10 m |
Slope (sr) | 18% |
Soil moisture storage capacity (cr) | 32.9 cm |
Saturated hydraulic conductivity(Kr) | 0.71 cm h−1 |
Manning roughness coefficient (nr) | 0.58 |
River | Time Model | Hydraulic Model | Union | ||
---|---|---|---|---|---|
Area (m2) | Width (m) | Area (m2) | Width (m) | Width (m) | |
Mainstream | 927,528 | 55.21 | 914,256 | 54.42 | 63.19 |
Xiaobai | 72,409 | 38.11 | 56,202 | 29.58 | 41.03 |
Xibai | 73,416 | 26.22 | 69,580 | 24.85 | 37.26 |
Weizi | 97,755 | 27.93 | 89,355 | 25.53 | 34.18 |
Dabai | 63,986 | 27.82 | 51,106 | 22.22 | 33.41 |
Xichaoyang | 65,400 | 21.80 | 81,450 | 27.15 | 32.00 |
Jinqian | 74,675 | 25.75 | 69,687 | 24.03 | 31.41 |
Section | Length (km) | Normal Width (m) | High Efficiency Width (m) | Section Type |
---|---|---|---|---|
Midstream | 6.6 | 55.21 | 48.06 | Heavy polluted urban reaches |
Downstream | 6.0 | 55.21 | 47.02 | Urban-rural reaches |
Xibai | 2.8 | 37.26 | 21.96 | Heavy polluted urban tributaries |
Zone | Component | Width | Location Examples | Schematic Diagram |
---|---|---|---|---|
Midstream heavy pollution reach | Ⅰ: arbor-shrub | 15–20 m | ||
Ⅱ: herb | 5–10 m | |||
Downstream urban-rural reach | Ⅰ: arbor-shrub | 15 m | ||
Ⅱ: shrub-herb | 5–10 m | |||
Ⅲ: herb | 5 m | |||
Rural weak management reach | Ⅰ: arbor | 15–20 m | ||
Ⅱ: herb | 5 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Tang, J.; Li, Z.; Yang, B.; Yan, Y.; Yang, Y. Vegetated Buffer Zone Restoration Planning in Small Urban Watersheds. Water 2021, 13, 3000. https://doi.org/10.3390/w13213000
Duan Y, Tang J, Li Z, Yang B, Yan Y, Yang Y. Vegetated Buffer Zone Restoration Planning in Small Urban Watersheds. Water. 2021; 13(21):3000. https://doi.org/10.3390/w13213000
Chicago/Turabian StyleDuan, Yucong, Jie Tang, Zhaoyang Li, Bo Yang, Yu Yan, and Yao Yang. 2021. "Vegetated Buffer Zone Restoration Planning in Small Urban Watersheds" Water 13, no. 21: 3000. https://doi.org/10.3390/w13213000
APA StyleDuan, Y., Tang, J., Li, Z., Yang, B., Yan, Y., & Yang, Y. (2021). Vegetated Buffer Zone Restoration Planning in Small Urban Watersheds. Water, 13(21), 3000. https://doi.org/10.3390/w13213000