Hydrochemical Characteristics of Groundwater at the Epicenter of the 2021 Biru M6.1 Earthquake in Central Tibet
Abstract
:1. Introduction
2. Study Area and Methodology
2.1. Study Area
2.2. Sample Collection and Analysis
3. Results
3.1. Hydrochemical Types and Characteristics
3.2. Hydrogen and Oxygen Stable Isotopes
3.3. SiO2 Concentration and Underground Temperature
3.4. Factor Analysis of Hydrochemical Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moral, F.; Cruz-Sanjulián, J.; Olías, M. Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J. Hydrol. 2008, 360, 281–296. [Google Scholar] [CrossRef]
- Gastmans, D.; Chang, H.K.; Hutcheon, I. Groundwater geochemical evolution in the northern portion of the Guarani Aquifer System (Brazil) and its relationship to diagenetic features. Appl. Geochem. 2010, 25, 16–33. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Liao, X.; Zhang, Y. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China. Int. J. Environ. Res. Public Health 2020, 17, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Shi, Z.; Wang, G.; Liu, C. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China. J. Hydrol. 2019, 579, 124175. [Google Scholar] [CrossRef]
- Fronzi, D.; Mirabella, F.; Cardellini, C.; Caliro, S.; Palpacelli, S.; Cambi, C.; Valigi, D.; Tazioli, A. The Role of Faults in Groundwater Circulation before and after Seismic Events: Insights from Tracers, Water Isotopes and Geochemistry. Water 2021, 13, 1499. [Google Scholar] [CrossRef]
- Du, J.G.; Si, X.Y.; Chen, Y.X.; Fu, H.; Jian, C.L.; Guo, W.S. Geochemical Anomalies Connected with Great Earthquakes in China, Geochemistry Research Advances; Nova Science Publishers Inc.: New York, NY, USA, 2008; pp. 57–92. [Google Scholar]
- Barberio, M.D.; Barbieri, M.; Billi, A.; Doglioni, C.; Petitta, M. Hydrogeochemical changes before and during the 2016 Ama-trice-Norcia seismic sequence (central Italy). Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Rosen, M.R.; Binda, G.; Archer, C.; Pozzi, A.; Michetti, A.M.; Noble, P.J. Mechanisms of earthquake-induced chemical and fluid transport to carbonate groundwater springs after earthquakes. Water Resour. Res. 2018, 54, 5225–5244. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, H.; Wang, G. Groundwater trace elements change induced by M5.0 earthquake in Yunnan. J. Hydrol. 2020, 581, 124424. [Google Scholar] [CrossRef]
- Chen, L.; Wang, G. Hydrochemical changes of a spring due to the May 30, 2014 Ms 6.1 Yingjiang earthquake, southwest China. Environ. Pollut. 2021, 284, 117125. [Google Scholar] [CrossRef]
- Skelton, A.; Andrén, M.; Kristmannsdóttir, H.; Stockmann, G.; Mörth, C.M.; Sveinbjörnsdóttir, Á.; Jónsson, S.; Sturkell, E.; Guðrúnardóttir, H.R.; Hjartarson, H.; et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Manga, M. New streams and springs after the 2014 Mw6.0 South Napa earthquake. Nat. Commun. 2015, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Onda, S.; Sano, Y.; Takahata, N.; Kagoshima, T.; Miyajima, T.; Shibata, T.; Pinti, D.L.; Lan, T.; Kim, N.K.; Kusakabe, M.; et al. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan. Sci. Rep. 2018, 8, 4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosono, T.; Yamada, C.Y.; Manga, M.; Wang, C.; Tanimizu, M. Stable isotopes show that earthquakes enhance permeability and release water from mountains. Nat. Commun. 2020, 11, 2776. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, G.; Manga, M.; Wang, C.Y. Mechanism of co-seismic water level change following four great earthquakes—Insights from co-seismic responses throughout the Chinese mainland. Earth Planet. Sci. Lett. 2015, 430, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Mukherjee, S. Chemical signature detection of groundwater and geothermal waters for evidence of crustal de-formation along fault zones. J. Hydrol. 2020, 582, 124459. [Google Scholar] [CrossRef]
- Tsunogai, U.; Wakita, H. Anomalous changes in groundwater chemistry. Possible precursors of the 1995 Hyogo-ken Nanbu Earthquake. Japan J. Phys. Earth 1996, 44, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Claesson, L.; Skelton, A.; Graham, C.; Dietl, C.; Mörth, M.; Torssander, P.; Kockum, I. Hydrogeochemical changes before and after a major earthquake. Geology 2004, 32, 641–644. [Google Scholar] [CrossRef]
- Wang, C.Y.; Manga, M. Hydrologic responses to earthquakes and a general metric. Front Geofluids 2010, 10, 206–216. [Google Scholar]
- Cox, S.; Rutter, H.; Sims, A.; Manga, M.; Weir, J.; Ezzy, T.; White, P.; Horton, T.; Scott, D. Hydrological effects of the M W 7.1 Darfield (Canterbury) earthquake, 4 September 2010, New Zealand. N. Z. J. Geol. Geophys. 2012, 55, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Joun, W.-T.; Lee, S.; Kaown, D.; Lee, K.-K. Hydrogeochemical evidence of earthquake-induced anomalies in response to the 2017 MW 5.5 Pohang earthquake in Korea. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009532. [Google Scholar] [CrossRef]
- Capecchiacci, F.; Tassi, F.; Vaselli, O.; Bicocchi, G.; Cabassi, J.; Giannini, L.; Nisi, B.; Chiocciora, G. A combined geochemical and isotopic study of the fluids discharged from the Montecatini thermal system (NW Tuscany, Italy). Appl. Geochem. 2015, 59, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.H.; Xu, M.; An, C.J.; Wu, M.L.; Zhang, Y.H.; Li, X.; Zhang, Q.; Lu, G.P. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Phys. Earth Planet Inter. 2017, 263, 12–22. [Google Scholar] [CrossRef]
- Kennedy, B.M.; Kharaka, Y.K.; Evans, W.C.; Ellwood, A.; DePaolo, D.J.; Thordsen, J.; Ambats, G.; Mariner, R.H. Mantle fluids in the San Andreas fault system. Calif. Sci. 1997, 278, 1278–1281. [Google Scholar] [CrossRef]
- Lin, A.; Tanaka, N.; Uda, S.; Satish-Kumar, M. Repeated coseismic infiltration of meteoric and seawater into deep fault zones: A case study of the Nojima fault zone, Japan. Chem. Geol. 2003, 202, 139–153. [Google Scholar] [CrossRef]
- Tatsuo, M.; Kentaro, O.; Ryuji, I. Fracture-zone conditions on a recently active fault: Insights from mineralogical and geo-chemical analyses of the Hirabayashi NIED drill core on the Nojima fault, southwest Japan, which ruptured in the 1995 Kobe earthquake. Tectonophysics 2004, 378, 143–163. [Google Scholar]
- Bagheri, R.; Nadri, A.; Raeisi, E.; Eggenkamp, H.G.M.; Kazemi, G.A.; Montaseri, A. Hydrochemical and isotopic (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br) evidence for the origin of saline formation water in a gas reservoir. Chem. Geol. 2014, 384, 62–75. [Google Scholar] [CrossRef]
- Gaagai, A.; Boudoukha, A.; Boumezbeur, A.; Benaabidate, L. Hydrochemical characterization of surface water in the Babar wa-tershed (Algeria) using environmetric techniques and time series analysis. Intl. J. River Basin Manag. 2017, 15, 361–372. [Google Scholar] [CrossRef]
- Woith, H.; Wang, R.; Maiwald, U.; Pekdeger, A.; Zschau, J. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake. Chem. Geol. 2013, 339, 177–186. [Google Scholar] [CrossRef]
- Liu, H. Geochemical characterization of shallow groundwater using multivariate statistical analysis and geochemical mod-eling in an irrigated region along the upper Yellow River, Northwestern China. J. Geochem. Explor. 2020, 215, 106565. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analysis. Eos. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Subrahmanyam, K.; Yadaiah, P. Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeol. J. 2001, 9, 297–312. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria: Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Fournier, R.O.; Truesdell, A.H. Geochemical indicators of subsurface temperature, Part 2: Estimation of temperature and fraction of hot water mixed with cold water. J. Res. U S Ceol. Surv. 1974, 2, 263–270. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Kong, Y.; Li, J.; Tian, J. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth Planet. Sci. 2017, 17, 534–537. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Zhang, J.; Li, B.; Yan, R.; Wang, X. Sentinel-1 SAR-based coseismic deformation monitoring service for rapid ge-odetic imaging of global earthquakes. Nat. Hazard Res. 2021, 1, 11–19. [Google Scholar] [CrossRef]
- Manga, M.; Brodsky, E.E.; Boone, M. Response of streamflow to multiple earthquakes. Geophys. Res. Lett. 2003, 30, 1214. [Google Scholar] [CrossRef]
ID | Water Type | Na+ mg/L | K+ mg/L | Mg2+ mg/L | Ca2+ mg/L | Cl− mg/L | SO42− mg/L | NO3− mg/L | HCO3− + CO32− mg/L | T °C | TDS mg/L | pH | δD ‰ | δ18O ‰ | SiO2 μg/mL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c1 | Cool spring | 9.85 | 2.10 | 26.04 | 85.16 | 1.51 | 156.57 | 5.21 | 260.14 | 0.40 | 309.00 | 7.43 | −110.30 | −14.92 | 9.35 |
c2 | Cool spring | 9.74 | 2.30 | 23.58 | 61.85 | 1.52 | 34.69 | 10.70 | 256.27 | 5.00 | 262.67 | 7.85 | −109.44 | −14.40 | 7.00 |
c3 | Cool spring | 6.60 | 1.53 | 22.55 | 64.58 | 0.96 | 18.03 | 3.15 | 274.58 | 3.80 | 247.67 | 7.65 | −110.68 | −14.49 | 5.99 |
c4 | Cool spring | 17.76 | 1.42 | 39.94 | 49.34 | 1.95 | 26.28 | 12.18 | 305.09 | 5.10 | 273.33 | 7.89 | −115.43 | −15.04 | 10.81 |
c5 | Cool spring | 10.94 | 0.63 | 17.28 | 40.44 | 1.53 | 25.45 | 4.30 | 183.05 | 6.30 | 184.70 | 7.94 | −113.23 | −14.86 | 8.79 |
h1 | Hot spring | 77.39 | 60.24 | 8.43 | 40.53 | 87.28 | 116.69 | 0.49 | 601.24 | 53.60 | 780.33 | 6.72 | −129.60 | −17.18 | 45.20 |
h2 | Hot spring | 205.79 | 30.35 | 20.33 | 60.26 | 34.71 | 136.95 | 0.89 | 713.90 | 60.60 | 802.67 | 6.91 | −130.98 | −16.46 | 100.88 |
h3 | Hot spring | 506.30 | 155.14 | 53.69 | 23.09 | 37.79 | 208.02 | 2.53 | 1765.00 | 32.50 | 1692.67 | 6.67 | −132.73 | −17.53 | 54.39 |
l1 | Lake | 3.55 | 0.81 | 10.19 | 86.63 | 0.82 | 31.83 | 2.56 | 286.78 | 3.70 | 269.33 | 7.42 | −110.13 | −15.00 | 5.32 |
l2 | Lake | 9.90 | 2.42 | 12.63 | 83.85 | 1.92 | 9.38 | 1.03 | 323.39 | 0.00 | 251.67 | 7.20 | −109.52 | −14.28 | 11.70 |
l3 | Lake | 33.59 | 7.27 | 40.03 | 86.33 | 6.09 | 39.04 | 10.20 | 451.53 | 5.20 | 408.67 | 8.55 | −110.83 | −14.16 | 17.75 |
s1 | Steam | 7.77 | 0.98 | 29.44 | 102.35 | 1.04 | 144.31 | 4.48 | 262.37 | 0.10 | 373.33 | 7.98 | −109.81 | −14.94 | 7.33 |
s2 | Steam | 10.67 | 1.66 | 23.23 | 57.44 | 0.88 | 64.65 | 4.80 | 213.56 | 0.00 | 253.00 | 8.64 | −105.45 | −13.43 | 4.98 |
s3 | Steam | 42.01 | 5.61 | 56.44 | 92.05 | 5.08 | 156.55 | 5.96 | 414.92 | 9.20 | 511.33 | 7.55 | −112.43 | −14.73 | 16.52 |
s4 | Steam | 56.95 | 12.05 | 29.99 | 95.77 | 5.25 | 134.39 | 3.79 | 384.41 | 3.50 | 482.67 | 7.77 | −109.08 | −15.09 | 11.48 |
s5 | Steam | 24.49 | 4.02 | 28.79 | 68.80 | 4.01 | 157.90 | 4.13 | 268.35 | 3.00 | 673.67 | 8.28 | −112.42 | −15.15 | 8.68 |
w1 | Well (38 m) | 9.84 | 1.17 | 47.15 | 49.37 | 1.78 | 40.62 | 0.05 | 329.49 | 4.90 | 310.33 | 7.78 | −116.28 | −14.71 | 13.38 |
w2 | Well (50 m) | 11.60 | 1.21 | 10.50 | 45.02 | 0.74 | 14.74 | 9.22 | 189.15 | 4.40 | 181.47 | 8.10 | −107.20 | −13.95 | 7.67 |
w3 | Well (35 m) | 27.06 | 3.66 | 26.02 | 99.13 | 15.91 | 42.99 | 54.46 | 366.10 | 3.50 | 418.67 | 7.55 | −112.23 | −14.83 | 7.78 |
w4 | Well (45 m) | 27.29 | 1.88 | 25.66 | 81.06 | 1.74 | 22.88 | 4.36 | 366.10 | 4.60 | 321.67 | 7.53 | −107.18 | −13.78 | 7.22 |
w5 | Well (40 m) | 5.06 | 1.89 | 65.02 | 60.74 | 1.64 | 24.33 | 0.12 | 469.83 | 4.00 | 390.00 | 7.55 | −124.03 | −16.25 | 5.43 |
w6 | Well (40 m) | 12.18 | 0.64 | 11.56 | 65.25 | 2.70 | 28.80 | 2.88 | 256.27 | 5.90 | 243.67 | 7.80 | −119.64 | −15.52 | 14.06 |
w7 | Well (30 m) | 8.66 | 1.54 | 62.93 | 74.86 | 5.16 | 32.46 | 1.66 | 500.34 | 5.60 | 419.33 | 7.48 | −114.22 | −15.11 | 4.98 |
Variate | First Factor | Second Factor | Third Factor | Fourth Factor |
---|---|---|---|---|
Na+ | 0.892 | 0.247 | 0.112 | 0.232 |
K+ | 0.888 | 0.146 | 0.185 | 0.225 |
Mg2+ | 0.035 | −0.020 | 0.836 | 0.159 |
Ca2+ | 0.296 | 0.325 | 0.350 | 0.444 |
Cl− | 0.272 | 0.877 | 0.254 | 0.070 |
SO42− | 0.263 | −0.047 | 0.009 | 0.961 |
NO3− | −0.005 | 0.993 | −0.094 | −0.021 |
HCO3− | 0.291 | 0.144 | 0.939 | −0.088 |
SO2 | 0.548 | −0.015 | 0.074 | 0.061 |
Contribute | 27.502% | 24.589% | 22.875% | 15.842% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Sun, X.; Liu, D.; He, Z.; Li, Y. Hydrochemical Characteristics of Groundwater at the Epicenter of the 2021 Biru M6.1 Earthquake in Central Tibet. Water 2021, 13, 3111. https://doi.org/10.3390/w13213111
Yang P, Sun X, Liu D, He Z, Li Y. Hydrochemical Characteristics of Groundwater at the Epicenter of the 2021 Biru M6.1 Earthquake in Central Tibet. Water. 2021; 13(21):3111. https://doi.org/10.3390/w13213111
Chicago/Turabian StyleYang, Pengtao, Xiaolong Sun, Dongying Liu, Zhongtai He, and Yongsheng Li. 2021. "Hydrochemical Characteristics of Groundwater at the Epicenter of the 2021 Biru M6.1 Earthquake in Central Tibet" Water 13, no. 21: 3111. https://doi.org/10.3390/w13213111
APA StyleYang, P., Sun, X., Liu, D., He, Z., & Li, Y. (2021). Hydrochemical Characteristics of Groundwater at the Epicenter of the 2021 Biru M6.1 Earthquake in Central Tibet. Water, 13(21), 3111. https://doi.org/10.3390/w13213111