Sediment Transport Dynamism in the Confluence Area of Two Rivers Transporting Mainly Suspended Sediment Based on Sentinel-2 Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Data
2.3. Remote Sensing Data
2.4. Correlation between Hydrology and Suspended Sediment Dynamism: Statistical Analysis
3. Results
3.1. Hydrological Characteristics of the Studied Period
3.2. Mixing of Waters in the Confluence Area—General Characteristics
3.3. Hydrological Parameters and Mixing
3.4. Main Patterns of Mixing Waters
3.5. Predictive Models
4. Discussion
4.1. Hydrological Background of the Mixing
4.2. Temporal Changes in the Area of Waters with Various Origin
4.3. Mixing Patterns
4.4. Support for Future Sediment Sampling
4.5. The Applicability of the Unsupervised Classification Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bilal, A.; Xie, Q.; Zhai, Y. Flow, Sediment, and Morpho-Dynamics of River Confluence in Tidal and Non-Tidal Environments. J. Mar. Sci. Eng. 2020, 8, 591. [Google Scholar] [CrossRef]
- Rice, S.; Roy, A.; Rhoads, B. River Confluences, Tributaries and the Fluvial Network; JohnWiley & Sons Ltd.: England, UK, 2008. [Google Scholar]
- Wuppukondur, A.; Chandra, V. Mitigate Reservoir Sedimination by Reducing Scour at River Confluence: An experimantal Study. In Proceedings of the 8th International Perspective on Water Resources and the Environment, Colombo, Sri Lanka, 4–6 January 2016. [Google Scholar]
- Boyer, C.; Roy, A.G.; Best, J.L. Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology. J. Geophys. Res. Earth Surf. 2006, 111, F04007. [Google Scholar] [CrossRef]
- Amini, N.; Balouchi, B.; Bejestan, M.S. Reduction of local scour at river confluences using a collar. Int. J. Sediment. Res. 2017, 32, 364–372. [Google Scholar] [CrossRef]
- Best, J.L. Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology. Soc. Econ. Paleontol. Mineral. (SEPM) 1987.
- Unde, M.G.; Dhakal, S. Sediment characteristics at river confluences: A case study of the Mula-Kas confluence, Maharashtra, India. Prog. Phys. Geogr. 2009, 33, 208–223. [Google Scholar] [CrossRef]
- Ashmore, P.; Ferguson, R.; Prestegaard, K.; Ashworth, P.; Paola, C. Secondary flow in anabranch confluences of a braided, gravel-bed stream. Earth Surf. Process. Landf. 1992, 17, 299–311. [Google Scholar] [CrossRef]
- Rhoads, B.L.; Riley, J.D.; Mayer, D.R. Response of bed morphology and bed material texture to hydrological conditions at an asymmetrical stream confluence. Geomorphology 2009, 109, 161–173. [Google Scholar] [CrossRef]
- Yuan, S.; Tang, H.; Xiao, Y.; Qiu, X.; Xia, Y. Water flow and sediment transport at open-channel confluences: An experimental study. J. Hydraul. Res. 2018, 56, 333–350. [Google Scholar] [CrossRef]
- Best, J.L.; Reid, I. Separation zone at open-channel junctions. J. Hydraul. Eng. 1984, 110, 1588–1594. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Constantinescu, G.S. Dynamical adjustment of two streams past their confluence. J. Hydraul. Res. 2020, 58, 305–313. [Google Scholar] [CrossRef]
- Guillén-Ludeña, S.; Franca, M.; Cardoso, A.; Schleiss, A. Evolution of the hydromorphodynamics of mountain river confluences for varying discharge ratios and junction angles. Geomorphology 2016, 255, 1–15. [Google Scholar] [CrossRef]
- Constantinescu, G.; Miyawaki, S.; Rhoads, B.; Sukhodolov, A. Numerical analysis of the effect of momentum ratio on the dynamics and sediment-entrainment capacity of coherent flow structures at a stream confluence. J. Geophys. Res. Earth Surf. 2012, 117, F04028. [Google Scholar] [CrossRef]
- Best, J.L. Sediment transport and bed morphology at river channel confluences. Sedimentology 1988, 35, 481–498. [Google Scholar] [CrossRef]
- Roy, A.; Bergeron, N. Flow and particle paths at a natural river confluence with coarse bed material. Geomorphology 1990, 3, 99–112. [Google Scholar] [CrossRef]
- Rhoads, B.L. Mean structure of transport-effective flows at an asymmetrical confluence when the main stream is dominant. Coherent Flow Struct. Open Channels 1996, 18, 491–517. [Google Scholar]
- Singh, U.K.; Ahmad, Z.; Kumar, A.; Pandey, M. Incipient motion for gravel particles in cohesionless sediment mixtures. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 43, 253–262. [Google Scholar] [CrossRef]
- Smith, R.; Daish, N. Dispersion far downstream of a river junction. Phys. Fluids A Fluid Dyn. 1991, 3, 1102–1109. [Google Scholar] [CrossRef]
- Mackay, J.R. Lateral mixing of the Liard and Mackenzie rivers downstream from their confluence. Can. J. Earth Sci. 1970, 7, 111–124. [Google Scholar] [CrossRef]
- Jirka, G.H. Mixing and dispersion in rivers. In River Flow; AA Balkema Publishers: London, UK, 2004; pp. 13–27. [Google Scholar]
- Ghosh, K.G. Sediment transport at the river confluences: Few observations from a sub-tropical plateau fringe river of eastern India. Geol. Ecol. Landsc. 2020, 1–24. [Google Scholar] [CrossRef]
- Park, J.; Batalla, R.J.; Birgand, F.; Esteves, M.; Gentile, F.; Harrington, J.R.; Navratil, O.; López-Tarazón, J.A.; Vericat, D. Influences of catchment and river channel characteristics on the magnitude and dynamics of storage and re-suspension of fine sediments in river beds. Water 2019, 11, 878. [Google Scholar] [CrossRef] [Green Version]
- Guyot, J.-L.; Filizola, N.; Guimarães, V. Amazon suspended sediment yield measurements using an Acoustic Doppler Current Profiler (ADCP): First results. Hydrol. Humid Trop. Environ. Int. Symp. AHS-AISH Publ. 1998, 253, 109–115. [Google Scholar]
- Ahmed, I.; Pan, N.D.; Debnath, J. A study on suspeded sediment discharge and bed load grain size of the Gumti River of Tripura at some selected tributary confluence points. Int. J. Geol. Earth Environ. Sci. 2016, 6, 43–53. [Google Scholar]
- Pu, J.H.; Wallwork, J.T.; Khan, M.; Pandey, M.; Pourshahbaz, H.; Satyanaga, A.; Hanmaiahgari, P.R.; Gough, T. Flood suspended sediment transport: Combined modelling from dilute to hyper-concentrated flow. Water 2021, 13, 379. [Google Scholar] [CrossRef]
- Lepesqueur, J.; Hostache, R.; Martínez-Carreras, N.; Montargès-Pelletier, E.; Hissler, C. Sediment transport modelling in riverine environments: On the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary. Hydrol. Earth Syst. Sci. 2019, 23, 3901–3915. [Google Scholar] [CrossRef] [Green Version]
- Lavery, P.; Pattiaratchi, C.; Wyllie, A.; Hick, P. Water quality monitoring in estuarine waters using the Landsat Thematic Mapper. Remote Sens. Environ. 1993, 46, 268–280. [Google Scholar] [CrossRef]
- Liu, Y.; Islam, M.A.; Gao, J. Quantification of shallow water quality parameters by means of remote sensing. Prog. Phys. Geogr. 2003, 27, 24–43. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhou, W.Q.; Wang, S.X.; Zhang, P. Applications of remote sensing techniques to inland water quality monitoring. Adv. Water Sci. 2004, 15, 312–317. [Google Scholar]
- Alparslan, E.; Aydöner, C.; Tufekci, V.; Tüfekci, H. Water quality assessment at Ömerli Dam using remote sensing techniques. Environ. Monit. Assess. 2007, 135, 391–398. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Hallikainen, M. Water quality monitoring using remote sensing in support of the EU water framework directive (WFD): A case study in the Gulf of Finland. Environ. Monit. Assess. 2007, 124, 157–166. [Google Scholar] [CrossRef]
- He, W.; Chen, S.; Liu, X.; Chen, J. Water quality monitoring in a slightly-polluted inland water body through remote sensing—Case study of the Guanting Reservoir in Beijing, China. Front. Environ. Sci. Eng. China 2008, 2, 163–171. [Google Scholar] [CrossRef]
- Usali, N.; Ismail, M.H. Use of remote sensing and GIS in monitoring water quality. J. Sustain. Dev. 2010, 3, 228. [Google Scholar] [CrossRef]
- Chebud, Y.; Naja, G.M.; Rivero, R.G.; Melesse, A.M. Water quality monitoring using remote sensing and an artificial neural network. Water Air Soil Pollut. 2012, 223, 4875–4887. [Google Scholar] [CrossRef]
- Mohsen, A.; Elshemy, M.; Zeidan, B. Water quality monitoring of Lake Burullus (Egypt) using Landsat satellite imageries. Environ. Sci. Pollut. Res. 2021, 28, 15687–15700. [Google Scholar] [CrossRef] [PubMed]
- Gernez, P.; Lafon, V.; Lerouxel, A.; Curti, C.; Lubac, B.; Cerisier, S.; Barillé, L. Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (Take5) Experiment in the Loire and Gironde Estuaries. Remote Sens. 2015, 7, 9507–9528. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, G.; Qin, C.; Wu, B. River Extraction under Bankfull Discharge Conditions Based on Sentinel-2 Imagery and DEM Data. Remote Sens. 2021, 13, 2650. [Google Scholar] [CrossRef]
- Maurice-Bourgoin, L.; Quemerais, B.; Moreira-Turcq, P.; Seyler, P. Transport, distribution and speciation of mercury in the Amazon River at the confluence of black and white waters of the Negro and Solimoes Rivers. Hydrol. Process. 2003, 17, 1405–1417. [Google Scholar] [CrossRef]
- Lane, S.N.; Parsons, D.R.; Best, J.L.; Orfeo, O.; Kostaschuk, R.; Hardy, R.J. Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina. J. Geophys. Res. Earth Surf. 2008, 113, F02024. [Google Scholar] [CrossRef] [Green Version]
- Gaudet, J.M.; Roy, A.G. Effect of bed morphology on flow mixing length at river confluences. Nature 1995, 373, 138–139. [Google Scholar] [CrossRef]
- Park, E.; Latrubesse, E.M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ. 2014, 147, 232–242. [Google Scholar] [CrossRef]
- Pham, Q.V.; Ha, N.T.T.; Pahlevan, N.; Oanh, L.T.; Nguyen, T.B.; Nguyen, N.T. Using Landsat-8 images for quantifying suspended sediment concentration in Red River (Northern Vietnam). Remote Sens. 2018, 10, 1841. [Google Scholar] [CrossRef] [Green Version]
- Cremon, É.H.; da Silva, A.M.S.; Montanher, O.C. Estimating the suspended sediment concentration from TM/Landsat-5 images for the Araguaia River—Brazil. Remote Sens. Lett. 2020, 11, 47–56. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Castaing, P. Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Appl. Opt. 2003, 42, 2623–2634. [Google Scholar] [CrossRef]
- Umar, M.; Rhoads, B.L.; Greenberg, J. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. J. Hydrol. 2018, 556, 325–338. [Google Scholar] [CrossRef]
- Marinho, T.; Filizola, N.; Martinez, J.-M.; Armijos, E.; Nascimento, A. Suspended sediment variability at the Solimões and Negro confluence between May 2013 and February 2014. Geosciences 2018, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Latrubesse, E.M. Surface water types and sediment distribution patterns at the confluence of mega rivers: The Solimões-Amazon and Negro Rivers junction. Water Resour. Res. 2015, 51, 6197–6213. [Google Scholar] [CrossRef]
- Sipos, G.; Kiss, T.; Fiala, K. Morphological alterations due to channelization along the lower Tisza and Maros Rivers (Hungary). Geogr. Fiscicae Din. Quat. 2007, 30, 239–247. [Google Scholar]
- Kiss, T.; Fiala, K.; Sipos, G. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 2008, 98, 96–110. [Google Scholar] [CrossRef]
- Kiss, T.; Fiala, K.; Sipos, G.; Szatmári, G. Long-term hydrological changes after various river regulation measures: Are we responsible for flow extremes? Hydrol. Res. 2019, 50, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Sipos, G.; Kiss, T.; Oroszi, V. Geomorphological Process Along the Lowland Sections of the Maros/Mures and Kôrôs/CRIS Rivers. Ecol. Soc-Econ. Relat. Val. River Kôrôs/Cris. River Maros/Mure 2011, 35. [Google Scholar]
- Amissah, G.J.; Kiss, T.; Fiala, K. Morphological evolution of the lower Tisza River (Hungary) in the 20th century in response to human interventions. Water 2018, 10, 884. [Google Scholar] [CrossRef] [Green Version]
- Bogárdi, J. Sediment Transport in Alluvial Streams; Akademiai Kiado Budapest: Budapest, Hungary, 1974. [Google Scholar]
- Reizner, J. Szeged Története. 2004. Available online: http://www.bibl.u-szeged.hu/reizner/index2.html (accessed on 6 November 2021). (In Hungarian).
- Laczai, I.A. Maros szabályozása és kanyarulati viszonyai. In Maros Vízrajzi Atlasz; VITUKI: Budapest, Hungary, 1975; pp. 20–24. (In Hungarian) [Google Scholar]
- Török, I. A Maros alföldi szakaszának szabályozási terve (0–51, 33 fkm). In Regulation Plan of the Lowland Section of River Maros; ATIVIZIG: Szeged, Hungary, 1977. (In Hungarian) [Google Scholar]
- SNAP(ESA). Available online: https://step.esa.int/main/download/snap-download/ (accessed on 20 June 2021).
- Revel, C.; Lonjou, V.; Marcq, S.; Desjardins, C.; Fougnie, B.; Coppolani-Delle Luche, C.; Guilleminot, N.; Lacamp, A.-S.; Lourme, E.; Miquel, C.J.E.J.o.R.S. Sentinel-2A and 2B absolute calibration monitoring. Eur. J. Remote Sens. 2019, 52, 122–137. [Google Scholar] [CrossRef] [Green Version]
- ESA, V.B.; Szantoi, Z.; Gascon, F. Copernicus Sentinel-2 Mission: Calibration and Validation activities. GSICS Q. 2020, 14, 1. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 sen2cor: L2a processor for users. In Proceedings of the Living Planet Symposium, Prague, Czech Republik, 9–13 May 2016; pp. 1–8. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Likas, A.; Vlassis, N.; Verbeek, J. The global k-means clustering algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Ament, R.; Clevenger, A.P.; Yu, O.; Hardy, A. An assessment of road impacts on wildlife populations in US National Parks. Environ. Manag. 2008, 42, 480. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.; Peters, S. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [Google Scholar] [CrossRef]
- Doxaran, D.; Cherukuru, N.; Lavender, S.J. Apparent and inherent optical properties of turbid estuarine waters: Measurements, empirical quantification relationships, and modeling. Appl. Opt. 2006, 45, 2310–2324. [Google Scholar] [CrossRef] [PubMed]
- Tyler, A.; Svab, E.; Preston, T.; Presing, M.; Kovacs, W. Remote sensing of the water quality of shallow lakes: A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. Int. J. Remote Sens. 2006, 27, 1521–1537. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- IBM SPSS. Available online: https://www.ibm.com/analytics/us/en/technology/spss/ (accessed on 25 May 2021).
- Kiss, T.; Nagy, Z.; Balogh, M. Floodplain level development induced by human activity-case study in the lower Maros/Mures river, Romania and Hungary. Carpathian J. Earth Environ. Sci. 2017, 12, 83–93. [Google Scholar]
Tisza River | Maros River | ||
---|---|---|---|
Slope (cm/km) | Mean | 2.4 | 28.0 |
Flow velocity (m/s) | Mean | 0.54 | 0.66 |
Discharge (m3/s) | Maximum | 4346 (1932) | 2450 (1975) |
Mean | 930 | 161 | |
Minimum | 58 (2013) | 21 (1919) | |
Bankfull | 2020 | 850 | |
Water level (cm) | Maximum | 1062 (2006) | 615 (1975) |
Minimum | −293 (1968) | −113 (2012) | |
Transported sediment (t/y) | Suspended load | 18.7 million | 8.3 million |
Bed load | 9000 | 28,000 | |
Specific sediment load (t/m3) | Suspended load | 6.4 × 10−4 | 1.6 × 10−3 |
Bed load | 3.1 × 10−7 | 5.5 × 10−6 |
Station | Range | Min. | Max. | Mean | Std. Dev. | Median | Mode | |
---|---|---|---|---|---|---|---|---|
Water stage (cm) | HAlgyő | 604 | 36 | 640 | 190 | 144 | 140 | 64 |
HSzeged | 549 | 66 | 615 | 195 | 123 | 149 | 94 1 | |
HMakó | 487 | −112 | 375 | −7 | 74 | −24 | −77 | |
Absolute water level (m) | abs. HAlgyő | 6.04 | 74.36 | 80.40 | 75.91 | 1.44 | 75.40 | 74.64 |
abs. HSzeged | 5.49 | 74.36 | 79.85 | 75.65 | 1.23 | 75.2 | 74.64 1 | |
abs. HMakó | 4.87 | 78.38 | 83.25 | 79.43 | .74 | 79.26 | 78.73 | |
Slope (cm/km) | STisza | 5.5 | 0.0 | 5.5 | 1.4 | 1.2 | 1.1 | 0.0 |
SMaros | 16.9 | 2.7 | 19.6 | 13.0 | 2.8 | 13.9 | 14.3 | |
STisza‒SMaros | 20.8 | −18.8 | 2.0 | −11.6 | 3.9 | −13.1 | −14.4 1 | |
Discharge (m3/s) | QAlgyő | 181,200 | 128 | 1940 | 627 | 425 | 501 | 180 1 |
QSzeged | 210,500 | 128 | 2233 | 659 | 448 | 520 | 180 1 | |
QMakó | 701 | 30 | 731 | 137 | 91 | 110 | 75 | |
Q Algyő‒QMakó | 1629 | 60 | 1689 | 490.5 | 363.5 | 376.5 | 139 | |
QMakó/QSzeged | 0.51 | 0.06 | 0.57 | 0.23 | 0.09 | 0.22 | 0.20 |
TW | MW | MIX | L | |
---|---|---|---|---|
TW | 1.00 | |||
MW | −0.46 | 1.00 | ||
MIX | −0.91 | 0.04 | 1.00 | |
HAlgyő | 0.43 | 0.12 | −0.54 | |
HSzeged | 0.40 | 0.13 | −0.51 | |
HMakó | 0.02 | 0.47 | −0.24 | |
STisza | 0.57 | 0.03 | −0.66 | |
SMaros | −0.65 | 0.27 | 0.60 | |
ΔS | 0.65 | −0.18 | −0.64 | |
ΔHAlgyő | 0.01 | −0.10 | 0.03 | |
ΔHSzeged | 0.01 | −0.10 | 0.04 | |
ΔHMakó | −0.12 | 0.07 | 0.10 | |
ΔHAlgyő-ΔHMakó | 0.11 | −0.15 | −0.05 | |
QAlgyő | 0.48 | 0.10 | −0.58 | |
QSzeged | 0.42 | 0.13 | −0.54 | |
QMakó | 0.01 | 0.50 | −0.24 | |
QMakó/QSzeged | −0.73 | 0.31 | 0.67 | |
ΔQ | 0.57 | −0.02 | −0.63 | |
L | −0.36 | 0.85 | −0.01 | 1.00 |
Mixing Type (Class) | Up-Welling | Sub-Class | Characteristics of Water Types 1 | Characteristic Hydrological Parameters | Frequency (%) | Appearance (Months) 2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
TW | MW | MIX | QMakó/QSzeged | QAlgyő–QMakó (m3/s) | ΔHAlgyő–ΔHMakó (cm) | ΔS (Tisza-Maros) (cm/km) | |||||
TW dominant | No | TW1 | S1–S5: 70–100% | S1: 0–30% | no | 0.1–0.34 | 151–1290 | −27–54 | −15.5–−1.4 | 18.9 | I-III, IX-XI-XII |
TW2 | S1–S4: 30–75% | S1–S4: 37–46% | S1–S5: 5–100% | 0.11–0.26 | 142–1454 | −56–56 | −13.9–−0.3 | 17.5 | I-III, VIII | ||
TW3 | S1–S3: 30–100% | S1: 20–30% | S3–S5: 70–100% | 0.17–0.26 | 142–1537 | −11–22 | −14.4–−2.3 | 4.9 | III, IX-XII | ||
Tisza | TW4 | S1 and S3–S5: 60–100% | S1–S4: 5–35% | S1–S5: 10–100% | 0.11–0.29 | 102–597 | −14–21 | −14.7–−11.1 | 5.6 | II, IX-XI | |
Maros | TW5 | S1–S3: 55–95% | S1 and S3–S5: 20–95% | S1–S5: 10–80% | 0.15–0.25 | 103–511 | −7–22 | −13.8–−11 | 2.1 | V, IX, XI | |
MW dominant | No | MW6 | S1–S4: 10–75% | S1–S5: 30–80% | S1–S5: 10–60% | 0.28–0.51 | 292–840 | −42–35 | −17.7–−8.2 | 4.9 | IV, VI-VIII |
MIX dominant | No | MIX7 | S1–S4: 10–60% | S1–S2: 5–85% | S1–S5: 5–100% | 0.2–0.41 | 108–617 | −15–14 | −15.5–−8.7 | 6.3 | II, IV, V, VII- VIII-X |
MIX8 | S1–S4: 10–70% | S1–S4: 30–40% | S1–S5: 5–100% | 0.17–0.41 | 185–1104 | −22–13 | −15.7–−3.4 | 9.8 | IV, VII-VIII, X | ||
MIX9 | S1–S3: 5–95% | S1: 5–30% | S1–S5: 5–100% | 0.2–0.5 | 68–544 | −25–25 | −16.6–−11.1 | 16.1 | IV, VII-VIII-IX, XI | ||
Tisza | MIX10 | S1 and S2–S4: 65–100% | S1–S2: 35–100% | S2–S3 and S4–S5: 10–100% | 0.17–0.34 | 122–417 | −16–11 | −14.8–−11.6 | 12.6 | III-IV, VII-VIII, X, XII | |
Maros | MIX11 | S1–S3: 45–65% | S1–S2 and S3–S4: 15–35% | S1–S5: 5–100% | 0.22–0.3 | 265–548 | −9–7 | −14.5–−11.6 | 1.4 | IV, VIII |
Group of Data Considered | Model | R2 |
---|---|---|
All Data | TW = 1076.84 − 87.55 (QMakó/QSzeged) + 0.048 (ΔQ) − 12.96 (HMakó) | 0.63 |
MW = −750.23 + 0.25 (QMakó) – 0.09 (QSzeged) + 8.03 (STisza) − 52.94 (QMakó/QSzeged) +10.46 (HSzeged) | 0.62 | |
MIX = 24.06 + 97.93 (QMakó/QSzeged) − 6.93 (STisza) | 0.55 | |
Long. Ext. = −83357.44 + 1077.04 (HMakó) − 4.56 (ΔQ) + 940.93 (STisza) | 0.41 | |
Long. Ext. = 97.92 (MW) − 4.61 | 0.73 | |
Cluster I (QAlgyő: 747 m3/s; QMakó: 150 m3/s) | TW = 14784.38 + 13.12 (SMaros) − 190.83 (HMakó) + 0.18 (QSzeged) + 0.94 (QMakó) | 0.61 |
MW = 2658.90 + 0.44 (QMakó) − 33.99 (HMakó) | 0.61 | |
MIX = 23.42 + 99.45 (QMakó/Szeged) − 5.80 (STisza) | 0.40 | |
Long. Ext. = 1374.5 + 23.97 (QMakó) − 5976.38 (QMakó/QSzeged) − 3.40 (ΔQ) | 0.56 | |
Long. Ext. = 108.26 (MW) − 256.7 | 0.82 | |
Cluster II (QAlgyő: 747 m3/s; QMakó: 150 m3/s) | TW = 117.51 − 284.14 (QMakó/QSzeged) | 0.60 |
MW = 53.36 − 2.09 (ΔS) + 0.20 (QMakó) − 0.06 (QSzeged) | 0.70 | |
MIX = −865.36 − 0.06 (ΔQ) + 12.12 (HSzeged) | 0.40 | |
Long. Ext. = 996.37 + 11246.43 (QMakó/QSzeged) − 1.5 (ΔQ) | 0.53 | |
Long. Ext. = 82.605 (MW) + 526.24 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohsen, A.; Kovács, F.; Mezősi, G.; Kiss, T. Sediment Transport Dynamism in the Confluence Area of Two Rivers Transporting Mainly Suspended Sediment Based on Sentinel-2 Satellite Images. Water 2021, 13, 3132. https://doi.org/10.3390/w13213132
Mohsen A, Kovács F, Mezősi G, Kiss T. Sediment Transport Dynamism in the Confluence Area of Two Rivers Transporting Mainly Suspended Sediment Based on Sentinel-2 Satellite Images. Water. 2021; 13(21):3132. https://doi.org/10.3390/w13213132
Chicago/Turabian StyleMohsen, Ahmed, Ferenc Kovács, Gábor Mezősi, and Tímea Kiss. 2021. "Sediment Transport Dynamism in the Confluence Area of Two Rivers Transporting Mainly Suspended Sediment Based on Sentinel-2 Satellite Images" Water 13, no. 21: 3132. https://doi.org/10.3390/w13213132
APA StyleMohsen, A., Kovács, F., Mezősi, G., & Kiss, T. (2021). Sediment Transport Dynamism in the Confluence Area of Two Rivers Transporting Mainly Suspended Sediment Based on Sentinel-2 Satellite Images. Water, 13(21), 3132. https://doi.org/10.3390/w13213132