Application of a SWAT Model for Supporting a Ridge-to-Reef Framework in the Pago Watershed in Guam
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area and Data
2.2. Experimental Approach: Water Quality Test
2.3. Numerical Approach: SWAT Model
3. Results and Discussion
3.1. Water Quality Tests
3.2. SWAT Modeling
3.2.1. Model Performance and Sensitivity Analysis
3.2.2. Identification of Sediment and IDN Source Area
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartley, R.; Bainbridge, Z.T.; Lewis, S.E.; Kroon, F.J.; Wilkinson, S.N.; Brodie, J.E.; Silburn, D.M. Relating sediment impacts on coral reefs to watershed sources, processes and management: A review. Sci. Total Environ. 2014, 468, 1138–1153. [Google Scholar] [CrossRef] [PubMed]
- Golbuu, Y.; van Woesik, R.; Richmond, R.H.; Harrison, P.; Fabricius, K.E. River discharge reduces reef coral diversity in Palau. Mar. Pollut. Bull. 2011, 62, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Uthicke, S.; Patel, F.; Ditchburn, R. Elevated land runoff after European settlement perturbs persistent foraminiferal assemblages on the Great Barrier Reef. Ecology 2012, 93, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Wolanski, E.; Martinez, J.A.; Richmond, R.H. Quantifying the impact of watershed urbanization on a coral reef: Maunalua Bay, Hawaii. Estuar. Coast. Shelf Sci. 2009, 84, 259–268. [Google Scholar] [CrossRef]
- Comeros-Raynal, M.T.; Lawrence, A.; Sudek, M.; Vaeoso, M.; McGuire, K.; Regis, J.; Houk, P. Applying a ridge-to-reef framework to support watershed, water quality, and community-based fisheries management in American Samoa. Coral Reefs 2019, 38, 505–520. [Google Scholar] [CrossRef]
- Guam Coral Reef Initiative. Guam Coral Reef Resilience Strategy; Guam Coral Reef Initiative: Washington, DC, USA, 2018; p. 69. [Google Scholar]
- Smith, J.E.; Hunter, C.L.; Smith, C.M. The effects of top–down versus bottom–up control on benthic coral reef community structure. Oecologia 2010, 163, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Delevaux, J.; Winter, K.B.; Jupiter, S.D.; Blaich-Vaughan, M.; Stamoulis, K.A.; Bremer, L.L.; Burnett, K.; Garrod, P.; Troller, J.L.; Ticktin, T. Linking land and sea through collaborative research to inform contemporary applications of traditional resource management in Hawai’i. Sustainability 2018, 10, 3147. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.R.; Foo, S.A.; Asner, G.P. Land use impacts on coral reef health: A ridge-to-reef perspective. Front. Mar. Sci. 2019, 6, 562. [Google Scholar] [CrossRef]
- Delevaux, J.; Stamoulis, K. Assessment of Ridge-to-Reef Management; Seascape Solutions LLC: Portsmouth, NH, USA, 2020. [Google Scholar]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of SWAT model performance in simulating daily streamflow under rainfall data scarcity in Pacific island watersheds. Water 2018, 10, 1533. [Google Scholar] [CrossRef] [Green Version]
- Mukundan, R.; Hoang, L.; Gelda, R.K.; Yeo, M.-H.; Owens, E.M. Climate change impact on nutrient loading in a water supply watershed. J. Hydrol. 2020, 586, 124868. [Google Scholar] [CrossRef]
- Ricci, G.F.; De Girolamo, A.M.; Abdelwahab, O.M.; Gentile, F. Identifying sediment source areas in a Mediterranean watershed using the SWAT model. Land Degrad. Dev. 2018, 29, 1233–1248. [Google Scholar] [CrossRef]
- Betrie, G.D.; Mohamed, Y.A.; Griensven, A.V.; Srinivasan, R. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol. Earth Syst. Sci. 2011, 15, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Melaku, N.D.; Renschler, C.S.; Holzmann, H.; Strohmeier, S.; Bayu, W.; Zucca, C.; Ziadat, F.; Klik, A. Prediction of soil and water conservation structure impacts on runoff and erosion processes using SWAT model in the northern Ethiopian highlands. J. Soils Sedim. 2018, 18, 1743–1755. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Lu, C. Evaluation of land-use change effects on runoff and soil erosion of a hilly basin—The Yanhe River in the Chinese Loess Plateau. Land Degrad. Dev. 2018, 29, 1211–1221. [Google Scholar] [CrossRef]
- Paulay, G. Marine biodiversity of Guam and the Marianas: Overview. Micronesica 2003, 35, 3–25. [Google Scholar]
- Burdick, D.; Brown, V.; Asher, J.; Caballes, C.; Gawel, M.; Goldman, L.; Hall, A.; Kenyon, J.; Leberer, T.; Lundblad, E. Status of the Coral Reef Ecosystems of Guam; University of Guam Marine Laboratory: Mangilao, GU, USA, 2008. [Google Scholar]
- GVB. Annual Report: 2017; Guam Visitors Bureau: Tamuning, GU, USA, 2018; p. 65. [Google Scholar]
Sites | Latitude (°N) | Longitude (°N) | Elevation (m.a.s.l.) | |
---|---|---|---|---|
Water sampling | Site 1 | 13.436 | 144.747 | 17 |
Site 2 | 13.436 | 144.751 | 16 | |
Site 3 | 13.437 | 144.756 | 14 | |
Site 4 | 13.423 | 144.782 | 1 | |
Rain gages | Mount Chachao | 13.439 | 144.712 | 253 |
Umatac | 13.291 | 144.662 | 55 | |
Almagosa | 13.353 | 144.683 | 183 | |
Fena | 13.360 | 144.709 | 21 | |
Windward Hills | 13.377 | 144.738 | 111 | |
Mt. Santa Rosa | 13.536 | 144.914 | 253 | |
Geomag | 13.589 | 144.868 | 145 | |
Temperature | Antonio B. Won Pat Int. AP | 13.453 | 144.767 | 22 |
Land Uses | Area (ha) | Percent (%) |
---|---|---|
Range Grasses | 1162.88 | 49.68 |
Forest Evergreen | 972.71 | 41.55 |
Range Brush | 138.57 | 5.92 |
Wetlands Forested | 46.05 | 1.97 |
Residential Low Density | 20.60 | 0.88 |
Soils | Slope Condition | Area (ha) | Percent (%) |
---|---|---|---|
Agfayan-Akina association | extremely steep | 957.83 | 40.92 |
Agfayan-Akina-Rock outcrop association | extremely steep | 525.02 | 22.43 |
Akina-Badland complex | 15 to 30 percent slopes | 514.98 | 22.00 |
Akina-Badland complex | 7 to 15 percent slopes | 126.58 | 5.41 |
Pulantat clay | 30 to 60 percent slopes | 93.73 | 4.00 |
Inarajan clay | 0 to 4 percent slopes | 51.43 | 2.20 |
Sasalaguan clay | 7 to 15 percent slopes | 24.65 | 1.05 |
Ritidian-Rock outcrop complex | 15 to 60 percent slopes | 20.97 | 0.90 |
Pulantat clay | 7 to 15 percent slopes | 12.87 | 0.55 |
Akina-Atate silty clays | 7 to 15 percent slopes | 11.15 | 0.48 |
Togcha-Ylig complex | 3 to 7 percent slopes | 1.60 | 0.07 |
Parameter Name | Description | t-Stat | p-Value | Fitted Value | Range |
---|---|---|---|---|---|
V__CN2.mgt | SCS runoff curve number | −88.31 | 0.00 | 80.31 | 80.01–97.66 |
V__CH_K2.rte | Effective hydraulic conductivity in the main channel | 37.31 | 0.00 | 78.34 | 48.8–84.1 |
V__ALPHA_BF.gw | Baseflow alpha factor (days) | −14.76 | 0.00 | 0.32 | 0.31–0.46 |
R__SOL_K.sol | Saturated hydraulic conductivity | −3.25 | 0.00 | 0.43 | 0.18–0.61 |
V__SOL_AWC.sol | Soil water available capacity | 1.79 | 0.07 | 0.16 | 0.15–0.17 |
V__ESCO.hru | Soil evaporation compensation factor | −1.67 | 0.10 | 0.35 | 0.18–0.38 |
V__GW_DELAY.gw | Groundwater delay (days) | 1.65 | 0.10 | 459 | 419–478 |
V__GWQMN.gw | Minimum depth for ground water flow occurrence (mm) | 1.62 | 0.11 | 1275 | 1233–1308 |
V__CH_N2.rte | Channel Manning’s roughness coefficient | 0.98 | 0.33 | 0.17 | 0.16–0.19 |
R__SOL_BD.sol | Moist bulk density | −0.95 | 0.34 | 0.01 | −0.05–0.02 |
V__GW_REVAP.gw | Groundwater revap coefficient | 0.72 | 0.47 | 0.05 | 0.04–0.05 |
V__EPCO.bsn | Plant transpiration compensation factor | −0.69 | 0.49 | 0.92 | 0.88–0.94 |
R__OV_N.hru | Manning’s “n” value for overland flow | 0.35 | 0.73 | 0.09 | 0.07–0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, M.-H.; Chang, A.; Pangelinan, J. Application of a SWAT Model for Supporting a Ridge-to-Reef Framework in the Pago Watershed in Guam. Water 2021, 13, 3351. https://doi.org/10.3390/w13233351
Yeo M-H, Chang A, Pangelinan J. Application of a SWAT Model for Supporting a Ridge-to-Reef Framework in the Pago Watershed in Guam. Water. 2021; 13(23):3351. https://doi.org/10.3390/w13233351
Chicago/Turabian StyleYeo, Myeong-Ho, Adriana Chang, and James Pangelinan. 2021. "Application of a SWAT Model for Supporting a Ridge-to-Reef Framework in the Pago Watershed in Guam" Water 13, no. 23: 3351. https://doi.org/10.3390/w13233351
APA StyleYeo, M. -H., Chang, A., & Pangelinan, J. (2021). Application of a SWAT Model for Supporting a Ridge-to-Reef Framework in the Pago Watershed in Guam. Water, 13(23), 3351. https://doi.org/10.3390/w13233351