A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia
Abstract
:1. Introduction
2. Study Basins and Data
2.1. Study Basins
2.2. Data
2.3. Climate Change Scenarios
3. Methods
Hydrological Model
4. Results
4.1. Assessment of the Model’s Performance
4.2. Impact of Climate Change on Runoff
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blauhut, V.; Stahl, K.; Stagge, J.H.; Tallaksen, L.M.; De Stefano, L.; Vogt, J. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 2016, 20, 2770–2800. [Google Scholar] [CrossRef] [Green Version]
- Freire-González, J.; Decker, C.; Hall, J.W. The economic impacts of droughts: A framework for analysis. Ecol. Econ. Manag. 2017, 132, 196–204. [Google Scholar] [CrossRef]
- Rončák, P.; Hlavčová, K.; Kohnová, S.; Szolgay, J. Impacts of Future Climate Change on Runoff in Selected Catchments of Slovakia. In Climate Change Adaptation in Eastern Europe; Leal Filho, W., Trbic, G., Filipovic, D., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Hlavčová, K.; Lapin, M.; Valent, P.; Szolgay, J.; Kohnová, S.; Rončák, P. Estimation of the impact of climate change-induced extreme precipitation events on floods. Contrib. Geophys. Geod. 2015, 45, 173–192. [Google Scholar] [CrossRef] [Green Version]
- Kohnová, S.; Rončák, P.; Hlavčová, K.; Szolgay, J.; Rutkowska, A. Future impacts of land use and climate change on extreme runoff values in selected catchments of Slovakia. Meteorol. Hydrol. Water Manag. 2019, 7, 47–55. [Google Scholar] [CrossRef]
- Ďurigová, M.; Ballová, D.; Hlavčová, K. Analyses of Monthly Discharges in Slovakia Using Hydrological Exploratory Methods and Statistical Methods. Slovak J. Civ. Eng. 2019, 27, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Ďurigová, M.; Hlavčová, K.; Poórová, J. Detection of Changes in Hydrological Time Series during Recent Decades. Slovak J. Civ. Eng. 2020, 28, 56–62. [Google Scholar] [CrossRef]
- Rončák, P.; Vitková, J.; Šurda, P. The components of water balance in changing climate in future horizons in Slovakia. Int. Multidiscip. Sci. Geoconf. SGEM 2019, 19, 545–552. [Google Scholar] [CrossRef]
- Rončák, P.; Šurda, P.; Vitková, J. Analysis of a Topsoil Moisture Regime Through an Effective Precipitation Index for the Locality of Nitra, Slovakia. Slovak J. Civ. Eng. 2021, 29, 9–14. [Google Scholar] [CrossRef]
- Sleziak, P.; Szolgay, J.; Hlavčová, K.; Parajka, J. The Impact of the Variability of Precipitation and Temperatures on the Efficiency of a Conceptual Rainfall-Runoff Model. Slovak J. Civ. Eng. 2016, 24, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sleziak, P.; Szolgay, J.; Hlavčová, K.; Duethmann, D.; Parajka, J.; Danko, M. Factors controlling alterations in the performance of a runoff model in changing climate conditions. J. Hydrol. Hydromech. 2018, 66, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, M.; Sleziak, P.; Hlavčová, K. Parameterization of the rainfall-runoff model in changing climate. Pollack Period. 2021, 16, 64–69. [Google Scholar] [CrossRef]
- Hlavčová, K.; Szolgay, J.; Kohnová, S.; Bálint, G. Hydrological scenarios of future seasonal runoff distribution in Central Slovakia. Earth Environ. Sci. 2008, 4, 012022. [Google Scholar] [CrossRef]
- Štefunková, Z.; Hlavčová, K.; Lapin, M. Runoff change scenarios based on regional climate change projections in mountainous basins in Slovakia. Contrib. Geophys. Geod. 2013, 43, 327–350. [Google Scholar] [CrossRef] [Green Version]
- Rončák, P.; Hlavčová, K.; Látková, T. Estimation of the effect of changes in forest associations on runoff processes in basins: Case study in the Hron and Topla river basins. Slovak J. Civ. Eng. 2016, 24, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rončák, P.; Šurda, P.; Vitková, J. The impact of climate change on the hydropower potential: A case study from Topľa river basin. Acta Hydrol. Slovaca 2021, 22, 22–29. [Google Scholar] [CrossRef]
- Huntington, T.G. Climate warming could reduce runoff significantly in New England, USA. Agric. For. Meteorol. 2003, 117, 193–201. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhang, J.Y.; Xuan, Y.Q.; Liu, J.F.; Jin, J.L.; Bao, Z.X.; He, R.M.; Liu, C.S.; Liu, Y.L.; Yan, X.L. Simulating the Impact of Climate Change on Runoff in a Typical River Catchment of the Loess Plateau, China. J. Hydrometeorol. 2013, 14, 1553–1561. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE 2013, 8, e71297. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; et al. Comparing impacts of climate change on streamflow in four large African river basins. Hydrol. Earth Syst. Sci. 2014, 18, 1305–1321. [Google Scholar] [CrossRef] [Green Version]
- Vano, J.A.; Nijssen, B.; Lettenmaier, D.P. Seasonal hydrologic responses to climate change in the Pacific Northwest. Water Resour. Res. 2015, 51, 1959–1976. [Google Scholar] [CrossRef]
- Wu, Z.; Xiao, H.; Lu, G.; Chen, J. Assessment of Climate Change Effects on Water Resources in the Yellow River Basin, China. Adv. Meteorol. 2015, 2015, 816532. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Dile, Y.T.; Ayana, E.K.; Jeong, J.; Adem, A.A.; Gerik, T. Impact of climate change on streamflow hydrology in headwater catchments of the upper Blue Nile Basin, Ethiopia. Water 2018, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Shahvari, N.; Khalilian, S.; Mosavi, S.H.; Mortazavi, S.A. Assessing climate change impacts on water resources and crop yield: A case study of Varamin plain basin, Iran. Environ. Monit. Assess. 2019, 191, 134. Available online: https://link.springer.com/article/10.1007/s10661-019-7266-x (accessed on 23 October 2021). [CrossRef]
- Vyshnevskyi, V.I.; Donich, O.A. Climate change in the Ukrainian Carpathians and its possible impact on river runoff. Acta Hydrol. Slovaca 2021, 22, 3–14. [Google Scholar] [CrossRef]
- Lapin, M.; Bašták, I.; Gera, M.; Hrvoľ, J.; Kremler, M.; Melo, M. New climate change scenarios for Slovakia based on global and regional general circulation models. Acta Meteorol. Univ. Comen. 2012, 37, 25–74. [Google Scholar]
- Valent, P.; Výleta, R. Calculating areal rainfall using a more efficient IDW interpolation algorithm. Int. J. Eng. Res. Sci. 2015, 1, 9–17. [Google Scholar]
- Parajka, J.; Merz, R.; Blöschl, G. A comparison of regionalisation methods for catchment model parameters. Hydrol. Earth Syst. Sci. 2005, 9, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Merz, R.; Blöschl, G. Uncertainty and multiple objective calibration in regional water balance modelling: Case study in 320 Austrian catchments. Hydrol. Process. 2007, 21, 435–446. [Google Scholar] [CrossRef]
- Bergström, S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments. Bulletin Series A; Department of Water Resources Engineering, Lund Institute of Technology/University of Lund: Lund, Sweden; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 1976; p. 52. [Google Scholar]
- Bergström, S.; Lindström, G. Interpretation of runoff processes in hydrological modelling—Experience from the HBV approach. Hydrol. Process. 2015, 29, 3535–3545. [Google Scholar] [CrossRef]
- Merz, R.; Parajka, J.; Bloschl, G. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resour. Res. 2011, 47, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Valent, P.; Daneková, J.; Riverso, C. Uncertainties in the HBV model calibration. Acta Hydrol. Slovaca 2011, 12, 360–367. [Google Scholar]
- Sleziak, P.; Szolgay, J.; Hlavčová, K.; Danko, M.; Parajka, J. The effect of the snow weighting on the temporal stability of hydrologic model efficiency and parameters. J. Hydrol. 2020, 583, 124639. [Google Scholar] [CrossRef]
- Széles, B.; Parajka, J.; Hogan, P.; Silasari, R.; Pavlin, L.; Strauss, P.; Blöschl, G. Stepwise prediction of runoff using proxy data in a small agricultural catchment. J. Hydrol. Hydromech. 2021, 69, 65–75. [Google Scholar] [CrossRef]
- Ardia, D.; Boudt, K.; Carl, P.; Mullen, K.M.; Peterson, B.G. Differential evolution with DEoptim: An application to non-convex portfolio optimization. R J. 2010, 3, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Mullen, K.; Ardia, D.; Gil, D.; Windover, D.; Cline, J. DEoptim: An R Package for Global Optimization by Differential Evolution. J. Stat. Softw. 2011, 40, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Klemeš, V. Operational testing of hydrological simulation models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Liersch, S.; Tecklenburg, J.; Rust, H.; Dobler, A.; Fischer, M.; Kruschke, T.; Koch, H.; Hattermann, F.F. Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile. Hydrol. Earth Syst. Sci. 2018, 22, 2163–2185. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, J.L., Jr.; Tomasella, J.; Rodriguez, D.A. Impacts of Future Climatic and Land Cover Changes on the Hydrological Regime of the Madeira River Basin. Clim. Chang. 2015, 129, 117–129. [Google Scholar] [CrossRef]
- Montenegro, S.; Ragab, R. Impact of Possible Climate and Land Use Changes in the Semiarid Regions: A Case Study from North Eastern Brazil. J. Hydrol. 2012, 434, 55–68. [Google Scholar] [CrossRef]
- Elshamy, M.E.; Seierstad, I.A.; Sorteberg, A. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrol. Earth Syst. Sci. 2009, 13, 551–565. [Google Scholar] [CrossRef] [Green Version]
Number | River | Gauging Station | Area (km2) | Min. Elevation | Max. Elevation | Mean Elevation |
---|---|---|---|---|---|---|
1 | Laborec | Humenné | 1272.40 | 166 | 917 | 421.7 |
2 | Myjava | Jablonica | 238.45 | 206 | 792 | 361.7 |
3 | Nitra | Nitrianska Streda | 2093.71 | 175 | 1179 | 419.5 |
4 | Topľa | Hanušovce nad Topľou | 1050.05 | 163 | 1077 | 435.4 |
5 | Hron | Banská Bystrica | 1766.48 | 332 | 2030 | 844.4 |
6 | Poprad | Chmeľnica | 1262.41 | 510 | 2489 | 878.1 |
7 | Turiec | Martin | 827.00 | 403 | 1456 | 716.0 |
8 | Váh | Liptovský Mikuláš | 1107.21 | 568 | 2387 | 1090.1 |
(a) | ||||||||||||
Climatic | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2019 | ||||||||
characteristics | 25% | 50% | 75% | 25% | 50% | 75% | 25% | 50% | 75% | 25% | 50% | 75% |
T (°C) | 7.4 | 7.8 | 8.4 | 7.5 | 8.2 | 8.8 | 8.0 | 8.6 | 9.1 | 8.8 | 9.4 | 10.1 |
P (mm/year) | 577 | 657 | 731 | 656 | 688 | 724 | 659 | 750 | 842 | 587 | 661 | 736 |
Q (mm/year) | 174 | 219 | 252 | 177 | 206 | 244 | 169 | 232 | 270 | 158 | 184 | 201 |
(b) | ||||||||||||
Climatic | 1981–1990 | 1991–2000 | 2001–2010 | 2011–2019 | ||||||||
characteristics | 25% | 50% | 75% | 25% | 50% | 75% | 25% | 50% | 75% | 25% | 50% | 75% |
T (°C) | 5.1 | 5.6 | 6.2 | 5.4 | 6 | 6.5 | 5.9 | 6.3 | 6.8 | 6.7 | 7.2 | 7.7 |
P (mm/year) | 711 | 794 | 863 | 764 | 833 | 877 | 830 | 899 | 965 | 757 | 847 | 939 |
Q (mm/year) | 334 | 368 | 405 | 358 | 393 | 473 | 362 | 422 | 469 | 333 | 382 | 434 |
(a) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P (mm) | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |
KNMI | 1981–2010 | 46 | 42 | 44 | 52 | 77 | 86 | 90 | 77 | 68 | 48 | 56 | 54 |
2011–2040 | 39 | 43 | 40 | 44 | 72 | 93 | 76 | 73 | 95 | 50 | 55 | 70 | |
2041–2070 | 47 | 45 | 51 | 65 | 76 | 87 | 73 | 73 | 82 | 61 | 55 | 77 | |
2071–2100 | 57 | 55 | 60 | 60 | 69 | 63 | 68 | 76 | 102 | 62 | 59 | 80 | |
MPI | 1981–2010 | 46 | 43 | 43 | 52 | 78 | 86 | 91 | 73 | 66 | 50 | 55 | 54 |
2011–2040 | 46 | 51 | 43 | 48 | 74 | 94 | 81 | 79 | 86 | 49 | 55 | 67 | |
2041–2070 | 51 | 43 | 54 | 67 | 69 | 94 | 80 | 72 | 79 | 59 | 50 | 75 | |
2071–2100 | 58 | 54 | 62 | 64 | 70 | 78 | 66 | 70 | 82 | 61 | 59 | 69 | |
T (°C) | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |
KNMI | 1981–2010 | −2.6 | −1.2 | 3.1 | 8.7 | 14.0 | 16.7 | 18.6 | 18.0 | 13.4 | 8.5 | 3.2 | −1.3 |
2011–2040 | −2.7 | −0.2 | 4.1 | 9.3 | 14.9 | 17.7 | 19.7 | 19.0 | 14.4 | 10.0 | 3.8 | −1.1 | |
2041–2070 | −1.3 | 1.6 | 4.6 | 10.0 | 15.5 | 18.8 | 20.6 | 20.0 | 15.0 | 10.4 | 4.7 | 0.6 | |
2071–2100 | 0.2 | 1.8 | 5.5 | 10.6 | 16.7 | 20.3 | 22.5 | 21.3 | 15.9 | 11.5 | 6.4 | 2.1 | |
MPI | 1981–2010 | −2.7 | −1.3 | 2.9 | 8.5 | 13.7 | 16.4 | 18.4 | 17.2 | 13.2 | 8.3 | 3.1 | −1.4 |
2011–2040 | −2.6 | −0.4 | 3.2 | 8.8 | 14.4 | 17.3 | 19.2 | 18.3 | 14.1 | 9.8 | 4.0 | −1.1 | |
2041–2070 | −0.8 | 1.8 | 4.4 | 9.5 | 15.0 | 17.9 | 20.0 | 19.4 | 14.9 | 10.2 | 4.9 | 0.3 | |
2071–2100 | 0.6 | 2.4 | 5.2 | 10.1 | 15.9 | 19.4 | 21.4 | 20.7 | 16.3 | 11.6 | 6.6 | 2.1 | |
(b) | |||||||||||||
P (mm) | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |
KNMI | 1981–2010 | 49 | 45 | 54 | 57 | 91 | 97 | 107 | 85 | 73 | 54 | 64 | 56 |
2011–2040 | 44 | 45 | 51 | 50 | 83 | 99 | 87 | 89 | 104 | 55 | 64 | 76 | |
2041–2070 | 51 | 49 | 62 | 71 | 90 | 87 | 88 | 89 | 87 | 66 | 63 | 80 | |
2071–2100 | 62 | 61 | 75 | 65 | 73 | 67 | 74 | 83 | 109 | 70 | 67 | 84 | |
MPI | 1981–2010 | 50 | 45 | 52 | 58 | 93 | 97 | 106 | 82 | 73 | 57 | 64 | 56 |
2011–2040 | 49 | 51 | 53 | 52 | 84 | 118 | 106 | 84 | 90 | 53 | 66 | 69 | |
2041–2070 | 56 | 48 | 67 | 76 | 82 | 110 | 97 | 81 | 85 | 66 | 60 | 76 | |
2071–2100 | 64 | 59 | 74 | 72 | 80 | 97 | 87 | 84 | 95 | 72 | 71 | 72 | |
T (°C) | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |
KNMI | 1981–2010 | −3.9 | −3.1 | 0.6 | 5.8 | 11.2 | 13.9 | 15.9 | 15.3 | 11.0 | 6.4 | 1.3 | −2.9 |
2011–2040 | −3.9 | −2.1 | 1.6 | 6.4 | 12.2 | 15.0 | 16.9 | 16.4 | 11.9 | 8.0 | 1.8 | −2.8 | |
2041–2070 | −2.6 | −0.2 | 2.0 | 7.1 | 12.9 | 16.0 | 17.9 | 17.4 | 12.5 | 8.4 | 2.8 | −1.1 | |
2071–2100 | −1.2 | −0.1 | 3.0 | 7.7 | 14.0 | 17.5 | 19.8 | 18.8 | 13.4 | 9.5 | 4.5 | 0.5 | |
MPI | 1981–2010 | −3.9 | −3.0 | 0.6 | 5.8 | 11.2 | 13.9 | 15.9 | 15.3 | 11.0 | 6.4 | 1.3 | −2.9 |
2011–2040 | −3.8 | −2.1 | 1.0 | 6.2 | 11.9 | 14.8 | 16.7 | 16.4 | 11.9 | 7.9 | 2.2 | −2.7 | |
2041–2070 | −2.1 | 0.1 | 2.0 | 6.9 | 12.6 | 15.3 | 17.6 | 17.6 | 12.7 | 8.3 | 3.2 | −1.3 | |
2071–2100 | −0.8 | 0.5 | 2.7 | 7.5 | 13.5 | 17.0 | 18.9 | 18.9 | 14.1 | 9.7 | 4.7 | 0.6 |
Parameter Name | Routine | Unit | Range |
---|---|---|---|
Snow correction factor (SCF) | Snow | - | 0.9–1.5 |
Degree-day factor (DDF) | Snow | mm/°C day | 0–5 |
Rain threshold temperature (Tr) | Snow | °C | 1–3 |
Snow threshold temperature (Ts) | Snow | °C | −3–1 |
Melt temperature (Tm) | Snow | °C | −2–2 |
Limit of potential evapotranspiration (Lprat) | Soil | day | 0–l |
Maximum soil moisture storage (FC) | Soil | mm | 0–600 |
Nonlinearity parameter (BETA) | Soil | - | 0–20 |
Very fast storage coefficient (k0) | Runoff | days | 0–2 |
Fast storage coefficient (k1) | Runoff | days | 2–30 |
Slow storage coefficient (k2) | Runoff | days | 30–250 |
Upper storage coefficient (Lsuz) | Runoff | mm | 1–100 |
Percolation rate (Cperc) | Runoff | mm/day | 0–8 |
Maximum base parameter (Bmax) | Runoff | days | 0–30 |
Free scaling parameter (Croute) | Runoff | day2/mm | 0–50 |
Parameter Name | Laborec | Myjava | Nitra | Topľa | Hron | Poprad | Turiec | Váh |
---|---|---|---|---|---|---|---|---|
SCF (−) | 1.05 | 0.90 | 1.03 | 1.14 | 0.98 | 0.90 | 1.10 | 1.20 |
DDF (mm/°C day) | 0.94 | 4.12 | 0.84 | 2.63 | 1.19 | 1.08 | 1.29 | 1.07 |
Tr (°C) | 1.03 | 2.93 | 1.61 | 1.80 | 1.04 | 1.96 | 2.69 | 1.69 |
Ts (°C) | −3.00 | −2.39 | −0.09 | −2.94 | −2.97 | −2.37 | −2.90 | −3.00 |
Tm (°C) | −1.13 | 1.29 | −1.00 | 1.41 | −0.45 | −1.33 | −0.79 | 1.60 |
Lprat (day) | 0.63 | 0.83 | 0.79 | 0.58 | 0.87 | 0.86 | 0.61 | 1.00 |
FC (mm) | 241.56 | 267.15 | 218.28 | 239.24 | 317.36 | 365.04 | 175.40 | 132.23 |
BETA (−) | 2.83 | 3.27 | 2.21 | 2.18 | 2.65 | 2.57 | 1.37 | 0.88 |
k0 (days) | 0.38 | 0.75 | 0.21 | 0.29 | 0.22 | 1.07 | 0.50 | 0.23 |
k1 (days) | 7.72 | 15.13 | 17.19 | 6.63 | 21.66 | 6.07 | 13.06 | 18.03 |
k2 (days) | 83.87 | 84.28 | 102.70 | 87.15 | 97.57 | 30.57 | 74.67 | 228.83 |
Lsuz (mm) | 5.34 | 99.52 | 6.73 | 5.44 | 28.80 | 9.79 | 92.85 | 42.29 |
Cperc (mm/day) | 0.25 | 0.12 | 0.30 | 0.32 | 0.55 | 1.40 | 0.98 | 0.99 |
Bmax (days) | 3.59 | 1.77 | 2.76 | 3.81 | 1.48 | 3.55 | 6.63 | 25.41 |
Croute (day2/mm) | 0.16 | 31.31 | 0.18 | 0.27 | 27.31 | 0.07 | 32.56 | 37.12 |
(a) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Runoff (mm/month) | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
Laborec | 1981–2010 | 24 | 34 | 46 | 36 | 24 | 19 | 15 | 15 | 15 | 14 | 19 | 24 | |
KNMI | 2011–2040 | 15 | 25 | −18 | −30 | −14 | −20 | 18 | −25 | 33 | 25 | 3 | 38 | |
2041–2070 | 51 | 23 | −12 | 2 | 4 | 11 | −11 | −37 | 18 | 32 | −27 | 47 | ||
2071–2100 | 72 | 39 | −1 | 2 | −18 | −38 | −10 | −42 | 19 | 30 | 7 | 76 | ||
1981–2010 | 23 | 29 | 50 | 49 | 26 | 19 | 15 | 13 | 15 | 16 | 17 | 21 | ||
MPI | 2011–2040 | −1 | 36 | −8 | −8 | −12 | −20 | −6 | −4 | 8 | 9 | 9 | 33 | |
2041–2070 | 52 | 36 | −45 | −45 | −37 | −13 | −22 | −39 | −13 | 16 | −5 | 54 | ||
2071–2100 | 76 | 46 | −1 | −3 | −4 | −38 | −37 | −39 | −29 | −3 | 18 | 56 | ||
Myjava | 1981–2010 | 18 | 22 | 36 | 29 | 19 | 17 | 13 | 10 | 8 | 9 | 10 | 16 | |
KNMI | 2011–2040 | 44 | 21 | −3 | −15 | −4 | −25 | −17 | −35 | 25 | 12 | 0 | 44 | |
2041–2070 | 79 | 30 | 10 | 15 | 31 | −13 | −42 | −38 | 15 | 22 | 7 | 71 | ||
2071–2100 | 111 | 67 | 20 | 29 | 0 | −32 | −56 | −52 | −6 | 26 | 30 | 99 | ||
1981–2010 | 15 | 20 | 38 | 34 | 21 | 17 | 12 | 8 | 6 | 8 | 9 | 13 | ||
MPI | 2011–2040 | 29 | 56 | 5 | 16 | 1 | −8 | 1 | 6 | 109 | 63 | 20 | 45 | |
2041–2070 | 83 | 47 | −5 | 4 | 7 | −17 | −26 | −36 | −18 | −7 | −10 | 66 | ||
2071–2100 | 125 | 74 | 9 | 7 | −6 | −14 | −30 | −32 | 1 | 21 | 36 | 85 | ||
Nitra | 1981–2010 | 25 | 30 | 42 | 31 | 22 | 21 | 16 | 14 | 11 | 14 | 16 | 22 | |
KNMI | 2011–2040 | 27 | 14 | −10 | −11 | 2 | −25 | −17 | −23 | 28 | 5 | 2 | 54 | |
2041–2070 | 63 | 20 | 8 | 19 | 31 | −17 | −29 | −12 | 27 | 17 | −8 | 62 | ||
2071–2100 | 88 | 50 | 13 | 36 | −4 | −33 | −43 | −30 | 14 | 21 | 20 | 94 | ||
MPI | 1981–2010 | 23 | 30 | 43 | 37 | 23 | 20 | 16 | 12 | 11 | 13 | 14 | 20 | |
2011–2040 | 22 | 35 | 8 | 6 | −1 | −6 | 5 | −5 | 54 | 32 | 14 | 46 | ||
2041–2070 | 65 | 28 | 2 | 9 | 6 | −12 | −26 | −14 | −1 | 12 | −7 | 54 | ||
2071–2100 | 78 | 41 | 4 | 11 | −9 | −23 | −25 | −21 | 8 | 37 | 29 | 70 | ||
Topľa | 1981–2010 | 8 | 13 | 37 | 32 | 22 | 22 | 17 | 17 | 11 | 9 | 10 | 9 | |
KNMI | 2011–2040 | 30 | 54 | −30 | −33 | −8 | −25 | 10 | −28 | 74 | 34 | −3 | 33 | |
2041–2070 | 90 | 82 | −32 | −2 | 2 | −15 | −17 | −38 | 16 | 47 | −9 | 51 | ||
2071–2100 | 219 | 117 | −10 | 0 | −15 | −41 | −28 | −52 | 53 | 69 | 15 | 130 | ||
1981–2010 | 8 | 13 | 35 | 37 | 23 | 19 | 16 | 14 | 12 | 10 | 9 | 8 | ||
MPI | 2011–2040 | −2 | 52 | −13 | −9 | −12 | 2 | −1 | −4 | 4 | 5 | 4 | 21 | |
2041–2070 | 69 | 109 | −10 | −4 | 0 | 5 | −17 | −16 | 27 | 29 | 6 | 71 | ||
2071–2100 | 141 | 102 | −4 | −13 | 8 | −32 | −37 | −25 | −17 | 14 | 11 | 77 | ||
(b) | ||||||||||||||
Runoff (mm/month) | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
Hron | 1981–2010 | 24 | 25 | 50 | 55 | 43 | 42 | 32 | 28 | 21 | 23 | 25 | 26 | |
KNMI | 2011–2040 | 38 | 51 | −7 | −17 | −9 | −23 | −7 | −19 | 22 | 12 | −3 | 48 | |
2041–2070 | 78 | 70 | 8 | −2 | 7 | −19 | −24 | −23 | 2 | 10 | −12 | 45 | ||
2071–2100 | 104 | 96 | 22 | 6 | −18 | −37 | −38 | −38 | −8 | 2 | 1 | 78 | ||
1981–2010 | 20 | 21 | 42 | 68 | 52 | 42 | 33 | 26 | 21 | 21 | 22 | 22 | ||
MPI | 2011–2040 | 12 | 38 | 20 | −1 | −15 | 0 | 12 | −2 | 21 | 18 | 18 | 44 | |
2041–2070 | 71 | 105 | 32 | −5 | −9 | −6 | −12 | −20 | −8 | 7 | −2 | 45 | ||
2071–2100 | 122 | 113 | 39 | 1 | −19 | −18 | −20 | −29 | −11 | 27 | 27 | 82 | ||
Poprad | 1981–2010 | 13 | 14 | 32 | 37 | 37 | 41 | 37 | 33 | 23 | 19 | 16 | 14 | |
KNMI | 2011–2040 | 30 | 43 | −15 | −22 | −10 | −21 | −8 | −18 | 37 | 23 | 0 | 27 | |
2041–2070 | 63 | 64 | −7 | 5 | 3 | −20 | −29 | −23 | 3 | 20 | −10 | 30 | ||
2071–2100 | 115 | 98 | 19 | 13 | −13 | −43 | −42 | −50 | −1 | 16 | 4 | 61 | ||
1981–2010 | 12 | 14 | 29 | 41 | 39 | 39 | 36 | 32 | 25 | 19 | 15 | 13 | ||
MPI | 2011–2040 | 2 | 31 | −4 | −7 | −10 | 17 | 9 | 0 | 15 | 8 | 4 | 18 | |
2041–2070 | 61 | 75 | 10 | 9 | 2 | 8 | −8 | −10 | 7 | 14 | 8 | 46 | ||
2071–2100 | 104 | 98 | 32 | 6 | −1 | −19 | −24 | −20 | −8 | 20 | 14 | 64 | ||
Turiec | 1981–2010 | 31 | 36 | 59 | 53 | 36 | 32 | 29 | 27 | 23 | 25 | 26 | 30 | |
KNMI | 2011–2040 | 31 | 42 | −9 | −18 | −5 | −15 | −9 | −22 | 21 | 8 | 2 | 44 | |
2041–2070 | 70 | 43 | 2 | −2 | 11 | −5 | −17 | −13 | 9 | 11 | −3 | 57 | ||
2071–2100 | 101 | 63 | 11 | 11 | −10 | −22 | −31 | −31 | 5 | 11 | 18 | 85 | ||
1981–2010 | 26 | 30 | 56 | 66 | 43 | 31 | 28 | 25 | 23 | 23 | 24 | 26 | ||
MPI | 2011–2040 | 3 | 36 | 9 | 3 | −11 | 4 | 11 | −3 | 24 | 17 | 15 | 28 | |
2041–2070 | 60 | 77 | 11 | −8 | −7 | 5 | −7 | −10 | 0 | 11 | 3 | 45 | ||
2071–2100 | 98 | 69 | 11 | −4 | −14 | −6 | −12 | −20 | −2 | 40 | 25 | 61 | ||
Váh | 1981–2010 | 25 | 22 | 30 | 65 | 103 | 63 | 52 | 47 | 39 | 38 | 35 | 30 | |
KNMI | 2011–2040 | 14 | 17 | 24 | 9 | −24 | −20 | −7 | −7 | 33 | 17 | 3 | 26 | |
2041–2070 | 50 | 68 | 63 | 19 | −31 | −26 | −22 | −7 | 12 | 18 | 1 | 41 | ||
2071–2100 | 71 | 102 | 103 | 31 | −51 | −39 | −29 | −24 | 14 | 22 | 16 | 64 | ||
1981–2010 | 22 | 19 | 26 | 65 | 125 | 71 | 50 | 43 | 38 | 36 | 31 | 25 | ||
MPI | 2011–2040 | 8 | 17 | 19 | 6 | −11 | −3 | 14 | −1 | 17 | 10 | 11 | 25 | |
2041–2070 | 42 | 68 | 69 | 27 | −19 | −17 | −2 | −8 | 7 | 18 | 13 | 48 | ||
2071–2100 | 81 | 103 | 104 | 30 | −35 | −30 | −13 | −11 | 10 | 43 | 38 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sleziak, P.; Výleta, R.; Hlavčová, K.; Danáčová, M.; Aleksić, M.; Szolgay, J.; Kohnová, S. A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia. Water 2021, 13, 3358. https://doi.org/10.3390/w13233358
Sleziak P, Výleta R, Hlavčová K, Danáčová M, Aleksić M, Szolgay J, Kohnová S. A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia. Water. 2021; 13(23):3358. https://doi.org/10.3390/w13233358
Chicago/Turabian StyleSleziak, Patrik, Roman Výleta, Kamila Hlavčová, Michaela Danáčová, Milica Aleksić, Ján Szolgay, and Silvia Kohnová. 2021. "A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia" Water 13, no. 23: 3358. https://doi.org/10.3390/w13233358
APA StyleSleziak, P., Výleta, R., Hlavčová, K., Danáčová, M., Aleksić, M., Szolgay, J., & Kohnová, S. (2021). A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia. Water, 13(23), 3358. https://doi.org/10.3390/w13233358