Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Permeate Quality–Cost Ratio
- -
- tm is the age of the membrane
- -
- Prealb is the real power of the pump
- -
- Pb is the theoretical power of the pump (in Watts; 1 Hp = 745.7 W)
- -
- ρ is the density of the fluid (1000 kg/m3 in the case of water)
- -
- g is the acceleration of gravity (generally adopted: 9.81 m/s2)
- -
- η is the performance of the pump
- -
- Q is the flow rate (m3/s)
- -
- hb is the pump head (m)
2.2. Energy Consumption
- 2.61 kWh/m3 if there are isobaric chambers (ERI, DWEER, etc.)
- 3.04 kWh/m3 if a pelton turbine or similar is available
- 3.50 kWh/m3 with francis or other turbine type systems
- ETc = ERn + ENRn + ELR being
- ETc: Total energy consumed of the system
- ERn: Renewable energy from the net
- ENRn: Non-renewable energy from the net
- ELR: Local renewable energy
2.3. CO2 Emission Factor (Mix Factor)
- FM: Emission Factor of the Electric Mix (tCO2/kWh)
- FMmd: Motor Diesel Factor Mix (tCO2/kWh)
- FMtg: Gas Turbine Factor Mix (tCO2/kWh)
- FMtv: Vapor Turbine Factor Mix (tCO2/kWh)
- FMcc: Combined Cicle Factor Mix (tCO2/kWh)
- RE: Energy efficiency (kWh/m3)
- HCMIX: Carbon Footprint of the energetic Mix (tCO2)
- E1tMIX: Actual Energy of the energetic Mix technologies (kWh)
- E2tMIX: Future Energy of the energetic Mix technologies (kWh)
- Ei: Energy of each technology (kWh)
- Pt: Percentage of use of each technology in the energetic Mix
2.4. Ecological Footprint
- I2A: Enviroment impact (tCO2/m3)
- HCa: Carbon footprint (tCO2/year)
- HCd: Carbon footprint (tCO2/day)
- HE: Ecological footprint (ha/year)
2.5. Analysis per Specific Number of Inhabitants
- Ne: Specific number of inhabitants
- Nhab: Number of inhabitants
- Ni: Lower than average number of inhabitants
- Ns: Number of inhabitants above averagee
3. Results and Discussion
- hRE = number of habitants or persons in the region
- hPR = number of habitants or persons in the province
- hMU = number of habitants or persons in the municipality
- hPA = number of habitants or persons in the country
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tal, A. Addressing Desalination’s Carbon Footprint: The Israeli Experience. Water 2018, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Garcia, A.; De la Nuez, I. Feed Spacer Geometries and Permeability Coefficients. Effect on the Performance in BWRO Spriral-Wound Membrane Modules. Water 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Sadhwani, J.J.; Veza, J.M. Desalination and energy consumption in Canary Islands. Desalination 2008, 221, 143–150. [Google Scholar] [CrossRef]
- Shihong, L. Energy Efficiency of Desalination: Fundamental Insights from Intuitive Interpretation. Environ. Sci. Technol. 2020, 54, 76–84. [Google Scholar]
- Schallenberg-Rodriguez, J.; Veza, J.M. A Blanco-Marigorta. Energy efficiency and desalination in the Canary Islands. Renew. Sustain. Energy Rev. 2014, 40, 741–748. [Google Scholar] [CrossRef]
- Kurihara, M.; Takeuchi, H. SWRO-PRO System in “Mega-ton Water System” for Energy Reduction and Low Environmental Impact. Water 2018, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Davenport, D.M.; Deshmukh, A.; Werber, J.R. Menachem Elimelech. High-Pressure Reverse Osmosis for Energy-Efficient Hypersaline Brine Desalination: Current Status, Design Considerations, and Research Needs. Environ. Sci. Technol. Lett. 2018, 5, 467–475. [Google Scholar] [CrossRef]
- Patel, S.K.; Ritt, C.L.; Deshmukh, A.; Wang, Z.; Qin, M.; Epsztein, R. Menachem Elimelech. The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 2020, 13, 1694–1710. [Google Scholar] [CrossRef] [Green Version]
- Boo, C.; Winton, R.K.; Conway, K.M.; Yip, N.Y. Membrane-less and Non-Evaporative Desalination of Hypersaline Brines by Temperature Swing Solvent Extraction. Environ. Sci. Technol. Lett. 2019, 6, 359–364. [Google Scholar] [CrossRef]
- Cohen, Y.; Semiat, R.; Rahardianto, A. A perspective on reverse osmosis water desalination: Quest for sustainability. AIChE J. 2017, 63, 1771–1784. [Google Scholar] [CrossRef]
- White, F. Mecánica de Fluidos; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
- León, F.A.; Ramos, A. Analysis of high efficiency membrane pilot testing for membrane design optimization. Desalination Water Treat. 2017, 73, 208–214. [Google Scholar]
- Jiménez, C. Seawater temperature measured at the surface and at two depths (7 and 12 m) in one coral reef at Culebra Bay, Gulf of Papagayo, Costa Rica. Rev. Biol. Trop. 2001, 49, 153–161. [Google Scholar] [PubMed]
- Du, Y.; Liu, Y.; Xie, L.; Zhang, S. Economic, Energy, Exergo-Economic, and Environmental Analyses and Multiobjective Optimization of Seawater Reverse Osmosis Desalination Systems with Boron Removal. Ind. Eng. Chem. Res. 2019, 58, 14193–14208. [Google Scholar] [CrossRef]
- Penela, A.C. Utilidad de la huella ecológica y del carbono en el ámbito de la responsablidad social corporativa (RSC) y el ecoetiquetado de bienes y servicios. DELOS 2010, 3, 8. [Google Scholar]
- Consejería de Medio Ambiente de la Junta de Andalucía, La huella ecológica de Andalucía, una herramienta para medir la sostenibilidad. 2006. Available online: http://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Publicaciones_Divulgacion_Y_Noticias/Documentos_Tecnicos/huella.pdf (accessed on 24 April 2018).
- Ministerio de medio ambiente medio rural y marino, Análisis de la huella ecológica de España. 2008. Available online: https://www.footprintnetwork.org/content/images/uploads/Huella%20ecologica%20de%20Espana.pdf (accessed on 1 January 2007).
- Pascual, J.L. Propuesta metodológica para la determinación de la huella ecológica en el sector hotelero. Aplicación para las islas Canarias. Ph.D. Thesis, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain, 2015. [Google Scholar]
- Anuario Energético de Canarias, Dirección General de Industria y Energía, Gobierno de Canarias. 2017. Available online: http://energiagrancanaria.com/wp-content/uploads/2019/02/A-ENERGETICO-CANARIAS-2017.pdf (accessed on 1 September 2018).
- Jafari, M.; Vanoppen, M.; van Agtmaal, J.M.C.; Cornelissen, E.R.; Vrouwenvelder, J.S.; Verliefde, A.; van Loosdrecht, M.C.M.; Picioreanu, C. Cost of founling in full-scale reverse osmosis nanofiltration installations in the Netherlands. Desalination 2021, 500, 114865. [Google Scholar] [CrossRef]
- Ghalavand, Y.; Hatamipour, S.M.; Rahimi, A. A review on energy consumption on desalination processes. Desalination Water Treat. 2014, 54. [Google Scholar] [CrossRef]
- Gude, V.G. Energy consumption and recovery in reverse osmosis. Desalination Water Treat. 2011, 36, 239–260. [Google Scholar] [CrossRef]
- Semiat, R. Energy issues in desalination processes. Environ. Sci. Technol. 2008, 42, 8193–8201. [Google Scholar] [CrossRef]
- Akgul, D.; Mehmet, C.F.; Kayaalp, N. Cost analysis of sea water desalination with reverse osmosis in Turkey. Desalination 2008, 220, 123–131. [Google Scholar] [CrossRef]
- Koutsou, C.P.; Kritikos, E.; Karabelas, A.J.; Kostoglou, M. Analysis of Temperature effects on the specific energy consumption in reverse osmosis desalination processes. Desalination 2020, 476, 114123. [Google Scholar] [CrossRef]
- Avlonitis, S.A.; Kouroumbas, K.; Vlachakis, N. Energy consumption and membrane replacement cost for. Desalination 2003, 157, 151–158. [Google Scholar] [CrossRef]
- Elmaadawy, K.; Kotb, M.; Elkadeem, M.R.; Sharshif, S.W.; Dan, A.; Moawad, A.; Liu, B. Optimal sizing and techno-enviro-economic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources. Energy Convers. Manag. 2020, 224, 113377. [Google Scholar] [CrossRef]
- Busch, M.; Meckols, W.E. Reducing energy consumption in seawater desalination. Desalination 2020, 165, 299–312. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy use for membrane seawater desalination—Current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Rana, M.W.; Chen, B.; Hayat, T.; Alsaedi, A. Energy consumption for water use cycles in different countries: A review. Appl. Energy 2016, 178, 868–885. [Google Scholar]
- Altmann, T.; Das, R. Process improvement of sea water reverse osmosis (SWRO) and subsequent decarbonization. Desalination 2021, 499, 114791. [Google Scholar] [CrossRef]
- Wittholz, M.K.; Neil, B.O.; Colby, C.B.; Lewis, D.M. Estimating the cost of desalination plants using a cost database. Desalination 2008, 229, 10–20. [Google Scholar] [CrossRef]
- Heihsel, M.; Lenzen, M.; Malik, A.; Geschke, A. The carbon footprint of desalination. An input-output analysis of seawater reverse osmosis desalination in Australia 2005-2015. Desalination 2019, 454, 71–81. [Google Scholar] [CrossRef]
- Giwa, A.; Akther, N.; Dufour, V.M.; Hasan, S.W. A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis process. RSC Adv. 2015, 6, 8134–8163. [Google Scholar] [CrossRef]
- Kim, J.; Park, K.; Yang, D.R.; Hong, S. A comprehensive review of energy consumption of sea water reverse osmosis desalination plants. Appl. Energy. 2019, 254, 113652. [Google Scholar] [CrossRef]
- Alanezi, A.A.; Altaee, A.; Sharif, A.O. The effect of energy recovery device and feed flow rate on the energy efficiency of reverse osmosis process. Chem. Eng. Res. Des. 2020, 158, 12–23. [Google Scholar] [CrossRef]
Year | Pressure (bar) | Power (kW) | Energy (kWh/m3) |
---|---|---|---|
0 | 66.79 | 22,074 | 5.298 |
1 | 68.39 | 22,602 | 5.425 |
2 | 69.82 | 23,075 | 5.538 |
3 | 71.07 | 23,488 | 5.637 |
4 | 72.24 | 23,877 | 5.731 |
5 | 73.38 | 24,254 | 5.821 |
5(10%R) 5(15%R) 5(20%R) | 71.66 70.77 69.82 | 23,685 23,389 23,075 | 5.684 5.613 5.538 |
Year | Pressure (bar) | Power (kW) | Energy (kWh/m3) |
---|---|---|---|
0 | 71.11 | 23,511 | 5.643 |
1 | 72.77 | 24,061 | 5.775 |
2 | 74.56 | 24,651 | 5.916 |
3 | 76.13 | 25,171 | 6.041 |
4 | 77.62 | 25,663 | 6.159 |
5 | 79.06 | 26,140 | 6.274 |
5(10%R) 5(15%R) 5(20%R) | 76.88 75.75 74.56 | 25,420 25,045 24,651 | 6.101 6.011 5.916 |
Year | Pressure (bar) | Power (kW) | Energy (kWh/m3) |
---|---|---|---|
0 | 63.70 | 21,050 | 5.052 |
1 | 65.26 | 21,568 | 5.176 |
2 | 66.44 | 21,955 | 5.269 |
3 | 67.44 | 22,288 | 5.349 |
4 | 68.38 | 22,598 | 5.424 |
5 | 69.29 | 22,898 | 5.496 |
5(10%R) 5(15%R) 5(20%R) | 67.92 67.20 66.44 | 22,445 22,208 21,955 | 5.387 5.330 5.269 |
Year | Pressure (bar) | Power (kW) | Energy (kWh/m3) |
---|---|---|---|
0 | 57.90 | 19,135 | 4.592 |
1 | 58.12 | 19,211 | 4.611 |
2 | 58.51 | 19,338 | 4.641 |
3 | 58.84 | 19,448 | 4.668 |
4 | 59.16 | 19,553 | 4.693 |
5 | 59.48 | 19,658 | 4.718 |
5(10%R) 5(15%R) 5(20%R) | 59.01 58.76 58.51 | 19,502 19,422 19,338 | 4.681 4.661 4.641 |
Year | Pressure (bar) | Power (kW) | Energy (kWh/m3) |
---|---|---|---|
0 | 60.24 | 19,916 | 4.780 |
1 | 60.55 | 20,021 | 4.805 |
2 | 61.08 | 20,194 | 4.847 |
3 | 61.52 | 20,341 | 4.882 |
4 | 61.93 | 20,474 | 4.914 |
5 | 62.31 | 20,600 | 4.944 |
5(10%R) 5(15%R) 5(20%R) | 61.73 61.42 61.08 | 20,410 20,307 20,194 | 4.898 4.874 4.847 |
Year | Pressure (bar) | Power (kW) | Energy (kWh/m3) |
---|---|---|---|
0 | 56.47 | 18,661 | 4.479 |
1 | 56.79 | 18,766 | 4.504 |
2 | 57.15 | 18,886 | 4.533 |
3 | 57.45 | 18,986 | 4.557 |
4 | 57.73 | 19078 | 4.579 |
5 | 57.99 | 19,163 | 4.599 |
5(10%R) 5(15%R) 5(20%R) | 57.60 57.38 57.15 | 19,034 18,963 18,886 | 4.568 4.551 4.533 |
Year | Pressure (bar) | Power (kW) | ERI Power (kW) | Booster (kW) | Energy (kWh/m3) |
---|---|---|---|---|---|
0 | 68.26 | 10,796 | 9402 | 514 | 2.591 |
1 | 70.05 | 11,067 | 9658 | 516 | 2.656 |
2 | 71.55 | 11,295 | 9872 | 518 | 2.711 |
3 | 72.85 | 11,492 | 10,058 | 519 | 2.758 |
4 | 74.07 | 11,677 | 10,233 | 520 | 2.803 |
5 | 75.27 | 11,859 | 10,405 | 521 | 2.846 |
5(10%R) | 73.46 | 11,586 | 10,147 | 520 | 2.781 |
5(15%R) | 72.53 | 11,444 | 10,014 | 519 | 2.747 |
5(20%R) | 71.55 | 11,295 | 9872 | 518 | 2.711 |
Year | Pressure (bar) | Power (kW) | ERI Power (kW) | Booster (kW) | Energy (kWh/m3) |
---|---|---|---|---|---|
0 | 72.67 | 11,494 | 10,017 | 543 | 2.759 |
1 | 74.55 | 11,779 | 10,286 | 545 | 2.827 |
2 | 76.43 | 12,064 | 10,555 | 547 | 2.895 |
3 | 78.06 | 12,311 | 10,789 | 548 | 2.955 |
4 | 79.59 | 12,542 | 11,008 | 549 | 3.010 |
5 | 81.07 | 12,766 | 11,219 | 551 | 3.064 |
5(10%R) | 78.83 | 12,428 | 10,899 | 549 | 2.983 |
5(15%R) | 77.67 | 12,251 | 10,732 | 548 | 2.940 |
5(20%R) | 76.43 | 12,064 | 10,555 | 547 | 2.895 |
Year | Pressure (bar) | Power (kW) | ERI Power (kW) | Booster (kW) | Energy (kWh/m3) |
---|---|---|---|---|---|
0 | 65.11 | 10,296 | 8968 | 489 | 2.471 |
1 | 66.83 | 10,557 | 9214 | 492 | 2.534 |
2 | 68.06 | 10,744 | 9390 | 493 | 2.579 |
3 | 69.11 | 10,903 | 9540 | 494 | 2.617 |
4 | 70.09 | 11,052 | 9680 | 495 | 2.652 |
5 | 71.03 | 11,195 | 9815 | 496 | 2.687 |
5(10%R) | 69.61 | 10,979 | 9611 | 495 | 2.635 |
5(15%R) | 68.86 | 10,865 | 9504 | 494 | 2.608 |
5(20%R) | 68.06 | 10,744 | 9390 | 493 | 2.579 |
Year | Pressure (bar) | Power (kW) | ERI Power (kW) | Booster (kW) | Energy (kWh/m3) |
---|---|---|---|---|---|
0 | 59.06 | 9398 | 8087 | 502 | 2.256 |
1 | 59.31 | 9438 | 8124 | 503 | 2.265 |
2 | 59.77 | 9507 | 8188 | 504 | 2.282 |
3 | 60.17 | 9568 | 8245 | 505 | 2.296 |
4 | 60.53 | 9624 | 8297 | 506 | 2.310 |
5 | 60.88 | 9678 | 8347 | 506 | 2.323 |
5(10%R) | 60.35 | 9597 | 8271 | 505 | 2.303 |
5(15%R) | 60.07 | 9553 | 8231 | 505 | 2.293 |
5(20%R) | 59.77 | 9507 | 8188 | 504 | 2.282 |
Year | Pressure (bar) | Power (kW) | ERI Power (kW) | Booster (kW) | Energy (kWh/m3) |
---|---|---|---|---|---|
0 | 61.41 | 9784 | 8406 | 530 | 2.348 |
1 | 61.73 | 9833 | 8452 | 531 | 2.360 |
2 | 62.26 | 9914 | 8527 | 532 | 2.379 |
3 | 62.71 | 9982 | 8591 | 532 | 2.396 |
4 | 63.12 | 10,044 | 8649 | 533 | 2.411 |
5 | 63.50 | 10,102 | 8704 | 534 | 2.425 |
5(10%R) | 62.92 | 10,014 | 8621 | 533 | 2.403 |
5(15%R) | 62.60 | 9966 | 8576 | 532 | 2.392 |
5(20%R) | 62.26 | 9914 | 8527 | 532 | 2.379 |
Year | Pressure (bar) | Power (kW) | ERI Power (kW) | Booster (kW) | Energy (kWh/m3) |
---|---|---|---|---|---|
0 | 57.69 | 9168 | 7909 | 479 | 2.200 |
1 | 58.07 | 9226 | 7962 | 480 | 2.214 |
2 | 58.45 | 9285 | 8017 | 481 | 2.229 |
3 | 58.77 | 9334 | 8062 | 482 | 2.240 |
4 | 59.06 | 9379 | 8103 | 483 | 2.251 |
5 | 59.34 | 9420 | 8142 | 484 | 2.261 |
5(10%R) | 58.92 | 9357 | 8083 | 483 | 2.246 |
5(15%R) | 58.70 | 9323 | 8051 | 482 | 2.238 |
5(20%R) | 58.45 | 9285 | 8017 | 481 | 2.229 |
Nhab | Island | Production (m3/d) | Surface (km2) | P/S (m3/d/km2) | Ne (hab/km2) |
---|---|---|---|---|---|
10,968 | El Hierro | 5450 | 268.71 | 20.28 | 41 |
82,671 | La Palma | - | 708.32 | - | 117 |
21,503 | La Gomera | 2000 | 369.76 | 5.41 | 58 |
917,841 | Tenerife | 106,034 | 2034.38 | 52.12 | 451 |
851,231 | Gran Canaria | 220,870 | 1560.10 | 141.57 | 546 |
116,886 | Fuerteventura | 90,755 | 1659.00 | 54.71 | 71 |
152,289 | Lanzarote | 87,480 | 845.94 | 103.41 | 180 |
Category Surface | ABS. Average (tCO2/ha/Year) | Surface (Millions ha) | Ecological Footprint (ha/hab/Year) | Sustainable Emission CO2 (tCO2/hab/Year) |
---|---|---|---|---|
Forests | 1.46 | 3858.10 | 0.54 | 0.79 |
Crops | 0.31 | 1958.32 | 0.27 | 0.09 |
Meadows and Pastures | 0.16 | 3363.72 | 0.47 | 0.08 |
Marine Vegetation | 0.02 | 90.00 | 0.01 | 0.00 |
Surface Water | 0.56 | 2920.00 | 0.41 | 0.23 |
Useful Area | 2.50 | 12,190.14 | 1.69 | 3.39 |
Land Area | 1.93 | 14,997.2 | ||
Planet Surface | 2.00 | 51,007.20 |
Technology | Gran Canaria | Tenerife | Lanzarote | Fuerteventura | La Palma | La Gomera | El Hierro | Canary Islands |
---|---|---|---|---|---|---|---|---|
Vapor Turbine | 0.374 | 0.337 | - | - | - | - | - | 0.278 |
Gas Turbine | 0.019 | 0.042 | 0.017 | 0.163 | 0.003 | - | - | 0.038 |
Diesel Motor | 0.047 | 0.053 | 0.610 | 0.525 | 0.585 | 0.647 | 0.356 | 0.165 |
Combined Cycle | 0.249 | 0.257 | - | - | - | - | - | 0.197 |
Total | 0.688 | 0.689 | 0.627 | 0.688 | 0.588 | 0.647 | 0.356 | 0.678 |
Technology | Gran Canaria | Tenerife | Lanzarote | Fuerteventura | La Palma | La Gomera | El Hierro | Canary Islands |
---|---|---|---|---|---|---|---|---|
CF 5 years 0%R | 1.5558 | 1.5569 | 1.4170 | 1.5551 | 1.3288 | 1.4620 | 0.8051 | 1.5321 |
CF 5 years 10%R | 1.5455 | 1.5466 | 1.4076 | 1.5448 | 1.3200 | 1.4523 | 0.7998 | 1.5219 |
CF 5 years 15%R | 1.5400 | 1.5411 | 1.4026 | 1.5393 | 1.3153 | 1.4471 | 0.7970 | 1.5165 |
CF 5 years 20%R | 1.5338 | 1.5349 | 1.3969 | 1.5331 | 1.3100 | 1.4413 | 0.7937 | 1.5104 |
EF 5 years 15%R | 7.6234 | 7.6289 | 6.9431 | 7.6201 | 6.5111 | 7.1636 | 3.9452 | 7.5071 |
EF 5 years 15%R | 7.5728 | 7.5783 | 6.8971 | 7.5695 | 6.4679 | 7.1161 | 3.9190 | 7.4573 |
EF 5 years 20%R | 7.5458 | 7.5513 | 6.8725 | 7.5426 | 6.4448 | 7.0907 | 3.9051 | 7.4307 |
EF 5 years 20%R | 7.5155 | 7.5210 | 6.8449 | 7.5122 | 6.4189 | 7.0622 | 3.8894 | 7.4008 |
Technology | Gran Canaria | Tenerife | Lanzarote | Fuerteventura | La Palma | La Gomera | El Hierro | Canary Islands |
---|---|---|---|---|---|---|---|---|
CF 5 years 0%R | 4.3171 | 4.3203 | 3.9319 | 4.3153 | 3.6872 | 4.0568 | 2.2342 | 4.2513 |
CF 5 years 10%R | 4.1981 | 4.2011 | 3.8235 | 4.1963 | 3.5856 | 3.9449 | 2.1726 | 4.1340 |
CF 5 years 15%R | 4.1362 | 4.1392 | 3.7671 | 4.1344 | 3.5327 | 3.8867 | 2.1405 | 4.0731 |
CF 5 years 20%R | 4.0708 | 4.0738 | 3.7076 | 4.0690 | 3.4768 | 3.8253 | 2.1067 | 4.0087 |
EF 5 years 15%R | 21.1540 | 21.1694 | 19.2664 | 21.1448 | 18.0674 | 19.8782 | 10.9474 | 20.8312 |
EF 5 years 15%R | 20.5707 | 20.5856 | 18.7351 | 20.5617 | 17.5692 | 19.3300 | 10.6456 | 20.2568 |
EF 5 years 20%R | 20.2672 | 20.2820 | 18.4588 | 20.2584 | 17.3101 | 19.0449 | 10.4885 | 19.9580 |
EF 5 years 20%R | 19.9469 | 19.9614 | 18.1670 | 19.9382 | 17.0365 | 18.7439 | 10.3228 | 19.6425 |
Gran Canaria | Tenerife | Lanzarote | Fuerteventura | La Gomera | El Hierro | |
---|---|---|---|---|---|---|
Energy Consumption kWh/d | 724,910.80 | 241,038.60 | 282,486.42 | 306,377.10 | 6080.00 | 16,798.00 |
kWh/m3 | 3.28 | 2.27 | 3.23 | 3.38 | 3.04 | 3.08 |
Carbon Footprint (tons/day) | 498.79 | 165.98 | 177.04 | 210.74 | 3.93 | 5.98 |
Factor CO2/m3 | 0.0023 | 0.0016 | 0.0020 | 0.0023 | 0.0020 | 0.0011 |
Ecological Footprint (ha/day) | 244.41 | 81.33 | 86.75 | 103.26 | 1.93 | 2.93 |
Islas | Lanzarote | Fuerteventura | Gran Canaria | Tenerife | La Gomera | El Hierro | La Palma |
---|---|---|---|---|---|---|---|
Tourists | 2,929,000 | 2,219,000 | 4,478,000 | 5,928,000 | 700,000 | 23,000 | 294,000 |
Residents | 144,140 | 112,299 | 855,496 | 908,644 | 21,398 | 10,770 | 82,956 |
Medium Stay (Day) | 8.79 | 9.49 | 10.02 | 9.56 | 11 | 4.6 | 10.87 |
Lanzarote | Fuerteventura | Gran Canaria | Tenerife | La Gomera | El Hierro | |
---|---|---|---|---|---|---|
Tourists (m3) | 9011 | 7370 | 15,704 | 19,835 | 2695 | 37 |
Residents (m3) | 7516 | 5845 | 44,626 | 47,445 | 1096 | 521 |
Tourists Carbon Footprint | 18.24 | 17.11 | 35.46 | 31.05 | 5.30 | 0.04 |
Residents Carbon Footprint | 15.21 | 13.57 | 100.78 | 74.27 | 2.15 | 0.57 |
Tourists Ecological Footprint | 8.94 | 8.39 | 17.38 | 15.22 | 2.60 | 0.02 |
Residents Ecological Footprint | 7.46 | 6.65 | 49.40 | 36.41 | 1.06 | 0.28 |
Carbon Footprint per Tourist (kg CO2) | 0.0062 | 0.0077 | 0.0079 | 0.0052 | 0.0076 | 0.0018 |
Carbon Footprint per Resident (kg CO2) | 0.1055 | 0.1209 | 0.1178 | 0.0817 | 0.1007 | 0.0531 |
Ecological Footprint per Tourist (m2) | 0.0305 | 0.0378 | 0.0388 | 0.0257 | 0.0371 | 0.0087 |
Ecological Footprint per Resident (m2) | 0.5173 | 0.5925 | 0.5775 | 0.4007 | 0.4935 | 0.2603 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon, F.; Ramos, A.; Vaswani, J.; Mendieta, C.; Brito, S. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water 2021, 13, 293. https://doi.org/10.3390/w13030293
Leon F, Ramos A, Vaswani J, Mendieta C, Brito S. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water. 2021; 13(3):293. https://doi.org/10.3390/w13030293
Chicago/Turabian StyleLeon, Federico, Alejandro Ramos, Jenifer Vaswani, Carlos Mendieta, and Saulo Brito. 2021. "Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories" Water 13, no. 3: 293. https://doi.org/10.3390/w13030293
APA StyleLeon, F., Ramos, A., Vaswani, J., Mendieta, C., & Brito, S. (2021). Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water, 13(3), 293. https://doi.org/10.3390/w13030293