Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland
Abstract
:1. Introduction
2. Study Area
3. Methods
4. Acoustic Measurements
- Inaccuracies in the location of the measuring points;
- Point velocity measurement errors;
- Errors in modeling the flow;
- Errors in modeling the geometry.
5. Results
6. Discussion
- Pilica River—43.3 Total Phosphorus/year, 986 Total Nitrogen/year;
- Luciaza River—8.68 Total Pfosphorus/year, 215 Total Nitrogen/year
7. Scenarios of Nutrient Reduction Effort
- 50% reduction in losses from agriculture areas;
- 50% reduction in losses from septic tanks;
- Both the 50% reduction in losses from agriculture areas and the 50% reduction in losses from septic tanks.
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.W.A.; Heinke, J.; Von Bloh, W.; Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 2011. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers Richard, B. Global water resources: Vulnerability from climate change and population growth. Science 2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleick, P.H. Water and conflict: Fresh water resources and international security. Int. Secur. 1993, 18, 79–112. [Google Scholar] [CrossRef]
- Chapra, S.C.; Pelletier, G.J.; Tao, H. QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality, Version 2.11: Documentation and User’s Manual; Civil and Environmental Engineering Dept, Tufts University: Medford, MA, USA, 2008. [Google Scholar]
- Grigg, N.S. Water Resources Management: Principles, Regulations, and Cases; No. 631.7 G72; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Anderson, A.; Andreasson, P.; Lundström, S.T. CFD-modelling and validation of free surface flow during spilling of reservoir in down-scale model. Eng. Appl. Comput. Fluid Mech. 2013, 7, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Shoener, B.D.; Schramm, S.M.; Béline, F.; Bernard, O.; Martínez, C.; Plósz, B.G.; Snowling, S.; Steyer, J.-P.; Valverde-Pérez, B.; Wágner, D.; et al. Microalgae and cyanobacteria modeling in water resource recovery facilities: A critical review. Water Res. X 2019, 2, 100024. [Google Scholar]
- Cole, T.; Buchak, E. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model—Version 2.0. Tech. Rpt; Waterways Experiments Station: Vicksburg, MS, USA, 1995. [Google Scholar]
- Chapra, S.C. Surface Water—Quality Modeling; McGraw-Hill Companies, Inc.: New York, NY, USA; Toronto, ON, Canada, 1997. [Google Scholar]
- Agberien, A.V.; Örmeci, B. Monitoring of Cyanobacteria in Water Using Spectrophotometry and First Derivative of Absorbance. Water 2020, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Yustiani, Y.M.; Lidya, L. Towards an Information System of Modeling and Monitoring of Cikapundung River, Bandung, Indonesia. Procedia Eng. 2016, 154, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Jarman, D.S.; Faram, M.G.; Butler, D.; Tabor, G.; Stovin, V.R.; Burt, D.; Throp, E. Computational fluid dynamics as a tool for urban drainage system analysis: A review of applications and best practice. In Proceedings of the 11th International Conference on Urban Drainage, Edinburg, Scotland, UK, 31 August–5 September 2008; pp. 1–10. [Google Scholar]
- Chau, K.W. A three-dimensional eutrophication modeling in Tolo Harbour. Appl. Math. Model. 2004, 28, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001. [Google Scholar] [CrossRef]
- Soetaert, K.; Middelburg, J.J. Modeling eutrophication and oligotrophication of shallow-water marine systems: The importance of sediments under stratified and well-mixed conditions. In Eutrophication in Coastal Ecosystems. Developments in Hydrobiology; Andersen, J.H., Conley, D.J., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 207. [Google Scholar]
- Shourian, M.; Moridi, A.; Kaveh, M. Modeling of eutrophication and strategies for improvement of water quality in reservoirs. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2016, 74, 1376–1385. [Google Scholar] [CrossRef]
- Di Toro, D.M.; Connolly, J.P. Connolly, Mathematical Models of Water Quality in Large Lages, Part 2: Lake Erie; USEPA: Washington, DC, USA, 1980.
- Ansari, A.A.; Sarvajeet, S.G.; Lanza, G.R.; Rast, W. Eutrophication: Causes, Consequences and Control; Springer: Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Cerco, C.F.; Noel, M.R. Twenty-one-year simulation of Chesapeake Bay water quality using the CE-QUAL-ICM eutrophication model. J. Am. Water Resour. Assoc. 2013, 49, 1119–1133. [Google Scholar] [CrossRef]
- Jørgensen, S.E.; Ray, S.; Berec, L.; Straskraba, M. Improved calibration of a eutrophication model by use of the size variation due to succession. Ecol. Model. 2002, 153, 269–277. [Google Scholar] [CrossRef]
- Chen, D.; Shen, H.; Hu, M.; Wang, J.; Zhang, Y.; Dahlgren, R.A. Chapter Five—Legacy Nutrient Dynamics at the Watershed Scale: Principles, Modeling, and Implications. In Sparks, Advances in Agronomy; Donald, L., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 149, pp. 237–313. [Google Scholar]
- Di Toro, D.M.; O’Connor, D.J.; Thomann, R.V. A Dynamic Model of Phytoplankton Population in the Sacramento San Joaquin Delta. Adv. Chem. Ser. 1971, 106, 131–180. [Google Scholar]
- Lung, W.S. Modeling of Phosphorus Sediment-Water Interactions in White Lake, Michigan. Ph.D. Thesis, Department of Civil Engineering, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Thomann, R.V.; Di Toro, D.M.; Winfield, R.; O’Connor, D.J. Mathematical Modeling of Phytoplankton in Lake Ontario; Model Development and Verification; U.S. Environmental Protection Agency, Office of Research Development, National Environment Research Center: Corvallis, OR, USA, 1975; p. 177.
- Orlob, G.T. (Ed.) Mathematical Modeling of Water Quality: Streams, Lakes and Reservoirs; John Willey &Sons: Hoboken, NJ, USA, 1983; p. 518. [Google Scholar]
- Thomann, R.V.; Muller, J.A. Principles of Surface Water Quality Modeling and Control; Harper & Row Publishers: New York, NY, USA, 1987; p. 644. [Google Scholar]
- Martin, J.L.; McCutcheon, S.C. Hydrodynamics and Transport for Water Quality Modeling; CRP Press, Inc.: Boca Raton, FL, USA, 1999; p. 794. [Google Scholar]
- Lung, W.S. Water Quality Modeling for Waste Load Allocations and TMDLs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; p. 333. [Google Scholar]
- Leon, L.F.; Lam, D.C.; McCrimmon, C.; Swayne, D.A. Watershed management modeling in Malawi: Application and technology transfer. Environ. Modeling Softw. 2003, 18, 531–539. [Google Scholar] [CrossRef]
- Liu, W.C.; Kuo, J.T.; Kuo, A.Y. Modeling hydrodynamics and water quality in the separation waterway of the Yulin offshore industrial park, Taiwan. Environ. Model. Softw. 2005, 20, 309–328. [Google Scholar] [CrossRef]
- Pastres, R.; Ciavatta, S. A comparison between the uncertainties in model parameters and in forcing functions: Its application to a 3D water-quality model. Environ. Model. Softw. 2005, 20, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Kuo, J.T.; Thomann, R.V. Phytoplankton modeling in the embayment of lakes. J. Environ. Eng. 1983, 119, 1311–1332. [Google Scholar] [CrossRef]
- Miyanaga, Y. Modeling of stratified flow and eutrophication in reservoirs. Ecol. Model. 1986, 31, 133–144. [Google Scholar] [CrossRef]
- Carrick, H.J.; Worth, D.; Marshall, M. The influence of water circulation on chlorophyll-turbidity relationship in Lake Okeechobee as determined by remote-sensing. J. Phytoplankton Res. 1994, 16, 1117–1135. [Google Scholar] [CrossRef] [Green Version]
- Kawara, O.; Yura, E.; Fujii, S.; Matsumoto, T. A study on the role of hydraulic retention time eutrophication of the Asahi river dam reservoir. Water Sci. Technol. 1998, 37, 245–252. [Google Scholar] [CrossRef]
- Tufford, D.L.; McKellar, H.N. Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina coastal plain. Ecol. Model. 1999, 114, 137–173. [Google Scholar] [CrossRef]
- Verkhozina, V.A.; Kozhova, O.M.; Kusner, Y.S. Hydrodynamics as a limiting factor in the Lake Baikal ecosystem. Aquat. Ecosyst. Health Manag. 2000, 392, 203–210. [Google Scholar] [CrossRef]
- Irianto, E.W.; Triweko, R.W.; Soedjono, P. Simulation Analysis to Utilize Hypolimnetic Withdrawal technique for eutrophication control in tropical reservoir (Case study: Jatiluhur Reservoir, Indonesia). Int. J. Environ. Resour. 2012, 1, 89–100. [Google Scholar]
- Streeter, H.W.; Phelps, E. A Study of the Pollution and Natural Purification of the Ohio River; Factors Concerned in the Phenomena of Oxidation and Reaeration; Public Health Bulletin No.146. U.S. Public Health Service; US Department of Health, Education & Welfare: Washington, DC, USA, 1925.
- Deus, R.; Brito, D.; Kenov, I.A.; Lima, M.; Costa, V.; Medeiros, A.; Neves, R.; Alves, C.N. Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton in Tucurui reservoir, Para, Brasil. Ecol. Model. 2013, 253, 28–43. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Jia, P.; Qi, C.; Ding, F. A review of surface water quality models. Sci. World J. 2013. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.X.; Lu, S.Q. Research on hydrodynamic and water quality model for tidal river networks. J. Hydrodyn. 2003, 15, 64–70. [Google Scholar]
- James, I.D. Modeling pollution dispersion, the ecosystem and water quality in coastal waters: A review. Environ. Model. Softw. 2002, 17, 363–385. [Google Scholar] [CrossRef]
- Hartnett, M.; Nash, S. Modeling nutrient and chlorophyll a dynamics in an Irish brackish water body. Environ. Model. Softw. 2004, 19, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.B. Environmental foresight and structural change. Environ. Model. Softw. 2005, 20, 651–670. [Google Scholar] [CrossRef] [Green Version]
- Na, E.H.; Park, S.S. A hydrodynamic and water quality modeling study of spatial and temporal patterns of phytoplankton growth in a stratified lake with buoyant incoming flow. Ecol. Model. 2006, 199, 298–314. [Google Scholar] [CrossRef]
- Voinov, A.A.; Tonkikh, A.P. Qualitative model of eutrophication in macrophyte lakes. Ecol. Model. 1987, 35. [Google Scholar] [CrossRef] [Green Version]
- Franke, U.; Hutter, K.; Johnk, K. A physical-biological coupled model for algal dynamics in lakes. Bull. Math. Biol. 1999, 61, 239–272. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.M.; Brindley, J. Zooplankton mortality and the dynamical behavior of plankton population models. Bull. Math. Biol. 1999, 61, 303–339. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Roy, S.; Chattopadhyay, J. Nutrient-limited toxin production and the dynamics. of two phytoplankton in culture media: A mathematical model. Ecol. Model. 2008, 213, 191–201. [Google Scholar] [CrossRef]
- Pauer, J.; Auer, M.T. Nitrification in the Water Column and Sediment of a Hypereutrophic Lake and Adjoining River System. Water Res. 2000, 34, 1247–1254. [Google Scholar] [CrossRef]
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, A. Influence of Cascading River–Lake Systems on the Dynamics of Nutrient Circulation in Catchment Areas. Water 2020, 12, 1144. [Google Scholar] [CrossRef] [Green Version]
- Kowalkowski, T.; Pastuszak, M.; Igras, J.; Buszewski, B. Differences in emission of nitrogen and phosphorus into the Vistula and Oder basins in 1995–2008—Natural and anthropogenic causes (MONERIS model). J. Mar. Syst. 2012, 89, 48–60. [Google Scholar] [CrossRef]
- Ambrożewski, Z. Monography of the Sulejów Reservoir. WKiL Warszawa 1980, 1–84. (In Polish) [Google Scholar]
- Ambrożewski, Z. Projektowanie i realizacja zbiornika wodnego Sulejów [Design and implementation of the water Sulejów Reservoir]. Gosp Wod 1993, 12, 267–273. (In Polish) [Google Scholar]
- Galicka, W. Total nitrogen and phosphorus budgets in the lowland Sulejów Reservoir for the hydrological years 1985–1988. Arch. Hydrobiol. Suppl. 1992, 2, 159–169. [Google Scholar]
- Galicka, W.; Drożdżyk, A.; Korczyńska, A. Limnological characteristics of the Sulejów Reservoir in the period 1981–1987. Warsaw 1990. (In Polish) [Google Scholar]
- Galicka, W.; Lesiak, T.; Rzerzycha, E. Characteristic of phytoplankton in the Sulejów Reservoir in the period 1982–1987. Warsaw 1990. (In Polish) [Google Scholar]
- Galicka, W.; Penczak, T. Total nitrogen and phosphorus budgets in the lowland Sulejów Reservoir. Arch. Hydrobiol. 1989, 117, 177–190. [Google Scholar]
- Tarczyńska, M. The Causes of Toxic Cyanobacterial Blooms in the Sulejowski Reservoir and Their Impact on the Aquatic Ecosystem. Ph.D. Thesis, University of Lódź, Łódź, Poland, 1997. (In Polish). [Google Scholar]
- Mankiewicz-Boczek, J.; Urbaniak, M.; Romanowska-Duda, Z.; Izydorczyk, K. Toxic Cyanobacteria strains in lowland dam reservoir (Sulejow Res Central Poland): Amplification of mcy genes for detection and identification. Pol. J. Ecol. 2006, 53, 171–180. [Google Scholar]
- Zieminska-Stolarska, A.; Zbicinski, I.; Imbierowicz, M.; Skrzypski, J. Waterpraxis as a tool supporting protection of water in the Sulejow Reservoir. Desalin. Water Treat. 2013, 51, 4194–4206. [Google Scholar] [CrossRef]
- Zieminska-Stolarska, A. Analysis of the Flux of Biogenic Substances on Water Eutrophication in the Large Water Bodies on the Example of the Sulejow Reservoir. Ph.D. Thesis, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland, 2014. [Google Scholar]
- Ziemińska-Stolarska, A.; Imbierowicz, M.; Jaskulski, M.; Szmidt, A.; Zbiciński, I. Continuous and Periodic Monitoring System of Surface Water Quality of an Impounding Reservoir: Sulejow Reservoir, Poland. Int. J Environ. Res. Public Health 2019, 16, 301. [Google Scholar] [CrossRef] [Green Version]
- Ziemińska-Stolarska, A.; Adamiec, J.; Imbierowicz, M.; Imbierowicz, E.; Jaskulski, M.; Zbiciński, I. Surface water quality monitoring in a large dam reservoir, Poland. Desalin. Water Treat. 2018, 130–142. [Google Scholar] [CrossRef]
- Edinger, J.E.; Buchak, E.M. Numerical Hydrodynamics of Estuaries. In Estuarine and Wetland Processes with Emphasis on Modeling; Hamilton, P., Macdonald, K.B., Eds.; Plenum Press: New York, NY, USA, 1980; pp. 115–146. [Google Scholar]
- Edinger, J.E.; Buchak, E.M. Numerical Waterbody Dynamics and Small Computers. In Proceedings of the ASCE 1985 Hydraulic Division Specialty Conference on Hydraulics and Hydrology in the Small Computer Age, Lake Buena Vista, FL, USA, 13–16 August 1985; American Society of Civil Engineers: Reston, VA, USA, 1985. [Google Scholar]
- Edinger, J.E.; Buchak, E.M. Numerical Intermediate and Far Field Dilution Modelling. Water Air Soil Pollut. 1995, 83, 147–160. [Google Scholar]
- Edinger, J.E.; Buchak, E.M.; McGurk, M.D. Analyzing Larval Distributions Using Hydrodynamic and Transport Modelling. Estuarine and Coastal Modeling III; American Society of Civil Engineers: New York, NY, USA, 1994. [Google Scholar]
- Ambrose, R.; Wool, T.A.; Martin, J. The Water Quality Analysis Simulation Program, Wasp5 Part A: Model Documentation; Environmental Research Laboratory, US Environmental Protection Agency: Athens, GA, USA, 1993.
- WDOE (State of Washington Department of Environment). Comprehensive Circulation and Water Quality Study at Budd Inlet, Southern Puget Sound Water Quality Assessment Study; URS Corporation for the Washington State Department of Ecology: Washington, DC, USA, 1984.
- Galicka, W. Limnological Characteristics of a Lowland Dam Reservoir on the Pilica River in the Years 1981–1993; University of Lodz: Lodz, Poland, 1996. (In Polish) [Google Scholar]
- Giercuszkiewicz-Bajtlik, M. Forecasting of changes of standing water quality. Inst. Ochr. Sr. 1990, 74. (In Polish) [Google Scholar]
- Wagner-Lotkowska, I. Influence of the Selected Climatic, Hydrological and Biological Factors on Eutrophication Processes and Symptoms in the Sulejów Reservoir. Ph.D. Thesis, University of Lodz, Lodz, Poland, 2002. [Google Scholar]
- Izydorczyk, K.; Jurczak, T.; Wojtal-Frankiewicz, A.; Skowron, A.; Mankiewicz-Boczek, J.; Tarczyńska, M. Influence of abiotic and biotic factors on microcystis content in Microcystis aeruginosacells in a eutrophic temperate reservoir. J. Plankton Res. 2008, 30, 393–400. [Google Scholar] [CrossRef]
- Izydorczyk, K.; Frątczak, W.; Drobniewska, A.; Cichowicz, E.; Michalska-Hejduk, D.; Gross, R.; Zalewski, M. A biogeochemical barrier to enhance a buffer zone for reducing diffuse phosphorus pollution –preliminary results. Ecohydrol. Hydrobiol. 2013, 13, 104–112. [Google Scholar] [CrossRef]
- Michna, A. 35 years of the Sulejów Reservoir exploitation. Gospod. Wodna 2008, 12, 481–484. (In Polish) [Google Scholar]
- Central Statistical Office. State and Environmental Protection; Central Statistical Office: Warsaw, Poland, 2012.
- Pawlik-Dobrowolski, J. Catchment of Raba River, as an alimentation area, and pollutants for storage reservoir in Dobczyce. Monogr. Crac. Univ. Technol. Crac. 1993, 2, 135–155. (In Polish) [Google Scholar]
- Kabzinski, A.K.M.; Grabowska, H. Investigation into effectiveness of elimination of cyjanobacterial toxins in the process of water treatment in the productive transferring system Sulejów-Łódź. Gospod. Wodna 2003, 3, 109–118. (In Polish) [Google Scholar]
- Absalon, D.; Matysik, M.; Woźnica, A.; Łozowski, B.; Jarosz, W.; Ulańczyk, R.; Babczyńska, A.; Pasierbiński, A. Multi-Faceted Environmental Analysis to Improve the Quality of Anthropogenic Water Reservoirs (Paprocany Reservoir Case Study). Sensors 2020, 20, 2626. [Google Scholar] [CrossRef]
- Ziemińska-Stolarska, A.; Skrzypski, J. Review of Mathematical Models of Water Quality. Ecol. Chem. Eng. 2012, 19, 197–211. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Surface area (ha) | 2.380 |
Length of shoreline (km) | 46.875 |
Shoreline development index | 8.64 |
Total volume of the reservoir (million m3) | 75 |
Usable capacity (million m3) | 61.7 |
Dead storage capacity (million m3) | 15.7 |
Flood volume (million m3) | 9 |
Average depth (m) | 3.2 |
Maximum depth (m) | 11 |
Length of the reservoir (km) | 17 |
Characteristic flows in the cross-section | |
Q0.1% (m3/s) | 792 |
Q0.02% (m3/s) | 952 |
Q1% (m3/s) | 560 |
Q10% (m3/s) | 324 |
Q50% (m3/s) | 127 |
Qavg (m3/s) | 30.2 |
Q flow rate (m3/s) | 11.08 |
Maximum flow through weirs (m3/s) | 450 |
Flow through the bottom outlets (m3/s) | 24 |
Parameter | Description | Value | Unit | Min. | Max. |
---|---|---|---|---|---|
Ke_a | Background nonalgal light extinction | 0.336 | 1/m | 0 | 4 |
Ke_b | Coefficient for chlorophyll for light extinction | 0.0365 | 1/m(µgA/L) | 0 | 0.054 |
Ke_c | Exponent for chlorophyll for light extinction | 0.64 | No unit | 0 | 1 |
anc | Nitrogen to carbon ratio | 0.25 | gN/gC | 0 | 0.25 |
k71 | Organic nitrogen mineralization rate | 0.01 | 1/day | 0.01 | 0.15 |
th71 | Temperature coefficient | 1.08 | No unit | 0 | 1.08 |
k12 | Nitrification rate | 0.13 | 1/day | 0.09 | 0.13 |
th12 | Temperature coefficient | 1.08 | No unit | 0 | 1.08 |
knit | Half-saturation constant for oxygen limitation | 1 | gO2/m3 | 0 | 2 |
kmnc | Half-saturation constant for nitrogen mineralization | 0.5 | gC/m3 | 0 | 1 |
k2d | Denitrification rate @ 20 °C | 0.1 | 1/day | 0.09 | 0.16 |
th2d | Temperature coefficient | 1.08 | No unit | 0 | 2 |
kno3 | Michaelis constant for denitrification | 0.1 | gO2/m3 | 0.1 | 0.1 |
apc | Phosphorus to carbon ratio | 0.025 | gP/gC | 0.025 | 0.025 |
k83 | Dissolved organic phosphorus mineralization @ 20 °C | 0.04 | 1/day | 0.1 | 0.3 |
th83 | Temperature coefficient | 1.08 | No unit | 0 | 1.08 |
kmpc | Half-saturation constant for phosphorus mineralization | 8 | gC/m3 | 1 | 10 |
plc | Phosphorus limiting switch | 1 | No unit | ||
c2chla_d | Ratio of carbon to chlorophyll-a | 100 | No units | 10 | 100 |
rins_d | Saturating light intensity | 150 | cal/m2/day | 110 | 200 |
kmn_d | Half-saturation constant for nitrogen | 0.01 | gN/m3 | 0.001 | 0.025 |
ZPGMode_d | Zooplankton grazing mode | 1 | No unit | 0 | 2 |
kgmicro_d | Grazing rate due to microzooplankton | 0 | 1/day | 0 | 0.08 |
kgmacro_d | Grazing rate due to macrozooplankton | 0 | 1/day | 0 | 0.101 |
thkt_d | Temperature coefficient | 1.045 | No unit | 1.045 | 1.045 |
k1d_d | Death rate | 0.05 | 1/day | 0.015 | 0.2 |
Biogenic Compound | Arable Land | Forest Area | Urban Area | Septic Tanks | WWTP |
---|---|---|---|---|---|
Unit | mg/L | mg/L | mg/L | mg/L | mg/L |
Total Phosphorus | 0.19 | 0.005 | 100 | 0.5 | 0.14 |
Total Nitrogen | 3 | 0.3 | 700 | 4 | 2 |
Catchment | Area | Water Flow | Arable Land | Forest Area | Urban Area | Population Density | Septic Tanks | WWTP |
---|---|---|---|---|---|---|---|---|
Unit | km2 | m3/s | km2 | km2 | km2 | person | person | person |
Sulejów River upper part | 2545.2 | 15.5 | 1614.7 | 886.7 | 43.8 | 310,514 | 127,311 | 193,203 |
Sulejów River lower part | 1390.5 | 6.8 | 652.7 | 699.8 | 38.0 | 222,480 | 91,217 | 131,263 |
Pilica + Sulejów Reservoir | 997.5 | 4.9 | 633.9 | 307.3 | 56.3 | 296,258 | 121,466 | 174,792 |
Total Sulejów Reservoir catchment | 4933.2 | 27.2 | 2901.3 | 1893.9 | 138.0 | 829,252 | 339,993 | 489,259 |
Catchment | Arable Land-Load | Forest Area-Load | Urban Area-Load | Septic Tank-Load | WWTP-Load | Total | Concentration |
---|---|---|---|---|---|---|---|
Unit | ton | ton | ton | ton | ton | ton | mg/L |
Sulejów River upper part | 59.0 | 0.9 | 2.2 | 25.6 | 63.7 | 151.4 | 0.31 |
Sulejów River lower part | 19.2 | 0.5 | 1.9 | 18.4 | 45.6 | 85.6 | 0.40 |
Pilica + Sulejów Reservoir | 18.6 | 0.2 | 2.8 | 24.5 | 60.7 | 106.8 | 0.69 |
Total Sulejów Reservoir catchment | 96.8 | 1.6 | 6.9 | 170 | 68.5 | 343.8 | 0.40 |
Catchment | Arable Land-Load | Forest Area-Load | Urban Area-Load | Septic Tank-Load | WWTP-Load | Total | Concentration |
---|---|---|---|---|---|---|---|
Unit | ton | ton | ton | ton | ton | ton | mg/L |
Sulejów River upper part | 932 | 51 | 15 | 509 | 366 | 1874 | 3.83 |
Sulejów River lower part | 303 | 32 | 13 | 365 | 263 | 976 | 4.54 |
Pilica + Sulejów Reservoir | 294 | 13 | 20 | 486 | 350 | 1162 | 7.54 |
Total Sulejów Reservoir catchment | 1528 | 97 | 48 | 1360 | 979 | 4012 | 4.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemińska-Stolarska, A.; Kempa, M. Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland. Water 2021, 13, 296. https://doi.org/10.3390/w13030296
Ziemińska-Stolarska A, Kempa M. Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland. Water. 2021; 13(3):296. https://doi.org/10.3390/w13030296
Chicago/Turabian StyleZiemińska-Stolarska, Aleksandra, and Magdalena Kempa. 2021. "Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland" Water 13, no. 3: 296. https://doi.org/10.3390/w13030296
APA StyleZiemińska-Stolarska, A., & Kempa, M. (2021). Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland. Water, 13(3), 296. https://doi.org/10.3390/w13030296