Sustainability Assessment of White Shrimp (Penaeus vannamei) Production in Super-Intensive System in the Municipality of San Blas, Nayarit, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shrimp Farm Model
2.1.1. Facilities and Investments
2.1.2. Means of Production
- Pre-cultivation activities. These consist of washing and disinfection of tanks, the entire hydraulic and aeration system, and utensils. A sodium hypochlorite solution is applied. Afterwards, the water in the tanks is matured by applying a commercial probiotic and molasses.
- Sowing of paralarvae. The paralarvae are purchased from a specialized hatchery. Their average weight can vary from 10 to 70 mg. An established shrimp industry protocol is followed that includes stress testing, larval counting, acclimatization, and stocking in the culture tanks.
- Pharmaceuticals and other products. Vitamins and antibiotics in the food for preventive (3 g kg−1) and curative (6 g kg−1) treatments, for about 6 days; and the replacement of zeolites and gravel in the filtration units.
- Feeding. The first food ingested by the paralarvae in the culture tanks is the mesocosm plankton that grows during the maturation of the water. The feeding with a commercial feed having a protein content of 45%—at a rate of 16% of the biomass, distributed in 12 daily rations, every 2 h—is also started. The feed ration is adjusted according to the weekly weight increase. The crude protein (CP) content in the feed is decreased as the weight of the shrimp increases. Four types of feed are used in each fattening cycle: raceway (45% CP) from arrival to 0.5 g; crumb (40% CP) from 0.5 g to 2 g; 35% CP micropellet from 2 g to 6 g: and 30% CP pellets from 6 g onwards.
- Staff. Two field assistants, two guards, a technician, and a head of production (engineer).
- Electricity. The energy consumption is due to the use of 5 electro blowers (10 HP and 7457 kW h, working for 2520 h in one production cycle); 2 centrifugal pumps (5 HP and 3728 kW h, working for 525 h in one production cycle) for water renewal; lighting (0.5 HP and 0.372 kWh, working for 525 h in one production cycle) of the production unit; and domestic use related to socket outlets and other uses. It is important to note that, when evaluating the economic cost, it has been taken into account that there is a subsidy in Mexico for the agricultural sector that reduces the price of each kWh by 50% [31].
- Rent. The rental expenses comprise the annual rental of the land (0.75 ha) where the farm is located.
- Miscellaneous expenses. These include the purchase of fuel and lubricants for the diesel generator, automobiles, and the maintenance of machinery and equipment.
2.2. Economic Evaluation
- Fixed assets or fixed costs. The calculation of the expenses generated by the shrimp farm investment (K0) was carried out with the help of the price generator for the construction of Mexico [37]. For those work units which, due to their detail, were not in this database, we used data from professional work—endorsed by the Official College of Agronomists of Murcia—carried out by García García [38] regarding the facilities of land-based marine aquaculture. To determine the annual fixed assets the amortization linked to the investment was taken into account using the linear or constant quotas method.
- Variable costs. The variable costs or operating costs (VC) were determined by the expenditure of inputs, services, and activities used in the course of an accounting year. They were calculated taking as a reference the cost of the inputs used and the activities carried out in the production process (Table 1).
- Opportunity costs. For each of the costs, both fixed and variable, their opportunity cost (OC) was calculated. In other words, the alternative use of money in risk-free savings bank accounts was taken into account. To calculate this OC, an interest rate of 2.61% was used, which was established taking into account the average interest rate of the Mexican government bonds, calculated with data from the last 10 years, minus the average inflation in the same period.
- Incomes. Once all the costs had been obtained and classified, the total income (I) was calculated from the sale of the shrimp biomass at source at an average price of 4.4 USD kg−1. This value was established as a reference based on the company’s records during the last three years.
2.2.1. Economic Indexes
- NM/VC: this indicates the return on invested capital in the short term.
- NM/K0: this is an indicator of the long-term return on invested capital (Investment = K0).
- NM/TC: this shows the overall profitability of the activity.
- VT (viability threshold): is the same as the average total cost of production. So, this indicates the minimum sale price of the product at its origin for the activity to be viable. Its calculation is VT = TC/Production (USD kg−1).
- BEP (break-even point): this indicates the minimum production, for the average market sale price, for the activity to be viable. It was calculated from the same equation as the VT [34,35,40]. The BEP was also expressed in relation to the annual production (t year−1), number of culture tanks (n), and culture density (shrimp m−³).
2.2.2. Elasticity
2.3. Social and Territorial Evaluation
- AWU/ha (agricultural work unit per ha): this is an indicator of the generation of employment linked directly to rural areas. To establish the employment generated, the labor required to carry out the tasks of the aquaculture activity already described was calculated. An Agricultural Work Unit (AWU) corresponds to the work performed by one person employed full-time in a rural farm [35,43].
- CRE (contribution to regional economy): this is an indicator of the economic impact of shrimp farming on the rural population. It was calculated as the unit income (USD ha−1); it has social relevance since it measures the gross economic productivity and the impact on the environment and the rural population.
2.4. Environmental Evaluation
- Electricity. The electric energy consumed by electro blowers, centrifugal pumps, and lighting (Table 1).
- Feed. As the supplying companies do not provide the composition of the feed raw materials, that described by Cao et al. [26], which also includes data in relation to manufacturing (energy and materials), was used. Therefore, the assumption was made that only one type of feed is used throughout the cycle (Table 1). It has been considered that the feed factory is located in Ecuador and that the raw materials come from the US (soybean meal, soybean oil, and wheat meal) and Peru (fish meal).
- Product. This corresponds to products for disinfection, molasses, pharmaceuticals, and filter material (Table 1).
- Fuel. Diesel and gasoline consumed by vehicles operating at the shrimp farm (Table 1).
3. Results and Discussion
3.1. Economic Analysis
3.1.1. Investment
3.1.2. Cost Structure
3.1.3. Evaluation Using Economic Indicators
3.1.4. Analysis of the Elasticity
3.2. Evaluation Using Social and Territorial Indicators
3.3. Environmental Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. El Estado Mundial de la Pesca y la Acuicultura 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132756-2. [Google Scholar]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.R.; Friess, D.A. Rates and Drivers of Mangrove Deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffman, J.B.; Arifanti, V.B.; Hernández Trejo, H.; Del Carmen Jesús García, M.; Norfolk, J.; Cifuentes, M.; Hadriyanto, D.; Murdiyarso, D. The Jumbo Carbon Footprint of a Shrimp: Carbon Losses from Mangrove Deforestation. Front. Ecol. Environ. 2017, 15, 183–188. [Google Scholar] [CrossRef]
- Järviö, N.; Henriksson, P.J.G.; Guinée, J.B. Including GHG Emissions from Mangrove Forests LULUC in LCA: A Case Study on Shrimp Farming in the Mekong Delta, Vietnam. Int. J. Life Cycle Assess. 2018, 23, 1078–1090. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A Blueprint for Blue Carbon: Toward an Improved Understanding of the Role of Vegetated Coastal Habitats in Sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- FAO. Programa de Información de Especies Acuática Penaeus vannamei. Available online: http://www.fao.org/fishery/culturedspecies/Penaeus_vannamei/es (accessed on 27 October 2020).
- Henriksson, P.J.G.; Järviö, N.; Jonell, M.; Guinée, J.B.; Troell, M. The Devil in the Details—The Carbon Footprint of a Shrimp. Front. Ecol. Environ. 2018, 16, 10–11. [Google Scholar] [CrossRef] [Green Version]
- CESANAY Producción en Instalaciones Acuícolas Que Cultivan Camarón en el Estado de Nayarit. Available online: https://cesanay.org/cesanay/produccion-camaron/ (accessed on 15 July 2020).
- Ponce-Palafox, J.T.; Soto Ceja, E.; Meza Ramos, E.; Robles Zepeda, F.J. La Etapa de Crecimiento Lento de la Acuicultura En Nayarit: Aspectos Económicos y Sostenibilidad. Rev. Mex. Sobre Desarro. Local 2018, 2, 1–12. [Google Scholar]
- Messina, E.P. El cultivo de camarón y la calidad ambiental: ¿Cómo disminuir sus efectos nocivos en las costas de Nayarit? Rev. Fuente 2009, 1, 13–17. [Google Scholar]
- Arambul Munoz, E.; Ponce Palafox, J.; De Los Santos, R.; Aragon Noriega, E.; Rodriguez Dominguez, G.; Castillo Vargasmachuca, S. Influence of Stocking Density on Production and Water Quality of a Photo Heterotrophic Intensive System of White Shrimp (Penaeus vannamei) in Circular Lined Grow out Ponds, with Minimal Water Replacement. Lat. Am. J. Aquat. Res. 2019, 47, 449–455. [Google Scholar] [CrossRef]
- Wasielesky, W., Jr.; Atwood, H.; Stokes, A.; Browdy, C.L. Effect of Natural Production in a Zero Exchange Suspended Microbial Floc Based Super-Intensive Culture System for White Shrimp Litopenaeus vannamei. Aquaculture 2006, 258, 396–403. [Google Scholar] [CrossRef]
- Esparza-Leal, H.M.; Pereira-Cardozo, A.; Wasielesky, W., Jr. Performance of Litopenaeus vannamei Postlarvae Reared in Indoor Nursery Tanks at High Stocking Density in Clear-Water versus Biofloc System. Aquac. Eng. 2015, 68, 28–34. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, K.; Xu, W.; Zhao, D.; Mei, L. Effects of Different Carbon Sources Addition on Nutrition Composition and Extracellular Enzymes Activity of Bioflocs, and Digestive Enzymes Activity and Growth Performance of Litopenaeus vannamei in Zero-Exchange Culture Tanks. Aquac. Res. 2015, 47, 3307–3318. [Google Scholar] [CrossRef]
- Hernández Gurrola, J.A. Caracterización de la Calidad de Agua en Un Sistema Intensivo de Cultivo de Camarón Blanco Litopenaeus vannamei, en Condiciones de Alta Salinidad Con Recambio de Agua Limitado; Centro de Investigaciones Biológicas de Noroeste, S.C.: La Paz, Mexico, 2016.
- Moreno-Figueroa, L.D.; Naranjo-Paramo, J.; Hernández-Llamas, A.; Vargas-Mendieta, M.; Hernández-Gurrola, J.A.; Villareal-Colmenares, H. Performance of a Photo-Heterotrophic, Hypersaline System for Intensive Cultivation of White Leg Shrimp (Litopenaeus vannamei) with Minimal Water Replacement in Lined Ponds Using a Stochastic Approach. Aquac. Res. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
- Aubin, J.; Papatryphon, E.; Van der Werf, H.M.G.; Petit, J.; Morvan, Y.M. Characterisation of the Environmental Impact of a Turbot (Scophthalmus maximus) Re-Circulating Production System Using Life Cycle Assessment. Aquaculture 2006, 261, 1259–1268. [Google Scholar] [CrossRef]
- Aubin, J.; Papatryphon, E.; Van Der Werf, H.M.G.; Chatzifotis, S. Assesment of the Environmental Impact of Carnivorous Finfish Production Systems Using Life Cycle Assessment. J. Clean. Prod. 2009, 17, 354–361. [Google Scholar] [CrossRef]
- Ayer, N.W.; Tyedmers, P.H. Assesing Alternative Aquaculture Technologies: Life Cycle Assessment of Salmonid Culture Systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- Samuel-Fitwi, B.; Schroeder, J.P.; Schulz, C. System Delimitation in Life Cycle Assessment (LCA) of Aquaculture: Striving for Valid and Comprehensive Environmental Assessment Using Rainbow Trout Farming as a Case Study. Int. J. Life Cycle Assess. 2013, 18, 577–589. [Google Scholar] [CrossRef]
- García García, B.; Rosique Jiménez, C.; Aguado-Giménez, F.; García García, J. Life Cycle Assessment of Gilthead Seabream (Sparus aurata) Production in Offshore Fish Farms. Sustainability 2016, 8, 1228. [Google Scholar] [CrossRef] [Green Version]
- García García, B.; Rosique Jiménez, C.; Aguado-Giménez, F.; García García, J. Life Cycle Assessment of Seabass (Dicentrarchus labrax) Produced in Offshore Fish Farms: Variability and Multiple Regression Analysis. Sustainability 2019, 11, 3523. [Google Scholar] [CrossRef] [Green Version]
- Mungkung, R. Shrimp Aquaculture in Thailand: Application of Life Cycle Assesment to Support Sustainable Development; University of Surrey: Surrey, UK, 2005. [Google Scholar]
- Sun, W. Life Cycle Assessment of Indoor Recirculating Shrimp Aquaculture System; University of Michigan: Ann Arbor, MI, USA, 2009. [Google Scholar]
- Cao, L.; Diana, J.S.; Keoleian, G.A.; Lai, Q. Life Cycle Assessment of Chinese Shrimp Farming Systems Targeted for Export and Domestic Sales. Environ. Sci. Technol. 2011, 45, 6531–6538. [Google Scholar] [CrossRef]
- Hernández Orozco, J.E.; García Ramírez, C.B. Desempeño ambiental de la camaronicultura en la región Caribe de Colombia desde una perspectiva de Análisis del Ciclo de Vida. Gest. Ambient. 2015, 18, 29–49. [Google Scholar]
- Boissy, J.; Aubin, J.; Drissi, A.; Van Der Werf, H.M.G.; Bell, G.J.; Kaushik, S.J. Environmental Impacts of Plant-Based Salmonid Diets at Feed and Farm Scales. Aquaculture 2011, 321, 61–70. [Google Scholar] [CrossRef]
- Iribarren, D.; Moreira, M.T.; Feijoo, G. Life Cycle Assessment of Aquaculture Feed and Application to the Turbot Sector. Int. J. Environ. Res. 2012, 6, 837–848. [Google Scholar] [CrossRef]
- García García, J.; García García, B. An Econometric Viability Model for Ongrowing Sole (Solea senegalensis) in Tanks Using Pumped Well Sea Water. Span. J. Agric. Res. 2006, 4, 304. [Google Scholar] [CrossRef] [Green Version]
- CFE Tarifa de Estímulo Para Bombeo de Agua Para Riego Agrícola Con Cargo Único. Available online: https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/AgricolaCargoUnico.aspx (accessed on 11 May 2020).
- Ballestero, E. Economía de La Empresa Agraria y Alimentaria; Mundi-Prensa: Madrid, Spain, 2000. [Google Scholar]
- García, J.; Romero, P.; Botía, P.; García, F. Cost-Benefit Analysis of Almond Orchard under Regulated Deficit Irrigation (RDI) in SE Spain. Span. J. Agric. Res. 2004, 2, 157. [Google Scholar] [CrossRef] [Green Version]
- García García, J. Análisis Del Sector Del Limonero y Evaluación Económica de Su Cultivo; Consejería de Agricultura y Agua: Murcia, Spain, 2014.
- Romero Azorín, P.; García García, J. The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Conditions. Sustainability 2020, 12, 1930. [Google Scholar] [CrossRef] [Green Version]
- MAPA. Resultados Técnico-Económicos de Frutales 2017; MAPA: Madrid, Spain, 2019.
- CYPE Generador de Precios de La Construcción. Mexico. Available online: http://www.mexico.generadordeprecios.info/ (accessed on 11 December 2019).
- García García, J. Proyecto de Obras de Construcción de Un Mesocosmos En El Centro Oceanográfico de Mazarrón (Murcia, España); Visado Por El Colegio Oficial de Ingenieros Agrónomos de Murcia: Murcia, Spain, 2008. [Google Scholar]
- Restrepo, A.P.; García García, J.; Moral, R.; Vidal, F.; Pérez-Murcia, M.D.; Bustamante, M.Á.; Paredes, C. A Comparative Cost Analysis for Using Compost Derived from Anaerobic Digestion as a Peat Substitute in a Commercial Plant Nursery. Cienc. E Investig. Agrar. 2013, 40, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Bobadilla, E.E.; Rouco, A.; García García, J.; Martínez, F.E. Rentabilidad y Costos de Producción En Granjas Porcinas Productoras de Lechón En El Centro Del Estado de México. Cienc. Agríc. Inf. 2012, 20, 87–95. [Google Scholar]
- García García, J. Análisis Económico Financiero Comparado de Dos Sistemas de Engorde de Dorada (Sparus aurata) En El Litoral de La Región de Murcia; Universidad de Murcia: Murcia, Spain, 2001. [Google Scholar]
- Mochón, F.; Beker, V.A. Economía: Principios y Aplicaciones; Mac Graw Hill: Mexico City, Mexico, 2008. [Google Scholar]
- MAGRAMA. Análisis de La Economía de Los Sistemas de Producción; Resultados Técnico-Económico de Explotaciones Hortofrutícolas de La Región de Murcia En 2012; MAGRAMA: Madrid, Spain, 2012.
- CCE. Hacia Un Sector Vitivinícola Europeo. In Informe de La Comisión de Las Comunidades Europeas; CCE: Greensboro, NC, USA, 2006. [Google Scholar]
- ISO. Environmental Management-Life Cycle Assessment: Principles and Framework; ISO 14040; ISO-International Organization for Standards: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management—Life Cycle Assessment: Requirements and Guidelines; ISO 14044; ISO-International Organization for Standards: Geneva, Switzerland, 2006. [Google Scholar]
- PRé Consultants. Introduction to LCA with SimaPro; PRé Consultants: Amersfoort, The Netherlands, 2016. [Google Scholar]
- Mungkung, R.; Udo De Haes, H.; Clift, R. Potentials and Limitations of Life Cycle Assessment in Setting Ecolabelling Criteria: A Case Study of Thai Shrimp Aquaculture Product (5 Pp). Int. J. Life Cycle Assess. 2006, 11, 55–59. [Google Scholar] [CrossRef]
- Pelletier, N.; Tyedmers, P.; Sonesson, U.; Scholz, A.; Ziegler, F.; Flysjo, A.; Kruse, S.; Cancino, B.; Silverman, H. Not All Salmon Are Created Equal: Life Cycle Assessment (LCA) of Global Salmon Farming Systems. Environ. Sci. Technol. 2009, 43, 8730–8736. [Google Scholar] [CrossRef] [Green Version]
- Fréon, P.; Durand, H.; Avadí, A.; Huaranca, S. Life Cycle Assessment of Three Peruvian Fishmeal Plants: Toward a Cleaner Production. J. Clean. Prod. 2017, 145, 50–63. [Google Scholar] [CrossRef]
- Ferrara, C.; De Feo, G. Life Cycle Assessment Application to the Wine Sector: A Critical Review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- García García, J.; García García, B. Aspectos socioeconómicos y ambientales del cultivo de la uva Monastrell. In El Libro de la Monastrell; Comunidad Autónoma de la Región de Murcia: Murcia, Spain, 2018; pp. 71–87. ISBN 978-84-09-06249-2. [Google Scholar]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; De Koning, A.; Van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo De Haes, H.A.; et al. Handbook on Life Cycle Assessment. In Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; ISBN 1-4020-0228-9. [Google Scholar]
- García García, J.; Cerezo Valverde, J.; Aguado Giménez, F.; Garcia Garcia, B. A Feasibility/Profitability Model for Common Octopus (Octopus vulgaris) Ongrowing under Intensive Conditions on Land-Based Facilities. Eur. Aquac. Soc. Spec. Publ. 2004, 34, 360–361. [Google Scholar]
- Vázquez Hurtado, M.; Sánchez Brito, I.; Ortega-Rubio, A. Maricultura En La Bahía de La Paz, B.C.S., México: Impacto Socioeconómico de Los Cultivos de Atún y Camarón. Estud. Soc. Hermosillo Son 2011, 19, 175–193. [Google Scholar]
- Fraga-Castro, I.; Jaime-Ceballos, B. Estrategias Para Optimizar El Manejo Del Alimento En El Engorde Del Camarón Blanco Del Caribe Litopenaeus schmitti. Rev. Aquat. 2011, 35, 20–34. [Google Scholar]
- Ayala-Garay, A.V.; Schwentesius-Rindermann, R.; De La O-Olán, M.; Preciado-Rangel, P.; Almaguer-Vargas, G.; Rivas-Valencia, P. Análisis de rentabilidad de la producción de maíz en la región de Tulancingo, Hidalgo, México. Agric. Soc. Desarro. 2013, 10, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Romo Bacco, C.E.; Valdivia Flores, A.G.; Carranza Trinidad, R.G.; Cámara Córdova, J.; Zavala Arias, M.P.; Flores Ancira, E.; Espinosa García, J.A. Brechas de Rentabilidad Económica En Pequeñas Unidades de Producción de Leche En El Altiplano Central Mexicano. Rev. Mex. Cienc. Pecu. 2014, 5, 273–290. [Google Scholar] [CrossRef] [Green Version]
- Frias Hernández, A.; Castillo Santiago, V.G. Estudio Técnico-Financiero Para La Producción de Tilapia (Oreochromis niloticus) En Sistema Intensivo En El Distrito de Tuxtepec, Oaxaca; Universidad Autónoma Chapingo: Texcoco, Mexico, 2011. [Google Scholar]
- SIAP Anuario Estadístico de La Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 15 July 2020).
- De Benito, F.; Maicas, F.; Jauralde, I.; Martínez, S.; Marín, M.; Jover, M. Evaluación de la rentabilidad económica de la producción de dorada (Sparus auratus) en jaulas marinas. Rev. Aquat. 2012, 37, 123–138. [Google Scholar]
- Merinero, S.; Martínez, S.; Tomás, A.; Jover, M. Análisis Económico de Alternativas de Producción de Dorada En Jaulas Marinas En El Litoral Mediterráneo Español. Rev. Aquat. 2005, 23, 1–19. [Google Scholar]
- Brakman, S.; Garretsen, H. The New Introduction to Geographical Economics; Cambridge University Press: London, UK, 2012. [Google Scholar]
- Samuel-Fitwi, B.; Meyer, S.; Reckmann, K.; Schroeder, J.P.; Schulz, C. Aspiring for Environmentally Conscious Aquafeed: Comparative LCA of Aquafeed Manufacturing Using Different Protein Sources. J. Clean. Prod. 2013, 52, 225–233. [Google Scholar] [CrossRef]
- Ayer, N.W.; Tyedmers, P.H.; Pelletier, N.L.; Sonesson, U.; Scholz, A. Co-Product Allocation in Life Cycle Assessments of Seafood Production Systems: Rview of Problems and Strategies. Int. J. Life Cycle Assess. 2007, 12, 480–487. [Google Scholar] [CrossRef]
Description | Amount Per Year | Amount Per kg of Shrimp |
---|---|---|
Pre-cultivation activities | ||
Sodium hypochlorite (g) | 15,000 | 0.2590 |
Probiotic (kg) | 43,428 | 0.7500 |
Molasses (kg) | 8448 | 0.1459 |
Paralarvae (number of shrimp) | 6,031,711 | 104.0000 |
Drugs and others | ||
Vitamins (kg) | 41 | 0.0007 |
Antibiotics (kg) | 41 | 0.0007 |
Filter material (kg) | 500 | 0.0086 |
Feed | ||
Raceway 45% (kg) | 4222 | 0.0729 |
Crumb 40% (kg) | 12,667 | 0.2188 |
Micropellet 30% (kg) | 33,778 | 0.5833 |
Pellet 30% (kg) | 30,400 | 0.5250 |
Electricity | ||
Electro blowers (kWh) | 281,875 | 4.8680 |
Centrifugal pumps (kWh) | 11,745 | 0.2028 |
Illumination (kWh) | 587 | 0.0101 |
Chapter | Concept | Budget UDS | Budget/ Chapter UDS | % on K0 |
---|---|---|---|---|
Land development | Preliminary studies and licenses | 19,550 | 149,931 | 34.8% |
Earthworks | 32,080 | |||
Floors and drainage | 98,301 | |||
Infrastructure | Building and auxiliary facilities | 104,155 | 104,155 | 24.2% |
Auxiliary systems | Hydraulic system | 19,759 | 101,465 | 23.6% |
Blowers system | 14,910 | |||
Electrical installation | 36,426 | |||
Laboratory, furniture and transportation | 30,370 | |||
Equipment | Blower and pumping equipment | 13,235 | 13,235 | 3.1% |
Cultivation units | Culture tanks | 61,736 | 61,736 | 14.3% |
Investment | 430,522 | 100.0% |
Economic Parameters | UDS | UDS tn−1 of Shrimp |
---|---|---|
Initial investment K0 | 430,522 | 7435 |
Fixed assets | 31,444 (16%) | 543 |
Variable costs | 164,740 (84%) | 2845 |
Total cost | 196,184 | 3398 |
Total incomes | 253,213 | 4373 |
Net margin | 57,029 | 985 |
Chapter | Investment (UDS) | UL (Years) | RV (UDS) | Amortization (UDS) | FC (UDS) | %/TC * |
---|---|---|---|---|---|---|
Land development | 149,931 | 30 | 0 | 4998 | 5128 | 2.60% |
Infrastructure | 104,155 | 15 | 0 | 6944 | 7125 | 3.60% |
Auxiliary systems | 101,465 | 10 | 0 | 10,147 | 10,411 | 5.30% |
Equipment | 13,235 | 5 | 1324 | 2382 | 2445 | 1.20% |
Cultivation units | 61,736 | 10 | 0 | 6174 | 6335 | 3.20% |
Investment | 430,522 | – | – | – | 31,444 | 16.00% |
Chapter | Variable Costs (VC) (UDS) | %/TC * |
---|---|---|
Preliminary activities | 1305 | 0.70% |
Paralarvae | 33,309 | 17.00% |
Drugs and chemicals reagents | 5291 | 2.70% |
Feed | 73,432 | 37.40% |
Personal | 31,452 | 16.00% |
Electricity | 12,316 | 6.30% |
Land rent | 3854 | 2.00% |
Various | 3782 | 1.90% |
Subtotal | 164,740 | 84.00% |
Description | Value |
---|---|
NM/K0 (%) | 13.2 |
NM/VC (%) | 34.6 |
NM/TC (%) | 29.1 |
VT (cost UDS per kg) | 3.4 |
BEP (minimum tn year−1) | 44,863 |
BEP (minimum number of tanks) | 15 |
BEP (minimum survival %) | 55 |
BEP (minimum density shrimp/m3) | 309 |
Variables | Profitability | Elasticity Value | Relationship |
---|---|---|---|
Selling price | (SP/profitability) | +4.44% | Very elastic |
Survival | (S/profitability) | +2.82% | Very elastic |
Stocking density | (SD/profitability) | +2.06% | Elastic |
FCR | (FCR/profitability) | –1.69% | Elastic |
Feed price | (FP/profitability) | –1.65% | Elastic |
Investment | (K0/profitability) | –0.72% | Inelastic |
Paralarvae price | (PL/profitability) | –0.65% | Inelastic |
Energy price | (EP/profitability) | –0.28% | Inelastic |
Indicator | Value |
---|---|
Direct employment (AWU ha−1) | 8 |
CRE (UDS ha−1) | 337,617 |
Territorial productivity (t ha−1) | 77.2 |
Surface threshold (ha) | 0.6 |
PEI | Total | Electricity | Feed | Product | Fuel |
---|---|---|---|---|---|
AD (kg Sb-eq) | 3.01 × 10−5 | 1.23 × 10−5 | 1.55 × 10−5 | 2.19 × 10−6 | 1.07 × 10−7 |
ADFF (MJ) | 6.48 × 10+1 | 4.29 × 10+1 | 1.96 × 10+1 | 6.63 × 10−1 | 1.74 × 100 |
GW (kg CO2-eq) | 5.08 × 100 | 3.33 × 100 | 1.67 × 100 | 5.83 × 10−2 | 2.05 × 10−2 |
OLD (kg CFC−11-eq) | 3.87 × 10−7 | 2.49 × 10−7 | 1.02 × 10−7 | 1.26 × 10−8 | 2.23 × 10−8 |
HT (kg 1,4-DB-eq) | 2.25 × 100 | 1.72 × 100 | 4.40 × 10−1 | 7.88 × 10−2 | 1.07 × 10−2 |
FWAE (kg 1,4-DB-eq) | 2.67 × 100 | 2.24 × 100 | 3.48 × 10−1 | 7.48 × 10−2 | 3.67 × 10−3 |
MAE (kg 1,4-DB-eq) | 4.01 × 10+3 | 3.47 × 10+3 | 4.20 × 10+2 | 1.18 × 10+2 | 1.04 × 10+1 |
TE (kg 1,4-DB-eq) | 5.21 × 10−2 | 1.82 × 10−2 | 3.37 × 10−2 | 1.82 × 10−4 | 4.11 × 10−5 |
PO (kg C2H4-eq) | 9.57 × 10−4 | 5.66 × 10−4 | 3.67 × 10−4 | 1.38 × 10−5 | 9.37 × 10−6 |
A (kg SO2-eq) | 2.62 × 10−2 | 1.41 × 10−2 | 1.15 × 10−2 | 4.45 × 10−4 | 2.13 × 10−4 |
E (kg PO4-eq) | 1.07 × 10−2 | 5.85 × 10−3 | 4.65 × 10−3 | 1.76 × 10−4 | 2.43 × 10−5 |
Aquaculture System | Country | GW | A | E | Ref. |
---|---|---|---|---|---|
kg CO2-eq | kg SO2-eq | kg PO4-eq | |||
Super-intensive | Mexico | 5.0788 | 0.0262 | 0.0107 | This study |
Intensive | China | 5.2800 | 0.0439 | 0.0630 | [26] |
Intensive | USA | 5.9100 | 0.0506 | 0.0015 | [25] |
Intensive | Thailand | 5.2100 | 0.0185 | 0.0106 | [24] |
Semi-intensive | China | 2.7500 | 0.1940 | 0.0323 | [26] |
Semi-intensive | Colombia | 3.6000 | 0.0240 | 0.0047 | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noguera-Muñoz, F.A.; García García, B.; Ponce-Palafox, J.T.; Wicab-Gutierrez, O.; Castillo-Vargasmachuca, S.G.; García García, J. Sustainability Assessment of White Shrimp (Penaeus vannamei) Production in Super-Intensive System in the Municipality of San Blas, Nayarit, Mexico. Water 2021, 13, 304. https://doi.org/10.3390/w13030304
Noguera-Muñoz FA, García García B, Ponce-Palafox JT, Wicab-Gutierrez O, Castillo-Vargasmachuca SG, García García J. Sustainability Assessment of White Shrimp (Penaeus vannamei) Production in Super-Intensive System in the Municipality of San Blas, Nayarit, Mexico. Water. 2021; 13(3):304. https://doi.org/10.3390/w13030304
Chicago/Turabian StyleNoguera-Muñoz, Favio Andrés, Benjamín García García, Jesús Trinidad Ponce-Palafox, Omar Wicab-Gutierrez, Sergio Gustavo Castillo-Vargasmachuca, and José García García. 2021. "Sustainability Assessment of White Shrimp (Penaeus vannamei) Production in Super-Intensive System in the Municipality of San Blas, Nayarit, Mexico" Water 13, no. 3: 304. https://doi.org/10.3390/w13030304
APA StyleNoguera-Muñoz, F. A., García García, B., Ponce-Palafox, J. T., Wicab-Gutierrez, O., Castillo-Vargasmachuca, S. G., & García García, J. (2021). Sustainability Assessment of White Shrimp (Penaeus vannamei) Production in Super-Intensive System in the Municipality of San Blas, Nayarit, Mexico. Water, 13(3), 304. https://doi.org/10.3390/w13030304