Spatiotemporal Analysis of Surface Water Quality in Dong Thap Province, Vietnam Using Water Quality Index and Statistical Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Water Sampling and Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Summary of Surface Water Quality in Dong Thap Province in 2019
3.2. Correlation among Water Quality Variables in Water Bodies in Dong Thap Province in 2019
3.3. Spatial Variation of Water Quality Index in the Water Bodies in Dong Thap Province in 2019
3.4. Key Water Variables Influencing Water Quality in the Water Bodies in Dong Thap Province in 2019
3.5. Clustering Water Quality in the Water Bodies in Dong Thap Province in 2019
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xo, L.Q. Publicizing the Master Plan for Irrigation in the Mekong River Delta in Terms of Climate Change and Sea Level Rise in 2012. Available online: https://siwrp.org.vn/tin-tuc/cong-bo-quy-hoach-tong-the-thuy-loi-dong-bang-song-cuu-long-trong-dieu-kien-bien-doi-khi-hau-nuoc-bien-dang_149.html (accessed on 28 January 2020).
- Ogston, A.S.; Alison, M.A.; Mullarney, J.C. Nittouer Sediment and hydro-dynamics of the Mekong Delta: From tidal river to continental shelf. Cont. Shelf Res. 2017, 147, 1–6. [Google Scholar] [CrossRef]
- Brunier, G.; Edward, J.A.; Marc, G.; Mireille, P.; Philippe, D. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 2014, 224, 177–191. [Google Scholar] [CrossRef]
- Dang, T.D.; Cochrane, T.A.; Arias, M.E.; Tri, V.P.D. Future hydrological alterations in the Mekong Delta under the impact of water resources development, land subsidence and sea level rise. J. Hydrol. Reg. Stud. 2015, 15, 119–133. [Google Scholar] [CrossRef]
- Manh, N.V.; Dung, N.V.; Hung, N.N.; Kummu, M.; Merz, B.; Apel, H. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob Planet Chang. 2015, 127, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Kakonen, M. Mekong Delta at the crossroads: More control or adaptation. Swed. Acad. Sci. 2008, 37, 205–217. [Google Scholar]
- Turner, S.; Pangarre, G.; Mather, R.J. Water governace: A situational analysis of Cambodia, Lao PDR and Vietnam. In Mekong Region Water Dialogues; IUCC: Gland, Switzerland, 2009; Volume 2, p. 59. [Google Scholar]
- Truong, T.V. River basin management challenges and solutions. Available online: http://www.vncold.vn/Web/Content.aspx?distid=3798 (accessed on 28 January 2020).
- Vietnam Environmental Protection Agency. National Technical Regulation on Surface Water Quality (QCVN 08-2015/BTNMT); Vietnam Environmental Protection Agency: Hanoi, Vietnam, 2015. [Google Scholar]
- Zhou, F.; Liu, Y.; Guo, H. Application of multivariate statistical methods to water quality assessment of the water courses in north western new territories Hong Kong. Environ. Monit. Assess. 2007, 132, 1–13. [Google Scholar] [CrossRef]
- Feher, I.C.; Zaharie, M.; Oprean, I. Spatial and seasonal variation of organic pollutants in surface water using multivariate statistical techniques. Water Sci. Technol. 2016, 74, 1726–1735. [Google Scholar] [CrossRef]
- Barakat, A.; Mohamed, E.B.; Jamila, R.; Brahim, A.; Mohamed, S. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Zeinalzadeh, K.; Rezaei, E. Determining spatial and temporal changes of surface water quality using principal component analysis. J. Hydrol. Reg. Stud. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Howladar, M.F.; Numanbakth, M.A.A.; Faruque, M.O. An application of water quality index (WQI) and multivariate statistics to evaluate water quality around maddhapara granite mining industrial area, dinajpur, Bangladesh. Environ. Syst. Res. 2017, 6, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Minh, H.V.T.; Kurasaki, M.; Ty, T.V.; Tran, D.Q.; Le, K.N.; Avtar, R.; Rahman, M.; Osaki, M. Effects of Multi-Dike Protection Systems on Surface Water Quality in the Vietnamese Mekong Delta. Water 2019, 11, 1010. [Google Scholar] [CrossRef] [Green Version]
- APHA; AWWA. WEF Standard Methods of for the Examnination of Water and Wastewwater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Vietnam Environment Administration. Decision 1460/QD-TCMT Dated November 12, 2019 on the Issuing of Technical Guide to Calculation and Disclosure Vietnam Water Quality Index (VN_WQI); Vietnam Environment Administration: Hanoi, Vietnam, 2019.
- Heale, R.; Twycross, A. Validity and reliability in quantitative studies. Evid. Based Nurs. 2015, 18, 66–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prathumratana, L.; Sthiannopkao, S.; Kim, K.W. The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environ. Int. 2008, 34, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Lien, N.T.K.; Huy, L.Q.; Oanh, D.T.H.; Phu, T.Q.; Ut, V.N. Water quality in mainstream and tributaries of Hau River. Can Tho Univ. J. Sci. 2016, 43, 68–79. [Google Scholar]
- Ly, N.H.T.; Giao, N.T. Surface water quality in canals in An Giang province, Viet Nam, from 2009 to 2016. J. Vietnam. Environ. 2018, 10, 113–119. [Google Scholar] [CrossRef]
- Giao, N.T. Surface water quality at the branches adjacent to Hau river in Can Tho city. Sci. Technol. J. Agric. Rural Dev. 2020, 15, 79–86. [Google Scholar]
- Panigrahi, S.; Acharya, B.C.; Panigrahy, R.C.; Nayak, B.K.; Banarjee, K.; Sarkar, S.K. Anthropogenic Impact on Water Quality of Chilika Lagoon RAMSAR Site: A Statistical Approach. Wetl. Ecol. Manag. 2007, 15, 113–126. [Google Scholar] [CrossRef]
- Kankal, N.C.; Indurkar, M.M.; Gudadhe, S.K.; Wate, S.R. Water Quality Index of Surface Water Bodies of Gujarat, India. Asian J. Exp. Sci. 2012, 26, 39–48. [Google Scholar]
- Rakotondrabe, F.; Ngoupayou, J.R.N.; Mfonka, Z.; Rasolomanana, E.H.; Abolo, A.J.N.; Ako, A.A. Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate statistical analysis approach. Sci. Total Environ. 2018, 610, 831–844. [Google Scholar] [CrossRef]
- Giau, V.T.N.; Tuyen, P.T.B.; Trung, N.H. Assessing surface water quality of Can Tho river in the period of 2010-2014 using water quality indicator (WQI). Can Tho Univ. J. Sci. 2019, 55, 105–113. [Google Scholar]
- Olajire, A.A.; Imeppeoria, F.E. Water quality assessment of Osun River: Studies on inorganic nutrients. Environ. Monit. Assess. 2001, 69, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Ty, D.V. Evaluation of water quality in Binh Thien lagoon, An Giang province. Can Tho J. Sci. 2018, 54, 125–131. [Google Scholar]
- Palma, P.; Fialho, S.; Lima, A.; Mourinha, C.; Penha, A.; Novais, M.H.; Rosado, A.; Morais, M.; Potes, M.; Costa, M.J.; et al. Land-Cover Patterns and Hydrogeomorphology of Tributaries: Are These Important Stressors for the Water Quality of Reservoirs in the Mediterranean Region? Water 2020, 12, 2665. [Google Scholar] [CrossRef]
- Ongley, E.D. Water Quality of the Lower Mekong River. In The Mekong; Academic press: Montreal, QC, Canada, 2009; pp. 297–320. [Google Scholar]
- Kutoka, G. Management of Eutrophication in Small Dams with Both Urban and Rural Catchments in Zimbabwe: A Case Study of Rufaro Dam, Marondera, Zimbabwe. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Tropical Resources Ecology. Master’s Thesis, University of Zimbabwe, Harare, Zimbabwe, 2012. [Google Scholar]
- Truc, D.T.; Phat, P.H.; Giang, N.D.; Toan, P.V.; Tri, V.P.D. The water surface quality of Tien river in the area of Tan Chau district, An Giang province. Can Tho J. Sci. 2019, 55, 53–60. [Google Scholar]
- Sharma, R.C. Effective Mitigation: The Cumulative Impact of Climate Change on Transportation Network and Its Implications on Aquatic Biodiversity of Ganges Headwaters, Garhwal Himalayas. In Proceedings of the 2009 International Conference on Ecology and Transportation (ICOET 2009), Duluth, MN, USA, 13–17 September 2009; pp. 512–522. [Google Scholar]
- Servais, P.; Garcia-Armisen, T.; George, I.; Billen, G. Fecal bacteria in the riversof the Seine drainage network (France): Sources, fate and modeling. Sci. Total Environ. 2007, 375, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Ouattara, N.; Passerat, J.; Servais, P. Faecal contamination of water and sedimentin the rivers of the Scheldt drainage network. Environ. Monit. Assess. 2011, 183, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Li, J.X.; Liao, W.G. An analysis on the possibilities of eutrophication in the Three Gorges Reservoir. Sci. Technol. Rev. 2003, 9, 49–52. [Google Scholar]
- Wondie, T.A. The Impact of Urban Storm Water Runoff and Domestic Waste Effluent on Water Quality of Lake Tana and local Groundwater Near the City of Bahir Dar, Ethiopia. Ph.D. Dissertation, Cornell University Ithaca, New York, NY, USA, 2009. [Google Scholar]
- Geurts, J.J.M.; Sarneel, J.M.; Willers, B.J.C.; Roelofs, J.G.M.; Verhoeven, J.T.A.; Lamers, L.P.M. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment. Environ. Pollut. 2009, 157, 2072–2081. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar]
- Han, Y.; Lau, S.L.; Kayhanian, M.; Stenstrom, M.K. Characteristics of highway stormwater runoff. Water Environ. Res. 2006, 78, 2377–2388. [Google Scholar]
- Ruiz, G.; Jeison, D.; Rubilar, O.; Ciudad, G.; Chamy, R. Nitrification–denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresour. Technol. 2006, 97, 300–335. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Tang, J.; Dong, Z.; Liu, H.; Zhang, X.; Holden, N.M. Tempo-spatial controls of total coliform and E. coli contamination in a subtropical hilly agricultural catchment. Agric. Water Manag. 2018, 200, 10–18. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Kumar, P.; Le, K.N.; Kurasaki, M.; Ty, T.V. Impact of Rice Intensification and Urbanization on Surface Water Quality in An Giang Using a Statistical Approach. Water 2020, 12, 1710. [Google Scholar]
- Kale, A.; Bandela, N.; Kulkarni, J.; Raut, K. Factor analysis and spatial distribution of water quality parameters of Aurangabad District, India. Groundw. Sustain. Dev. 2020, 10, 100345. [Google Scholar] [CrossRef]
- Boyacioglu, H.; Boyacioglu, H. Water pollution sources assessment by multivariate statistical methods in the Tahtali Basin, Turkey. Environ. Geol. 2008, 54, 275–282. [Google Scholar]
- Rodrigues, M.; Cravo, A.; Freire, P.; Rosa, A.; Santos, D. Temporal assessment of the water quality along an urban estuary (Tagus estuary, Portugal). Mar. Chem. 2020, 223, 103824. [Google Scholar] [CrossRef]
Var. | Temp. | pH | Turb | TSS | DO | BOD | COD | N-NH4+ | N-NO2− | N-NO3− | TN | P-PO43− | Cl− | SO42− | Col. | E. coli | Oil and Grease |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp | 1 | ||||||||||||||||
pH | 0.01 | 1 | |||||||||||||||
Turb | −0.01 | −0.27 | 1 | ||||||||||||||
TSS | 0.15 | 0.00 | −0.13 | 1 | |||||||||||||
DO | −0.24 | −0.03 | −0.09 | 0.13 | 1 | ||||||||||||
BOD | 0.26 | 0.01 | 0.01 | −0.04 | −0.05 | 1 | |||||||||||
COD | 0.23 | 0.03 | −0.08 | −0.07 | −0.05 | 0.84 | 1 | ||||||||||
N-NH4+ | 0.04 | 0.07 | 0.02 | −0.01 | 0.05 | 0.02 | 0.04 | 1 | |||||||||
N-NO2− | −0.07 | −0.10 | −0.11 | −0.15 | 0.07 | 0.10 | 0.08 | −0.10 | 1 | ||||||||
N-NO3− | 0.30 | 0.03 | −0.03 | 0.27 | 0.13 | 0.09 | 0.09 | 0.12 | −0.13 | 1 | |||||||
TN | 0.11 | −0.04 | 0.22 | 0.00 | 0.07 | 0.00 | 0.05 | 0.07 | −0.04 | 0.04 | 1 | ||||||
P-PO43− | 0.11 | −0.00 | −0.05 | 0.42 | 0.18 | 0.08 | 0.01 | −0.02 | 0.02 | 0.22 | −0.00 | 1 | |||||
Cl− | −0.03 | −0.15 | 0.33 | −0.16 | −0.03 | 0.06 | −0.02 | −0.10 | 0.34 | −0.28 | 0.06 | −0.02 | 1 | ||||
SO42− | 0.06 | −0.26 | 0.23 | 0.03 | 0.14 | 0.01 | −0.04 | −0.09 | 0.22 | −0.09 | 0.16 | 0.07 | 0.46 | 1 | |||
Col. | −0.02 | −0.03 | 0.00 | 0.34 | 0.03 | −0.09 | −0.06 | 0.07 | −0.06 | 0.07 | 0.08 | 0.04 | 0.02 | 0.06 | 1 | ||
E. coli | 0.12 | 0.06 | 0.02 | 0.19 | −0.02 | 0.03 | 0.05 | 0.09 | −0.01 | 0.02 | −0.01 | 0.05 | 0.09 | 0.16 | 0.58 | 1 | |
Oil and Grease | 0.00 | 0.03 | 0.05 | −0.13 | −0.02 | 0.05 | 0.06 | −0.01 | 0.00 | −0.05 | −0.03 | −0.06 | 0.09 | 0.00 | −0.10 | −0.00 | 1 |
Parameters | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | 0.00 | 0.38 | −0.04 | −0.21 | −0.34 | 0.34 | 0.20 | 0.33 | −0.08 | 0.25 | −0.01 |
pH | 0.13 | −0.33 | −0.02 | −0.22 | 0.23 | 0.04 | 0.23 | 0.32 | −0.33 | 0.56 | −0.10 |
Turbidity | 0.07 | −0.09 | 0.54 | −0.22 | −0.08 | −0.15 | 0.02 | −0.30 | −0.46 | −0.05 | 0.02 |
TSS | −0.41 | 0.06 | 0.23 | −0.22 | −0.06 | 0.05 | −0.22 | 0.15 | −0.02 | −0.14 | 0.12 |
DO | −0.18 | −0.36 | −0.08 | 0.29 | 0.33 | −0.18 | −0.20 | 0.25 | 0.22 | 0.20 | 0.08 |
BOD | 0.27 | 0.40 | 0.29 | 0.02 | 0.28 | −0.26 | −0.05 | 0.10 | 0.10 | 0.10 | 0.12 |
COD | 0.29 | 0.43 | 0.16 | 0.12 | 0.26 | −0.28 | −0.03 | 0.03 | 0.06 | 0.15 | 0.03 |
N-NH4+ | −0.96 | 0.16 | −0.14 | −0.02 | 0.40 | 0.44 | 0.15 | −0.57 | 0.03 | 0.32 | 0.08 |
N-NO2− | −0.22 | 0.08 | −0.07 | 0.62 | 0.04 | −0.23 | 0.27 | 0.14 | −0.56 | −0.06 | −0.14 |
N-NO3− | −0.20 | 0.32 | 0.03 | 0.37 | 0.11 | 0.29 | 0.24 | 0.24 | −0.01 | −0.18 | −0.01 |
TN | 0.02 | −0.01 | −0.06 | 0.19 | −0.50 | −0.38 | 0.43 | −0.17 | 0.35 | 0.31 | −0.03 |
P-PO43− | −0.19 | −0.10 | 0.52 | −0.02 | −0.03 | 0.17 | 0.06 | 0.27 | 0.28 | 0.21 | 0.25 |
Cl− | −0.29 | −0.07 | 0.41 | 0.12 | 0.10 | 0.04 | 0.17 | −0.18 | 0.21 | 0.03 | −0.66 |
SO42− | −0.37 | 0.06 | 0.05 | 0.28 | −0.16 | −0.09 | −0.11 | −0.24 | −0.18 | 0.28 | 0.51 |
Coliforms | −0.36 | 0.24 | −0.20 | −0.36 | 0.15 | −0.26 | 0.01 | 0.10 | 0.07 | −0.04 | −0.14 |
E. coli | −0.38 | 0.15 | −0.16 | −0.37 | 0.13 | −0.31 | 0.04 | −0.07 | 0.00 | 0.10 | 0.00 |
Oil and Grease | −0.02 | 0.20 | −0.04 | 0.16 | −0.26 | 0.06 | −0.66 | −0.01 | −0.12 | 0.40 | −0.40 |
Eigenvalues | 2.97 | 2.37 | 1.76 | 1.61 | 1.31 | 1.18 | 1.17 | 0.87 | 0.84 | 0.79 | 0.57 |
%Variation | 17.50 | 13.90 | 10.40 | 9.50 | 7.70 | 7.00 | 6.90 | 5.10 | 4.90 | 4.60 | 3.40 |
Cum.%Variation | 17.50 | 31.40 | 41.80 | 51.20 | 58.90 | 65.90 | 72.80 | 77.90 | 82.80 | 87.40 | 90.70 |
Parameters | Units | Clus. 1 | Clus. 2 | Clus. 3 | Clus. 4 | Clus. 5 | Clus. 6 | Clus. 7 | Clus. 8 | Clus. 9 | Clus. 10 | Clus. 11 | Clus. 12 | QCVN 08-MT:2015/BTNMT Column A2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp | °C | 30.35 | 30.45 | 30.64 | 30.5 | 30.64 | 30.79 | 29.97 | 29.93 | 30.43 | 30.2 | 29.88 | 30.31 | - |
pH | - | 7.38 | 7.13 | 7.25 | 7.2 | 7.25 | 7.21 | 7.27 | 7.43 | 7.27 | 7.44 | 7.12 | 7.27 | 6–8 |
Turb | NTU | 45.98 | 57.28 | 46.29 | 45.32 | 43.84 | 47.1 | 47.37 | 64.18 | 54.64 | 53.33 | 58.84 | 48.36 | - |
TSS | mg L−1 | 22.75 | 32 | 30.63 | 43.25 | 52 | 32.13 | 26.34 | 77.5 | 51.08 | 40.25 | 67 | 27.9 | 30 |
DO | mg L−1 | 5.45 | 4.83 | 5.12 | 5.05 | 5.15 | 4.88 | 5.17 | 5.17 | 5.21 | 5.17 | 5.39 | 5.13 | 5 |
BOD | mg L−1 | 14 | 15.5 | 15.63 | 15.16 | 14.25 | 14.75 | 14.73 | 15.5 | 14.58 | 15.5 | 14.63 | 15.24 | 6 |
COD | mg L−1 | 21.25 | 23 | 22.88 | 22.22 | 21.75 | 21.75 | 22.43 | 22.5 | 21.08 | 22.5 | 21.38 | 22.63 | 15 |
N-NH4+ | mg L−1 | 0.36 | 0.41 | 0.39 | 0.38 | 0.41 | 0.42 | 0.36 | 0.37 | 0.35 | 0.41 | 0.39 | 0.39 | 0.3 |
N-NO2− | mg L−1 | 0.02 | 0.02 | 0.02 | 0.25 | 0.24 | 0.09 | 0.36 | 0.33 | 0.13 | 0.06 | 0.38 | 0.25 | 0.05 |
N-NO3− | mg L−1 | 1.66 | 1.97 | 1.90 | 1.92 | 1.57 | 1.92 | 1.64 | 1.37 | 1.67 | 1.56 | 2.07 | 1.79 | 5 |
TN | mg L−1 | 4.09 | 4.14 | 4.10 | 3.99 | 4.29 | 4.2 | 4.13 | 3.62 | 4.25 | 3.85 | 4.13 | 4.17 | - |
P-PO43− | mg L−1 | 0.43 | 0.22 | 0.34 | 0.22 | 0.2 | 0.32 | 0.21 | 0.23 | 0.32 | 0.44 | 0.5 | 0.17 | 0.2 |
Cl− | mg L−1 | 11.84 | 14.54 | 13.9 | 12.18 | 13.97 | 12.48 | 12.08 | 10.92 | 12.22 | 12.48 | 21.34 | 11.98 | 350 |
SO42− | mg L−1 | 19.78 | 18.33 | 19.16 | 21.37 | 21.56 | 19.43 | 20.71 | 16.9 | 27.3 | 18.95 | 29.3 | 21.39 | - |
Coliform | MPN 100 mL−1 | 1708 | 2875 | 2475 | 11,553 | 20,600 | 4391 | 3808 | 5100 | 6330 | 7038 | 7866 | 5859 | 5000 |
E. coli | MPN 10 mL−1 | 420 | 948 | 550 | 1326 | 4871 | 776 | 625 | 1473 | 2049 | 513 | 1410 | 925 | 50 |
Oil and Grease | mg L−1 | 0.003 | 0.002 | 0.003 | 0.003 | 0.002 | 0.003 | 0.003 | 0.002 | 0.003 | 0.002 | 0.003 | 0.003 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanh Giao, N.; Kim Anh, P.; Thi Hong Nhien, H. Spatiotemporal Analysis of Surface Water Quality in Dong Thap Province, Vietnam Using Water Quality Index and Statistical Approaches. Water 2021, 13, 336. https://doi.org/10.3390/w13030336
Thanh Giao N, Kim Anh P, Thi Hong Nhien H. Spatiotemporal Analysis of Surface Water Quality in Dong Thap Province, Vietnam Using Water Quality Index and Statistical Approaches. Water. 2021; 13(3):336. https://doi.org/10.3390/w13030336
Chicago/Turabian StyleThanh Giao, Nguyen, Phan Kim Anh, and Huynh Thi Hong Nhien. 2021. "Spatiotemporal Analysis of Surface Water Quality in Dong Thap Province, Vietnam Using Water Quality Index and Statistical Approaches" Water 13, no. 3: 336. https://doi.org/10.3390/w13030336
APA StyleThanh Giao, N., Kim Anh, P., & Thi Hong Nhien, H. (2021). Spatiotemporal Analysis of Surface Water Quality in Dong Thap Province, Vietnam Using Water Quality Index and Statistical Approaches. Water, 13(3), 336. https://doi.org/10.3390/w13030336