A Stochastic Procedure for Temporal Disaggregation of Daily Rainfall Data in SuDS Design
Abstract
:1. Introduction
2. Materials and Methods
- Aggregation of observed 15-min rainfall into a time-step of 24 h. Consequently, two observed rainfall series with different time aggregation were obtained. This process was done in order to manage the rainfall field information commonly available. Nevertheless, the use of sub-hourly series is crucial to verify the results of disaggregation stochastic methodology;
- Calibration of the stochastic rainfall generator based on the 24 h observed rainfall series. Once the model was calibrated, 100 rainfall series, each of 20 years of continuous data with 15 min time-step, were generated;
- Independent storm events were extracted from each, observed and stochastically generated, rainfall series. We considered different values for the minimum antecedent dry weather period (MIT, Minimum Inter-event Time) and different thresholds of storm event total volume. Then, for every MIT and threshold value, key characteristics were calculated for all rainfall event patterns. The comparison of these characteristics was done for the observed and the median of simulated series in order to verify the ability of the stochastic rainfall generator to reproduce the observed rainfall properties;
- Determination of hydrological design parameters of SuDS associated to the storms extracted, considering the different values of MIT and threshold, from each observed and simulated rainfall series. These parameters are usually based on percentiles of rainfall to be managed. These percentiles may be formulated in terms of the number of rainfall events to be managed, Nx or the accumulated volume of the rainfall series to be managed, Vx. Sub-index x refers to the percentage (number or volume) to be managed, commonly used in the practice;
- Two distinct sensitivity analysis were applied to the values of Nx and Vx. Effects of (a) different MIT values and (b) different storm total volume thresholds, on the rainfall volumetric percentiles values were analyzed;
- Comparison and analysis of the results.
2.1. Generation of Stochastic Rainfall Series
- Analysis to derive statistics from observed rainfall series with 24 h temporal aggregation;
- Fitting/Model calibration. The single-site version of the model is calibrated by applying the log-parameter Shuffled Complex Evolution (InSCE) [42] algorithm with a convergence criterion. This numerical optimization allows to identify the model parameters such that the simulation best corresponds to a selected set of rainfall statistics for each month: mean (24 h), variance (24 and 48 h), lag-autocorrelation (24 h), dry period probability (24 h with a threshold of 1 mm) and skewness (24 and 48 h). For a single site application of RainSim V.3., five parameters usually adopted in NSRP simulators, were calibrated for every calendar month: λ (1/mean waiting time between adjacent storm origins [1/h]); β (1/mean waiting time for rain cell origins after storm origin [1/h]); η (1/mean duration of rain cell [1/h]); ν (mean number of rain cells per storm [-]); xi (1/mean intensity of a rain cell [h/mm]);
- Simulation, that is, generation of 100 rainfall series of continuous data. Each series is composed by 20 years, with a length equal to that of the observed period (1998–2018), of rainfall data with 15 min time-step;
- Analysis to check whether the simulated time series are consistent with the observed one.
2.2. Identification of Independent Rainstorm Events and Key Characteristics of Rainfall Patterns
2.3. Calculation of Rainfall Volumetric Percentiles for SuDS Design
2.4. Evaluation of the Stochastic Model Performance
2.5. Limitations of the Methodology
3. Results and Discussion
3.1. Key Characteristics of Rainfall Series
3.2. Stochastic Representation of Rainfall Volumetric Percentiles for SuDS Design
3.3. Sensitivity Analysis of Hydrologic Design Parameters by Considering Different MIT and Threshold Values
4. Conclusions
- Using a MIT and a storm volume threshold equal to 24 h and 0.5 mm respectively, simulated sub-hourly rainfall series show better performance than observed daily rainfall for the Florence dataset. Results are compared in terms of key characteristics of rainfall patterns and rainfall volumetric percentiles;
- The stochastic disaggregation model allows the use of sub-hourly MIT values in the process. Therefore, the issue of being able to consider only MIT values equal to 24 h multiples in engineering practice can be overcome. By using a MIT equal to 12 h and a storm volume threshold of 0.5 mm, results in terms of key characteristics of rainfall series and number of rainstorm events, improve comparing with the observed ones obtained with 24 h MIT;
- Nx simulated percentiles are very sensitive to MIT and storm volume threshold values. Consequently, these parameters should be carefully selected to ensure the representativeness of the study. Nevertheless, Vx simulated percentiles show dependence regarding MIT values but not regarding storm volume threshold. These outcomes can be used in the hydrological design of different types of SuDS facilities that deals with different water treatment purposes.
- The proposed methodology produces a probability distribution of design parameters rather than one single deterministic value. This opens the field for doing probabilistic design (for instance, based on percentiles of the design parameters) and for doing uncertainty analysis (by exploring the sensitivity of the design to different values in the probability distribution of the design parameters).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanov, D.V. Post-globalization, super-urbanization and prospects of social development. Res. Result. Sociol. Manag. 2020, 6, 72–79. [Google Scholar] [CrossRef]
- Liu, Y.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; McMillan, S.K.; Chaubey, I. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Sci. Total Environ. 2017, 601, 580–593. [Google Scholar] [CrossRef]
- Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Conventional and decentralized urban stormwater management: A comparison through case studies of Singapore and Berlin, Germany. Urban Water J. 2017, 14, 113–124. [Google Scholar] [CrossRef]
- Ballard Woods, B.; Wilson, B.; Udale-Clarke, H.; Illman, H.; Scott, T.; Ashley, R.; Kellagher, R. The SUDS Manual; CIRIA: London, UK, 2015; ISBN 9780860176978. [Google Scholar]
- Charlesworth, S.M.; Booth, C.A. Sustainable Surface Water Management: A Handbook for SUDS; John Wiley & Sons, Ltd.: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Charlesworth, S.M.; Harker, E.; Rickard, S. A Review of Sustainable Drainage System (SUDs): A Soft option for Hard Drainage Questions? JSTOR Geogr. Assoc. 2015, 88, 99–107. [Google Scholar]
- Green, A. Sustainable Drainage Systems (SuDS) in the UK; Springer: Cham, Switzerland, 2019; ISBN 9783030118181. [Google Scholar]
- Sörensen, J.; Persson, A.; Sternudd, C.; Aspegren, H.; Nilsson, J.; Nordström, J.; Jönsson, K.; Mottaghi, M.; Becker, P.; Pilesjö, P.; et al. Re-thinking urban flood management-time for a regime shift. Water 2016, 8, 332. [Google Scholar] [CrossRef] [Green Version]
- Morales, J.A.; Cristancho, M.A.; Baquero-Rodríguez, G.A. Trends in the design, construction and operation of green roofs to improve the rainwater quality. State Art Ingeniería Agua 2017, 21, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Huber, W.C.; Dickinson, R.E. Storm Water Management Model, Version4: User’s Manual; EPA/600/3-88/001a; Environmental Protection Agency: Washington, DC, USA, 1992; p. 720. [Google Scholar]
- Andersen, S.; Maria, S.; Danielsen, H.J.; Andersen, J.S.; Lerer, S.M.; Danielsen, H.J.; Backhaus, A.; Jensen, M.B. Characteristic Rain Events—A tool to enhance amenity values in SUDS-design. Aide à la Décision/Decis. Mak. 2016, 9, 1–4. [Google Scholar]
- Gulliver, J.S.; Anderson, J.L.; Asleson, B.C.; Baker, L.A.; Erickson, A.J.; Hozalski, R.M.; Mohseni, O.; Nieber, J.L.; Riter, T.; Weiss, P.; et al. Assessment of Stormwater Best Management Practices; Report University of Minnesota; University of Minnesota: Minneapolis, MN, USA, 2008. [Google Scholar]
- Rivard, G. Small Storm Hydrology and BMP Modeling with SWMM5. J. Water Manag. Modeling 2010, R236-10. [Google Scholar] [CrossRef] [Green Version]
- Pitt, R.E. Small Storm Hydrology and Why it is Important for the Design of Stormwater Control Practices. J. Water Manag. Modeling 1999, R204-04. [Google Scholar] [CrossRef] [Green Version]
- Fratini, C.F.; Geldof, G.D.; Kluck, J.; Mikkelsen, P.S. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality. Urban Water J. 2012, 9, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Geldof, D.G.; Kluck, J. The Three Points Approach. In Proceedings of the 11th ICUD–International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
- Damodaram, C.; Giacomoni, M.H.; Prakash Khedun, C.; Holmes, H.; Ryan, A.; Saour, W.; Zechman, E.M. Simulation of combined best management practices and low impact development for sustainable stormwater management. J. Am. Water Resour. Assoc. 2010, 46, 907–918. [Google Scholar] [CrossRef]
- City of Portland. Stormwater Management Manual; Portland Bureau of Environmental Services: Portland, OR, USA, 2016. [Google Scholar]
- Sordo-ward, A.; Gabriel-martin, I.; Perales-Momparler, S.; Garrote, L. Influencia de la precipitación en el diseño de SUDS. Revista de Obras Públicas: Organo profesional de los ingenieros de caminos. Canales y Puertos 2019, 166, 28–31. [Google Scholar]
- Hirschman, D.J.; Kosco, J. Managing Stormwater in Your Community a Guide for Building an Effective Post-Construction Program; No: 833-R-08-001; Environmental Protection Agency, Center for Water-shed Protection; EPA: Washington, DC, USA, 2008. [Google Scholar]
- Paquet, E.; Garavaglia, F.; Garçon, R.; Gailhard, J. The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. J. Hydrol. 2013, 495, 23–37. [Google Scholar] [CrossRef]
- Guo, Y. Hydrologic design of urban flood control detention ponds. J. Hydrol. Eng. 2001, 6, 472–479. [Google Scholar] [CrossRef]
- Arnbjerg-Nielsen, K.; Willems, P.; Olsson, J.; Beecham, S.; Pathirana, A.; Bülow Gregersen, I.; Madsen, H.; Nguyen, V.T.V. Impacts of climate change on rainfall extremes and urban drainage systems: A review. Water Sci. Technol. 2013, 68, 16–28. [Google Scholar] [CrossRef]
- Brigandì, G.; Aronica, G.T. Generation of sub-hourly rainfall events through a point stochastic rainfall model. Geosciences 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Sordo-Ward, A.; Bianucci, P.; Garrote, L.; Granados, A. The influence of the annual number of storms on the derivation of the flood frequency curve through event-based simulation. Water 2016, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Ailliot, P.; Allard, D.; Monbet, V.; Naveau, P.; Ailliot, P.; Allard, D.; Monbet, V.; Naveau, P. Stochastic weather generators: An overview of weather type models Titre: Générateurs stochastiques de condition météorologiques: Une revue des modèles à type de temps. J. la Société Française Stat. 2015, 156, 101–113. [Google Scholar]
- Cowpertwait, P.S.P.; O’Connell, P.E.; Metcalfe, A.V.; Mawdsley, J.A. Stochastic point process modelling of rainfall. I. Single-site fitting and validation. J. Hydrol. 1996, 175, 17–46. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; Febres De Power, B.; Valdes, J.B. Rectangular pulses point process models for rainfall: Analysis of empirical data. J. Geophys. Res. 1987, 92, 9645–9656. [Google Scholar] [CrossRef]
- Burton, A.; Kilsby, C.G.; Fowler, H.J.; Cowpertwait, P.S.P.; O’Connell, P.E. RainSim: A spatial-temporal stochastic rainfall modelling system. Environ. Model. Softw. 2008, 23, 1356–1369. [Google Scholar] [CrossRef]
- Fowler, H.J.; Kilsby, C.G.; O’Connell, P.E.; Burton, A. A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. J. Hydrol. 2005, 308, 50–66. [Google Scholar] [CrossRef]
- Cowpertwait, P.S.P. A spatial-temporal point process model with a continuous distribution of storm types. Water Resour. Res. 2010, 46, W12507. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.J.; Tung, Y.K.; Yang, J.C. Stochastic generation of hourly rainstorm events. Stoch. Environ. Res. Risk Assess. 2006, 21, 195–212. [Google Scholar] [CrossRef]
- Wenzel, H.G.; Voorhees, M.L. Evaluation of the Urban Design Storm Concept; Report nr.164; Water Resources Center, University of Illinois: Urbana, IL, USA, 1981. [Google Scholar]
- Bonta, J.V.; Rao, A.R. Factors affecting the identification of independent storm events. J. Hydrol. 1988, 98, 275–293. [Google Scholar] [CrossRef]
- Restrepo-Posada, P.J.; Eagleson, P.S. Identification of independent rainstorms. J. Hydrol. 1982, 55, 303–319. [Google Scholar] [CrossRef]
- Shamsudin, S.; Dan’azumi, S.; Aris, A. Effect of storm separation time on rainfall characteristics-a case study of Johor, Malaysia. Eur. J. Sci. Res. 2010, 45, 162–167. [Google Scholar]
- Balistrocchi, M.; Grossi, G. Predicting the impact of climate change on urban drainage systems in northwestern Italy by a copula-based approach. J. Hydrol. Reg. Stud. 2020, 28, 100670. [Google Scholar] [CrossRef]
- Bianucci, P.; Sordo-Ward, Á.; Moralo, J.; Garrote, L. Probabilistic-multiobjective comparison of user-defined operating rules. case study: Hydropower dam in Spain. Water 2015, 7, 956–974. [Google Scholar] [CrossRef] [Green Version]
- Burton, A.; Fowler, H.J.; Kilsby, C.G.; O’Connell, P.E. A stochastic model for the spatial-temporal simulation of nonhomogeneous rainfall occurrence and amounts. Water Resour. Res. 2010, 46, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vrugt, J.A.; Gupta, H.V.; Bouten, W.; Sorooshian, S. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 2003, 39, 1201. [Google Scholar] [CrossRef] [Green Version]
- Dunkerley, D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrol. Process. Int. J. 2008, 22, 5024–5036. [Google Scholar] [CrossRef]
- Dan, S.; Shamsudin, S.; Aris, A. Modeling the Distribution of Rainfall Intensity using Hourly Data. Fac. Civil Eng. Inst. Environ. Water Resour. Manag. 2010, 6, 238–243. [Google Scholar]
- Walker, S.; Tsubo, M.; Hensley, M. Quantifying risk for water harvesting under semi-arid conditions: Part II. Crop yield simulation. Agric. Water Manag. 2005, 76, 94–107. [Google Scholar] [CrossRef]
- Bacchi, B.; Balistrocchi, M.; Grossi, G. Proposal of a semi-probabilistic approach for storage facility design. Urban Water J. 2008, 5, 195–208. [Google Scholar] [CrossRef]
- Voyde, E.; Fassman, E.; Simcock, R. Hydrology of an extensive living roof under sub-tropical climate conditions in Auckland, New Zealand. J. Hydrol. 2010, 394, 384–395. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 2007, 35, 1–9. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Climate change: Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.W. Sturges’ rule. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 303–306. [Google Scholar] [CrossRef]
Storm Volume Threshold 0.5 mm | Storm Volume Threshold 1 mm | Storm Volume Threshold 2 mm | |||
---|---|---|---|---|---|
MIT [hours] | Observed Data 15 min Time-Step | MIT [hours] | Observed Data 15 min Time-Step | MIT [hours] | Observed Data 15 min Time-Step |
3 | 1.52% | 3 | 2.65% | 3 | 6.02% |
6 | 0.93% | 6 | 1.63% | 6 | 3.96% |
12 | 0.58% | 12 | 1.01% | 12 | 2.52% |
24 | 0.33% | 24 | 0.57% | 24 | 1.63% |
48 | 0.17% | 48 | 0.29% | 48 | 0.85% |
72 | 0.11% | 72 | 0.2% | 72 | 0.59% |
MAE [mm] | RSR [-] | PBIAS [-] | |
---|---|---|---|
Storm Total Volume | |||
(MIT 24 h) Observed data 24 h time-step | 2.81 | 0.19 | −16.95 |
(MIT 24 h) Median of simulated data 15 min time-step | 2.75 | 0.16 | −15.95 |
(MIT 12 h) Median of simulated data 15 min time-step | 0.44 | 0.09 | −0.57 |
Storm Duration | |||
(MIT 24 h) Observed data 24 h time-step | 36.28 | 1.22 | −125.64 |
(MIT 24 h) Median of simulated data 15 min time-step | 4.36 | 0.16 | −14.33 |
(MIT 12 h) Median of simulated data 15 min time-step | 1.33 | 0.15 | 0.19 |
Storm Mean Intensity | |||
(MIT 24 h) Observed data 24 h time-step | 0.86 | 0.96 | 74.72 |
(MIT 24 h) Median of simulated data 15 min time-step | 0.35 | 0.59 | −30.71 |
(MIT 12 h) Median of simulated data 15 min time-step | 0.85 | 0.95 | −60.26 |
Storm Maximum Intensity | |||
(MIT 24 h) Observed data 24 h time-step | 9.66 | 4.12 | −361.90 |
(MIT 24 h) Median of simulated data 15 min time-step | 0.67 | 0.34 | −23.67 |
(MIT 12 h) Median of simulated data 15 min time-step | 0.48 | 0.29 | −20.27 |
Storm Volume Threshold 0.5 mm | MIT [hours] | |||||
---|---|---|---|---|---|---|
3 | 6 | 12 | 24 | 48 | 72 | |
Median of simulated data | 2690 | 1904 | 1242 | 828 | 586 | 486 |
Observed data 15 min. time-step | 2149 | 1718 | 1324 | 1009 | 724 | 558 |
Observed data 24 h time-step | - | - | - | 663 | 633 | 520 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pampaloni, M.; Sordo-Ward, A.; Bianucci, P.; Gabriel-Martin, I.; Caporali, E.; Garrote, L. A Stochastic Procedure for Temporal Disaggregation of Daily Rainfall Data in SuDS Design. Water 2021, 13, 403. https://doi.org/10.3390/w13040403
Pampaloni M, Sordo-Ward A, Bianucci P, Gabriel-Martin I, Caporali E, Garrote L. A Stochastic Procedure for Temporal Disaggregation of Daily Rainfall Data in SuDS Design. Water. 2021; 13(4):403. https://doi.org/10.3390/w13040403
Chicago/Turabian StylePampaloni, Matteo, Alvaro Sordo-Ward, Paola Bianucci, Ivan Gabriel-Martin, Enrica Caporali, and Luis Garrote. 2021. "A Stochastic Procedure for Temporal Disaggregation of Daily Rainfall Data in SuDS Design" Water 13, no. 4: 403. https://doi.org/10.3390/w13040403
APA StylePampaloni, M., Sordo-Ward, A., Bianucci, P., Gabriel-Martin, I., Caporali, E., & Garrote, L. (2021). A Stochastic Procedure for Temporal Disaggregation of Daily Rainfall Data in SuDS Design. Water, 13(4), 403. https://doi.org/10.3390/w13040403