Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations
Abstract
:1. Introduction
1.1. The Complete Mixing Model
- Ci represents the concentration at the start of link i (mg/l).
- Qj is the flow rate at link j (l/s).
- Qk,ext is the external source flow entering the network at node (l/s).
- Ck,ext is the concentration of the external flow entering at node (mg/l).
- I is the link with the flow leaving node .
1.2. Incomplete Mixing Models (IMMs)
1.3. Goals and Improvements of the Current Work
2. Materials and Methods
2.1. Experimental Cross and the CFD Model
2.2. Concentration Outlets Using the OUT Coefficient
2.3. The IMM by Polynomial Equations
- To solve the hydrodynamics of the network in the current hydraulic time step, in order to identify the CJ with two contiguous inlets and two contiguous outlets. For each quality-time step, the initial Q and C values will be: QN, QW, QE, QS and CN, CW, respectively. If the algorithm does not detect the two contiguous inlets and outlets at the CJ, then the concentrations are calculated using the Epanet complete mixing model.
- To calculate the QrIN and QrOUT ratios with Equations (7a) and (7b) for each CJ in step 1. They are compared to QrIN,Si and QrOUT,Si from the twelve scenarios and the chosen scenario Si will be the one with the lowest value of Ri (Equation (8)).
- The IN coefficient (Equation (2)) is calculated and evaluated in the selected polynomial equation from the previous step to obtain the OUT coefficient.
- Equations (6a) and (6b) are applied to determine the concentrations at the cross outlets CE and CS.
- To solve all the quality-time steps involved in the hydraulic time step and repeat from step 1 until the simulation is over.
Computational Algorithm to Apply the IMM by Polynomial Equations
2.4. Application Examples
2.4.1. Tests in a Proposed Network
2.4.2. Epanet Example Network NET3.net
3. Results
3.1. OUT Coefficient and Its Concentrations Results
The Polynomial Equations
3.2. Results of the Application Examples
3.2.1. Results from the Tests in the Proposed Network
3.2.2. Results by the Epanet Example Network NET3.net
3.3. Model Capabilities and Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geldreich, E.E. Microbial Quality of Water Supply in Distribution Systems; CRC Press LLC: Boca Raton, FL, USA, 1996; 504p, ISBN 1-56670-194-5. [Google Scholar]
- Alcocer-Yamanaka, V.H.; Tzatchkov, V.G.; Arreguín-Cortés, F.I. Modelo de calidad del agua en redes de distribución. Ing. Hidráulica En México 2004, 19, 77–88. [Google Scholar]
- Rodríguez, M.J.; Rodríguez, G.; Serodes, J.; Sadiq, R. Subproductos de la desinfección del agua potable: Formación, aspectos sanitarios y reglamentación. Interciencia Rev. Cienc. Tecnol. América 2007, 32, 749–756. [Google Scholar]
- Knobelsdorf, M.J.; Mujeriego, S.R. Crecimiento bacteriano en las redes de distribución de agua potable: Una revisión bibliográfica. Ing. Agua. 1997, 4, 17–28. [Google Scholar] [CrossRef]
- Rossman, L.A. EPANET 2: User’s Manual; US Environmental Protection Agency: Cincinnati, OH, USA, 2000. Available online: https://www.epa.gov/water-research/epanet (accessed on 5 February 2021).
- Van Bloemen Waanders, B.; Hammond, G.; Shadid, J.; Collis, S.; Murray, R. A comparison of Navier-Stokes and network models to predict chemical transport in municipal water distribution systems. In Proceedings of the World Water Environment Resources Congress, Anchorage, AK, USA, 25–27 September 2005. [Google Scholar]
- Webb, S.W.; Waanders, B.G.V.B. High fidelity computational fluid dynamics for mixing in water distribution systems. In Proceedings of the Water Distribution Systems Analysis Symposium, Cincinnati, OH, USA, 27–30 August 2006. [Google Scholar]
- Grbčić, L.; Kranjčević, L.; Lučin, I.; Sikirica, A. Large Eddy Simulation of turbulent fluid mixing in double-tee junctions. Ain Shams Eng. J. 2020, in press. [Google Scholar]
- Hernández, D.; Delgado, X.; Nava, J.L.; López, A.; Mora, J.J. Validation of a Computational Fluid Dynamics Model for a Novel Residence Time Distribution Analysis in Mixing at Cross-Junctions. Water 2018, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Webb, S.W. High-fidelity simulation of the influence of local geometry on mixing in crosses in water distribution systems. In Proceedings of the ASCE World Water & Environmental Resources Congress, Tampa, FL, USA, 15–19 May 2007. [Google Scholar]
- Liu, H.; Yuan, Y.; Zhao, M.; Zheng, X.; Lu, J.; Zhao, H. Study of Mixing at Cross Junction in Water Distribution Systems. Based on Computational Fluid Dynamics. In Proceedings of the ICPTT 2011: Sustainable Solutions for Water, Sewer, Gas, And Oil Pipelines, National Convention Center, Beijing, China, 26–29 October 2011; pp. 552–561. [Google Scholar]
- Mompremier, R. Difusión Del Cloro en Redes de Tuberías a Presión. Ph.D. Thesis, Instituto de Ingeniería, Edificio 11, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2015. [Google Scholar]
- Mompremier, R.; Pelletier, G.; Mariles, Ó.A.F.; Ghebremichael, K. Impact of incomplete mixing in the prediction of chlorine residuals in municipal water distribution systems. J. Water Supply Res. Technol. AQUA 2015, 64, 904–914. [Google Scholar] [CrossRef]
- Shao, Y.; Yang, Y.J.; Jiang, L.; Yu, T.; Shen, C. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions. Water Res. 2014, 56, 133–147. [Google Scholar] [CrossRef]
- Ho, C.K.; Choi, C.Y.; McKenna, S.A. Evaluation of complete and incomplete mixing models in water distribution pipe network simulations. In Proceedings of the World Environmental and Water Resources Congress, Tampa, FL, USA, 15–19 May 2007; pp. 1–12. [Google Scholar]
- Paez, N.; Saldarriaga, J.; Bohorquez, J. Water Quality Modeling Considering Incomplete Mixing in Extended Periods. Procedia Eng. 2017, 186, 54–60. [Google Scholar] [CrossRef]
- Ho, C.K. Solute mixing models for water-distribution pipe networks. J. Hydraul. Eng. 2008, 134, 1236–1244. [Google Scholar] [CrossRef]
- Yu, T.C.; Shao, Y.; Shen, C. Mixing at cross joints with different pipe sizes in water distribution systems. J. Water Resour. Plan. Manag. 2014, 140, 658–665. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, L.; Yang, Y.J.; Zhang, T.; Ye, M. Experimentally Determined Solute Mixing under Laminar and Transitional Flows at Junctions in Water Distribution Systems. Adv. Civ. Eng. 2019. [Google Scholar] [CrossRef]
- Austin, R.G.; Waanders, B.V.; McKenna, S.; Choi, C.Y. Mixing at cross junctions in water distribution systems. II: Experimental study. J. Water Resour. Plan. Manag. 2008, 134, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Song, I.; Romero-Gomez, P.; Choi, C.Y. Experimental verification of incomplete solute mixing in a pressurized pipe network with multiple cross junctions. J. Hydraul. Eng. 2009, 135, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.Y.; Shen, J.Y.; Austin, R.G. Development of a comprehensive solute mixing model (AZRED) for double-tee, cross, and wye junctions. Water Distrib. Syst. Anal. 2008, 2008, 1–10. [Google Scholar]
- Romero-Gomez, P.; Choi, C.Y.; van Bloemen Waanders, B.; McKenna, S. Transport phenomena at intersections of pressurized pipe systems. Water Distrib. Syst. Anal. Symp. 2006. [Google Scholar] [CrossRef]
- Romero-Gomez, P.; Ho, C.K.; Choi, C.Y. Mixing at cross junctions in water distribution systems. I: Numerical study. J. Water Resour. Plan. Manag. 2008, 134, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.K.; O’Rear, L. Evaluation of solute mixing in water distribution pipe junctions. J. Am. Water Work. Assoc. 2009, 101, 116–127. [Google Scholar] [CrossRef]
- Andrade, M.A.; Rojano, F.; Romero-Gomez, P.; Choi, C.Y. Integrated water quality modeling of water distribution systems. Water Distrib. Syst. Anal. 2010, 670–677. [Google Scholar] [CrossRef]
- Hernández, D.; Rodríguez, J.M.; Galván, X.D.; Medel, J.O.; Magaña, M.R.J. Optimal use of chlorine in water distribution networks based on specific locations of booster chlorination: Analyzing conditions in Mexico. Water Sci. Technol. Water Supply 2016, 16, 493–505. [Google Scholar] [CrossRef]
- Gutiérrez-Pérez, J.; Montalvo, I.; Francés-Chust, J.; Herrera, M.; Izquierdo, J. Water Quality Sensor Placement with a Multiobjective Approach; Congress on Numerical Methods in Engineering: Valencia, Spain, 2017. [Google Scholar]
- Rossman, L.A. An overview of EPANET version 3.0. In Proceedings of the Water Distribution Systems Analysis 2010, Tucson, AZ, USA, 12–15 September 2010; pp. 14–18. [Google Scholar]
- Eliades, D.G.; Kyriakou, M.; Vrachimis, S.; Polycarpou, M.M. EPANET-MATLAB Toolkit: An Open-Source Software for Interfacing EPANET with MATLAB. In Proceedings of the 14th International Conference on Computing and Control for the Water Industry (CCWI), Amsterdam, The Netherlands, 7–9 November 2016; p. 8. [Google Scholar] [CrossRef]
- García, C.D. Modelación y Calibración de Calidad Del Agua en el Sector “Filtros 8-12” de SIMAPAG. Bachelor Thesis, Universidad de Guanajuato, Guanajuato, Mexico, 2020; p. 121. [Google Scholar]
- Boccelli, D.L.; Tryby, M.E.; Uber, J.G.; Summers, R. A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Res. 2003, 37, 2654–2666. [Google Scholar] [CrossRef]
- Castro, P.; Mário, N. Chlorine decay in water distribution systems case study–lousada network. Electron. J. Environ. Agric. Food Chem. 2003, 2, 261–266. [Google Scholar]
- Kohpaei, A.J.; Arumugam, S. Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development. Chem. Eng. J. 2011, 171, 232–241. [Google Scholar] [CrossRef]
REF * | Diameter (mm) | Velocity (m/s) | Flow (l/s) | Reynolds | EXP/CFD | Authors | ||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | |||
[6] | 50.8 | 0.87 | 1.76 | 44,111 | EXP | Van Bloemen et al., 2005 | ||||
50.8 | 0.78 | 1.58 | 44,388 | CFD | ||||||
[7] | 50.8 | 0.79 | 1.595 | 40,000 | CFD | Webb and Van Bloemen 2006 | ||||
[23] | 19.1 | 0.38 | 2.53 | 0.11 | 0.72 | 7151 | 48,122 | EXP | Romero et al., 2006 | |
50.8 | 0.87 | 1.76 | 44,000 | CFD | ||||||
[10] | 25.4 | 0.06 | 1.58 | 0.03 | 0.80 | 1500 | 40,000 | CFD | Webb 2007 | |
[17] | 12.7 | 0.24 | 0.40 | 0.03 | 0.05 | 3100 | 5013 | EXP/CFD | Ho et al., 2007 | |
[24] | 12.7 | 50.8 | 0.87 | 1.73 | 0.11 | 3.51 | 11,000 | 88,000 | EXP | Romero et al., 2008 |
305 | 0.03 | 0.07 | 2.05 | 5.26 | 8561 | 21,698 | CFD | |||
[15] | 203.2 | 0.09 | 0.119 | 3.09 | 3.85 | 19,304 | 24,157 | CFD | Ho and Khalsa 2008 | |
[21] | 16 | 0.14 | 1.63 | 0.03 | 0.33 | 2295 | 26,147 | EXP | Song et al., 2009 | |
[25] | 25.4 | 50.8 | 0.16 | 0.45 | 0.08 | 0.23 | 4000 | 13,000 | EXP | Ho and O’ Rear 2009 |
[26] | 76.2 | 152.4 | 0.01 | 0.03 | 0.12 | 0.26 | 2100 | - | CFD | Andrade et al., 2010 |
[11] | 40 | 3.00 | 6.00 | 3.77 | 7.54 | 120,000 | 240,000 | CFD | Liu et al., 2011 | |
[18] | 250 | 0.24 | 0.72 | 11.78 | 35.34 | 60,000 | 180,000 | CFD | Yu et al., 2014 | |
[14] | 25.4 | 0.61 | 3.49 | 0.310 | 1.770 | 15,545 | 88,722 | EXP/CFD | Shao et al., 2014 | |
[13] | 12.7 | 38 | 0.79 | 1.34 | 0.17 | 0.9 | 17,043 | 30,172 | EXP/CFD | Mompremier et al., 2015 |
[12] | 17.5 | 43.8 | 0.27 | 0.55 | 0.11 | 0.21 | 6050 | 12,100 | EXP/CFD | Mompremier 2015 (PhD Thesis) |
[19] | 16 | 50 | 0.03 | 0.07 | 0.01 | 0.14 | 500 | 3500 | EXP/CFD | Yu Shao et al., 2019 |
[8] | 50.8 | 0.4 | 0.81 | 20,000 | CFD | Luka et al., 2020 |
Boundary | S1 | S2 | S3 | S4 | S5 | S6 | |||||||
v | P | v | P | V | P | v | P | v | P | v | P | ||
Inlet | N | 1.12 | 1.60 | 0.93 | 0.90 | 1.13 | 1.92 | 1.11 | 1.88 | 1.18 | 1.60 | 1.41 | 1.72 |
W | 1.27 | 1.60 | 1.05 | 0.90 | 1.04 | 1.91 | 1.06 | 1.88 | 1.22 | 1.60 | 0.82 | 1.72 | |
Outlet | E | 1.06 | 1.56 | 1.03 | 0.90 | 1.20 | 1.91 | 1.00 | 1.88 | 1.07 | 1.60 | 1.11 | 1.72 |
S | 1.32 | 1.56 | 0.96 | 0.90 | 0.96 | 1.91 | 1.17 | 1.88 | 1.33 | 1.60 | 1.12 | 1.72 | |
Boundary | S7 | S8 | S9 | S10 | S11 | S12 | |||||||
v | P | v | P | V | P | v | P | v | P | v | P | ||
Inlet | N | 0.81 | 1.57 | 1.34 | 0.60 | 1.07 | 1.60 | 2.23 | 0.66 | 0.67 | * 1.96 | 1.71 | 0.32 |
W | 1.53 | 1.56 | 2.06 | 0.60 | 1.26 | 1.60 | 1.33 | 0.66 | 0.99 | * 1.96 | 2.06 | 0.32 | |
Outlet | E | 1.04 | 1.56 | 1.14 | 0.57 | 0.99 | 1.60 | 1.08 | 0.63 | 1.25 | * 1.96 | 1.97 | *0.28 |
S | 1.30 | 1.56 | 2.26 | 0.53 | 1.33 | 1.56 | * 2.48 | 0.62 | * 0.43 | * 1.96 | 1.80 | 0.29 |
CN | 0 | 62.5 | 125 | 187.5 | 250 | 312.5 | 375 | 437.5 | 500 |
---|---|---|---|---|---|---|---|---|---|
CW | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 |
IN = CN/CW | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00 |
S1 | S2 | S3 | S4 | S5 | S6 | |
QrIN,Si | 0.879 | 0.882 | 1.049 | 1.085 | 0.962 | 1.730 |
QrOUT,Si | 0.802 | 1.069 | 0.861 | 1.247 | 0.806 | 0.986 |
S7 | S8 | S9 | S10 | S11 | S12 | |
QrIN,Si | 0.527 | 0.652 | 0.851 | 1.681 | 0.680 | 0.832 |
QrOUT,Si | 0.799 | 0.502 | 0.746 | 0.436 | 2.921 | 1.098 |
S1 | S2 | S3 | S4 | ||||||||||
EXP | CFD | error | EXP | CFD | error | EXP | CFD | error | EXP | CFD | error | ||
P (bar) | N | 1.600 | 1.577 | 1.437% | 0.900 | 0.913 | 1.444% | 1.920 | 1.923 | 0.158% | 1.880 | 1.893 | 0.670% |
W | 1.600 | 1.576 | 1.478% | 0.900 | 0.913 | 1.403% | 1.910 | 1.923 | 0.703% | 1.880 | 1.893 | 0.677% | |
v (m/s) | E | 1.062 | 1.060 | 0.211% | 1.025 | 1.019 | 0.627% | 1.201 | 1.193 | 0.665% | 1.005 | 0.987 | 1.720% |
S | 1.323 | 1.322 | 0.133% | 0.959 | 0.960 | 0.035% | 0.963 | 0.967 | 0.472% | 1.167 | 1.180 | 1.130% | |
S5 | S6 | S7 | S8 | ||||||||||
EXP | CFD | error | EXP | CFD | error | EXP | CFD | error | EXP | CFD | error | ||
P (bar) | N | 1.600 | 1.616 | 1.005% | 1.720 | 1.732 | 0.698% | 1.570 | 1.578 | 0.502% | 0.590 | 0.600 | 1.695% |
W | 1.600 | 1.616 | 0.989% | 1.720 | 1.734 | 0.811% | 1.560 | 1.575 | 0.982% | 0.590 | 0.600 | 1.695% | |
v (m/s) | E | 1.072 | 1.079 | 0.592% | 1.107 | 1.116 | 0.845% | 1.040 | 1.044 | 0.381% | 1.136 | 1.130 | 0.524% |
S | 1.330 | 1.319 | 0.763% | 1.122 | 1.108 | 1.249% | 1.302 | 1.294 | 0.593% | 2.263 | 2.264 | 0.026% | |
S9 | S10 | S11 | S12 | ||||||||||
EXP | CFD | error | EXP | CFD | error | EXP | CFD | error | EXP | CFD | error | ||
P (bar) | N | 1.600 | 1.618 | 1.099% | 0.660 | 0.649 | 0.879% | 1.960 | 1.971 | 0.575% | 0.320 | 0.319 | 1.483% |
W | 1.600 | 1.617 | 1.048% | 0.660 | 0.653 | 0.889% | 1.960 | 1.971 | 0.557% | 0.320 | 0.317 | 2.129% | |
v (m/s) | E | 0.994 | 0.994 | 0.010% | 1.080 | 1.081 | 0.141% | 1.246 | 1.237 | 0.744% | 1.974 | 1.981 | 0.360% |
S | 1.331 | 1.327 | 0.279% | 2.477 | 2.470 | 0.292% | 0.427 | 0.421 | 1.192% | 1.798 | 1.785 | 0.734% |
EX1 | EX2 | EX3 | Net3.net | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C Outlet | Cross Diameter (m) | INC | CFD | Error | INC | CFD | Error | INC | CFD | Error | Cross Diameter (m) | INC | CFD | Error |
CE | 0.1524 × 0.1016 | 0.810 | 0.836 | 2.6% | 0.902 | 0.868 | 3.3% | 0.739 | 0.749 | 0.9% | 0.762 × 0.3048 | 1.527 | 1.441 | 8.6% |
CS | 1.150 | 1.138 | 1.2% | 0.980 | 0.978 | 0.2% | 0.838 | 0.833 | 0.6% | 1.434 | 1.416 | 1.8% | ||
CE | 0.1016 × 0.1016 | 0.060 | 0.040 | 2.0% | 0.364 | 0.368 | 0.5% | 0.546 | 0.539 | 0.7% | 0.3048 × 0.3048 | 0.868 | 0.749 | 11.8% |
CS | 0.720 | 0.753 | 3.3% | 0.643 | 0.600 | 4.3% | 0.513 | 0.520 | 0.6% | 1.119 | 1.109 | 1.0% | ||
CE | 0.1016 × 0.0762 | 0.070 | 0.060 | 1.0% | 0.528 | 0.528 | 0.0% | 0.397 | 0.394 | 0.3% | 0.3048 × 0.2032 | 1.068 | 1.042 | 2.6% |
CS | 0.490 | 0.499 | 0.9% | 0.509 | 0.508 | 0.1% | 0.386 | 0.387 | 0.1% | 1.195 | 1.204 | 0.8% | ||
CE | 0.0762 × 0.0762 | 0.890 | 0.876 | 1.4% | 0.356 | 0.348 | 0.8% | 0.519 | 0.527 | 0.8% | 0.3048 × 0.2032 | 1.069 | 0.993 | 7.7% |
CS | 1.140 | 1.143 | 0.3% | 0.458 | 0.480 | 2.2% | 0.579 | 0.576 | 0.3% | 1.087 | 1.082 | 0.6% | ||
CE | 0.0762 × 0.0508 | 1.140 | 1.138 | 0.2% | 0.307 | 0.301 | 0.5% | 0.509 | 0.511 | 0.2% | 0.254 × 0.2032 | 0.554 | 0.523 | 3.1% |
CS | 1.150 | 1.142 | 0.8% | 0.302 | 0.305 | 0.3% | 0.533 | 0.532 | 0.1% | 0.597 | 0.635 | 3.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Cervantes, D.; López-Jiménez, P.A.; Arciniega Nevárez, J.A.; Delgado Galván, X.; Jiménez Magaña, M.R.; Pérez-Sánchez, M.; Mora Rodríguez, J.d.J. Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations. Water 2021, 13, 453. https://doi.org/10.3390/w13040453
Hernández Cervantes D, López-Jiménez PA, Arciniega Nevárez JA, Delgado Galván X, Jiménez Magaña MR, Pérez-Sánchez M, Mora Rodríguez JdJ. Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations. Water. 2021; 13(4):453. https://doi.org/10.3390/w13040453
Chicago/Turabian StyleHernández Cervantes, Daniel, P. Amparo López-Jiménez, José Antonio Arciniega Nevárez, Xitlali Delgado Galván, Martín Rubén Jiménez Magaña, Modesto Pérez-Sánchez, and José de Jesús Mora Rodríguez. 2021. "Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations" Water 13, no. 4: 453. https://doi.org/10.3390/w13040453
APA StyleHernández Cervantes, D., López-Jiménez, P. A., Arciniega Nevárez, J. A., Delgado Galván, X., Jiménez Magaña, M. R., Pérez-Sánchez, M., & Mora Rodríguez, J. d. J. (2021). Incomplete Mixing Model at Cross-Junctions in Epanet by Polynomial Equations. Water, 13(4), 453. https://doi.org/10.3390/w13040453