Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive
Abstract
:1. Introduction
2. Benthic Diatoms in Biomonitoring
2.1. Importance of Benthic Diatoms as Biological Indicators
2.2. Advantages of Benthic Diatoms over Other Biological Quality Elements (BQEs)
2.3. Benthic Diatoms in the Water Framework Directive
2.4. Diatom-Based Indices Used So Far in the Water Framework Directive
3. Recent Approaches and Future Perspectives
3.1. Trait-Based Diatom Indices
3.2. Molecular-Based Diatom Indices
3.3. Predictive Models
3.4. Machine Learning Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Official Journal of the European Union: Luxemberg, 2000; Volume 164, p. 19. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council on the Implementation of the Water Framework Directive (2000/60/EC) River Basin Management Plans; Official Journal of the European Union: Luxemberg, 2012. [Google Scholar]
- European Commission. Carrying forward the Common Implementation Strategy for the Water Framework Directive-Progress and Work Programme for 2003/2004; Official Journal of the European Union: Luxemberg, 2003. [Google Scholar]
- Sabater, S.; Guasch, H.; Ricart, M.; Romaní, A.; Vidal, G.; Klünder, C.; Schmitt-Jansen, M. Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal. Bioanal. Chem. 2007, 387, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.K.; Hering, D. Response of taxonomic groups in streams to gradients in resource and habitat characteristics. J. Appl. Ecol. 2009, 46, 175–186. [Google Scholar] [CrossRef]
- Johnson, S.; Ringler, N. The response of fish and macroinvertebrate assemblages to multiple stressors: A comparative analysis of aquatic communities in a perturbed watershed (Onondaga Lake, NY). Ecol. Indic. 2014, 41, 198–208. [Google Scholar] [CrossRef]
- Karaouzas, I.; Smeti, E.; Kalogianni, E.; Skoulikidis, N.T. Ecological status monitoring and assessment in Greek rivers: Do macroinvertebrate and diatom indices indicate same responses to anthropogenic pressures? Ecol. Indic. 2019, 101, 126–132. [Google Scholar] [CrossRef]
- Poikane, S.; Kelly, M.; Cantonati, M. Benthic algal assessment of ecological status in European lakes and rivers: Challenges and opportunities. Sci. Total Environ. 2016, 568, 603–613. [Google Scholar] [CrossRef]
- Cetin, T.; Demir, N. The use of phytobenthos for the ecological status assessment in Upper Sakarya Basin, Turkey. Ecol. Environ. Res. 2019, 17, 10155–10172. [Google Scholar] [CrossRef]
- Ćirić, M.; Nikolić, N.; Krizmanić, J.; Gavrilović, B.; Pantelić, A.; Petrović, V.M. Diatom diversity and ecological status of the Lasovačka and Lenovačka streams near Zaječar: Consideration of WFD implementation in Serbia. Arch. Biol. Sci. 2018, 70, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Round, F.E. The Diatoms; Cambridge University Press: Cambridge, UK, 1990; 747p. [Google Scholar]
- Mann, D.G. The species concept in diatoms. Phycologia 1999, 38, 437–495. [Google Scholar] [CrossRef] [Green Version]
- Falciatore, A.; Bowler, C. Revealing the Molecular Secrets of Marine Diatoms. Annu. Rev. Plant Biol. 2002, 53, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.E.; Vardi, A.; Bowler, C. An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Curr. Opin. Plant Biol. 2006, 9, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Pardo, I.; Delgado, C.; Abraín, R.; Gómez-Rodríguez, C.; García-Roselló, E.; García, L.; Reynoldson, T.B. A predictive diatom-based model to assess the ecological status of streams and rivers of Northern Spain. Ecol. Indic. 2018, 90, 519–528. [Google Scholar] [CrossRef]
- Kelly, M.G.; Chiriac, G.; Soare-Minea, A.; Hamchevici, C.; Birk, S. Defining ecological status of phytobenthos in very large rivers: A case study in practical implementation of the Water Framework Directive in Romania. Hydrobiologia 2018, 828, 353–367. [Google Scholar] [CrossRef]
- Kitner, M.; Poulíčková, A. Littoral diatoms as indicators for the eutrophication of shallow lakes. Hydrobiologia 2003, 506, 519–524. [Google Scholar] [CrossRef]
- Licursi, M.; Gómez, N. Benthic diatoms and some environmental conditions in three lowland streams. Ann. Limnol. Int. J. Limnol. 2002, 38, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Hering, D.; Johnson, R.K.; Kramm, S.; Schmutz, S. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: A comparative metric-based analysis of organism response to stress. Freshw. Biol. 2006, 51, 1757–1785. [Google Scholar] [CrossRef]
- Delgado, C.; Pardo, I.; García, L. Diatom communities as indicators of ecological status in Mediterranean temporary streams (Balearic Islands, Spain). Ecol. Indic. 2012, 15, 131–139. [Google Scholar] [CrossRef]
- Vilmi, A.; Karjalainen, S.M. Freshwater diatoms as environmental indicators: Evaluating the effects of eutrophication using species morphology and biological indices. Environ. Monit. Assess. 2015, 187, 243. [Google Scholar] [CrossRef]
- Giorgio, A.; De Bonis, S.; Guida, M. Macroinvertebrate and diatom communities as indicators for the biological assessment of river Picentino (Campania, Italy). Ecol. Indic. 2016, 64, 85–91. [Google Scholar] [CrossRef]
- Cabecinha, E.; Cortes, R.; Cabral, J.A.; Ferreira, T.; Lourenço, M.; Pardal, M. Ângelo Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs. Ecol. Indic. 2009, 9, 240–255. [Google Scholar] [CrossRef]
- Wu, N.; Faber, C.; Sun, X.; Qu, Y.; Wang, C.; Ivetic, S.; Riis, T.; Ulrich, U.; Fohrer, N. Importance of sampling frequency when collecting diatoms. Sci. Rep. 2016, 6, 36950. [Google Scholar] [CrossRef] [Green Version]
- Solak, C.N.; Peszek, Ł.; Yilmaz, E.; Ergül, H.A.; Kayal, M.; Ekmekçi, F.; Várbíró, G.; Yüce, A.M.; Canli, O.; Binici, M.S.; et al. Use of Diatoms in Monitoring the Sakarya River Basin, Turkey. Water 2020, 12, 703. [Google Scholar] [CrossRef] [Green Version]
- Karaouzas, I.; Smeti, E.; Vourka, A.; Vardakas, L.; Mentzafou, A.; Tornés, E.; Sabater, S.; Muñoz, I.; Skoulikidis, N.T.; Kalogianni, E. Assessing the ecological effects of water stress and pollution in a temporary river—Implications for water man-agement. Sci. Total Environ. 2018, 618, 1591–1604. [Google Scholar] [CrossRef]
- Cimarelli, L.; Singh, K.S.; Mai, N.T.N.; Dhar, B.C.; Brandi, A.; Brandi, L.; Spurio, R. Molecular tools for the selective detection of nine diatom species biomarkers of various water quality levels. Int. J. Environ. Res. Public Health 2015, 12, 5485–5504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeti, E.; Schiller, D.; Von Karaouzas, I.; Vardakas, L.; Sabater, S.; Tornés, E.; Monllor-alcaraz, L.S.; Guillem-argiles, N.; Martinez, E.; Barceló, D.; et al. Multiple stressor effects on biodi-versity and ecosystem functioning in a Mediterranean temporary river. Sci. Total Environ. 2019, 647, 1179–1187. [Google Scholar] [CrossRef]
- Laine, M.; Morin, S.; Tison-Rosebery, J. A multicompartment approach—Diatoms, macrophytes, benthic macroinverte-brates and fish—To assess the impact of toxic industrial releases on a small French river. PLoS ONE 2014, 9, e102358. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.R.; Martín, G.; Corzo, J.; de la Linde, A.; García, E.; López, M.; Sousa, M. Design and Testing of a New Diatom-Based Index for Heavy Metal Pollution. Arch. Environ. Contam. Toxicol. 2017, 74, 170–192. [Google Scholar] [CrossRef]
- Falasco, E.; Bona, F.; Badino, G.; Hoffmann, L.; Ector, L. Diatom teratological forms and environmental alterations: A review. Hydrobiologia 2009, 623, 1–35. [Google Scholar] [CrossRef]
- Tornes, E.; Mor, J.R.; Mandaric, L.; Sabater, S. Diatom responses to sewage inputs and hydrological alteration in Mediterranean streams. Environ. Pollut. 2018, 238, 369–378. [Google Scholar] [CrossRef]
- Montesanto, B.; Zille, S.; Coste, M. Diatomees epilithiques et qualite biologique de ruisseaux du mont Stratonikon, Chalkidiki (Grece). Cryptogam. Algol. 1999, 3, 235–251. [Google Scholar] [CrossRef]
- Martínez-Carreras, N.; Wetzel, C.E.; Frentress, J.; Ector, L.; McDonnell, J.J.; Hoffmann, L.; Pfister, L. Hydrological connectivity inferred from diatom transport through the riparian-stream system. Hydrol. Earth Syst. Sci. 2015, 19, 3133–3151. [Google Scholar] [CrossRef] [Green Version]
- Vidal, T.; Pereira, J.L.; Abrantes, N.; Soares, A.M.V.M.; Gonçalves, F. Ecotoxicological Assessment of Contaminated River Sites as a Proxy for the Water Framework Directive: An Acid Mine Drainage Case Study. Water Air Soil Pollut. 2012, 223, 6009–6023. [Google Scholar] [CrossRef]
- Morin, S.; Licursi, M.; Tison-Rosebery, J. Benthic Diatom Monitoring and Assessment of Freshwater Environments: Standard Methods and Future Challenges. In Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment; Romaní, A.M., Guasch, H., Balaguer, M.D., Eds.; Caister Academic Press: Poole, UK, 2016; Volume 6, pp. 111–124. [Google Scholar]
- Pandey, L.K.; Bergey, E.A.; Lyu, J.; Park, J.; Choi, S.; Lee, H.; Depuydt, S.; Oh, Y.T.; Lee, S.M.; Han, T. The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. Water Res. 2017, 118, 39–58. [Google Scholar] [CrossRef]
- Dahm, V.; Hering, D.; Nemitz, D.; Graf, W.; Schmidt-Kloiber, A.; Leitner, P.; Melcher, A.; Feld, C.K. Effects of physicochemistry, land use and hydromorphology on three riverine organism groups: A comparative analysis with monitoring data from Germany and Austria. Hydrobiologia 2013, 704, 389–415. [Google Scholar] [CrossRef]
- Mangadze, T.; Bere, T.; Mwedzi, T. Epilithic diatom flora in contrasting land-use settingsin tropical streams, Manyame Catchment, Zimbabwe. Hydrobiologia 2015, 753, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Borojević, K.K.; Udovič, M.G.; Žutinić, P.; Várbíró, G.; Plenković-Moraj, A. Do benthic diatom assemblages reflect abiotic typology: A case study of Croatian streams and rivers. Acta Bot. Croat. 2017, 76, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Janauer, G.; Dokulil, M. Macrophytes and Algae in Running Waters, Biological Monitoring of Rivers: Applications and Perspectives; Ziglio, G., Siligardi, M., Flaim, G., Eds.; Wiley Online Library: Hudson County, NJ, USA, 2006. [Google Scholar]
- Feipeng, L.; Haiping, Z.; Yiping, Z.; Yihua, X.; Ling, C. Effect of flow velocity on phytoplankton biomass and composition in a freshwater lake. Sci. Total Environ. 2013, 447, 64–71. [Google Scholar]
- Wehr, J.D. Minireview Use of phytoplankton in large river management. J. Phycol. 1998, 34, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Salmaso, N.; Braioni, M.G. Factors controlling the seasonal development and distribution of the phytoplankton community in the lowland course of a large river in Northern Factors controlling the seasonal development and distribution of the phytoplankton community in the lowland course of a large river in Northern Italy (River Adige). Aquat. Ecol. 2008, 42, 533–545. [Google Scholar]
- Chambers, P.A.; Prepas, E.E.; Hamilton, H.R.; Bothwell, M. Current Velocity and Its Effect on Aquatic Macrophytes in Flow-ing Waters. Ecol. Appl. 1991, 1, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Susane, C.S.; Lawniczak, A.E.; Picinska-Faltynowicz, J.; Szoszkiewicz, K. Do macrophytes, diatoms and non-diatom benthic algae give redundant information? Results from a case study in Poland. Limnologica 2012, 42, 204–211. [Google Scholar]
- Marzin, A.; Archaimbault, V.; Belliard, J.; Chauvin, C.; Pont, D. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures. Ecol. Indic. 2012, 23, 56–65. [Google Scholar]
- Qu, X.; Peng, W.; Liu, Y. Identifying the Impacts of Water Quality on Macroinvertebrate Degration in the Taizi River with a Reconsideration of Water Quality Grades in China. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019. [Google Scholar]
- Smeti, E.; Kalogianni, E.; Karaouzas, I.; Laschou, S.; Tornés, E.; De Castro-Català, N.; Anastasopoulou, E.; Koutsodimou, M.; Andriopoulou, A.; Vardakas, L.; et al. Effects of olive mill wastewater discharge on benthic biota in Mediterranean streams. Environ. Pollut. 2019, 254, 113057. [Google Scholar] [CrossRef]
- Blanco, S.; Bécares, E. Chemosphere Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 2010, 79, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Pace, G.; Bella, V.D.; Barile, M.; Andreani, P.; Mancini, L.; Belfiore, C. A comparison of macroinvertebrate and diatom responses to anthropogenic stress in small sized volcanic siliceous streams of Central Italy (Mediterranean Ecoregion). Ecol. Indic. 2012, 23, 544–554. [Google Scholar] [CrossRef]
- Snyder, D. Electrofishing and Its Harmful Effects on Fish; Information and Technology Report, USGS/BRD/ITR; US Government Printing Office: Denver, CO, USA, 2003; p. 13. [Google Scholar]
- Dodds, W.; Whiles, M. Fish Ecology Fisheries and Aquaculture in Freshwater Ecology, 3rd ed.; Academic Press: London, UK, 2020; Volume 23. [Google Scholar]
- Barbour, M.T.; Faulkner, C.; Gerritsen, J. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed.; George Gibson: Washington, DC, USA, 1999. [Google Scholar]
- Brabcová, B.; Marvan, P.; Opatřilová, L.; Brabec, K.; Fránková, M.; Heteša, J. Diatoms in water quality assessment: To count or not to count them? Hydrobiologia 2017, 795, 113–127. [Google Scholar] [CrossRef]
- Lange-Bertalot, H.; Hofmann, G.; Werum, M.; Cantonati, M. Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assessment; English Edition with Updated Taxonomy and Added Species in Freshwater Benthic Diatoms of Central Europe; Cantonati, M., Kelly, M.G., Lange-Bertalot, H., Eds.; Koeltz Botanical Books: Frankfurt, Germany, 2017. [Google Scholar]
- Almeida, S.F.; Elias, C.; Ferreira, J.; Tornés, E.; Puccinelli, C.; Delmas, F.; Dörflinger, G.; Urbanič, G.; Marcheggiani, S.; Rosebery, J.; et al. Water quality assessment of rivers using diatom metrics across Mediterranean Europe: A methods intercalibration exercise. Sci. Total Environ. 2014, 476, 768–776. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. European Waters Assessment of Status and Pressures; Report No 7/2018; EEA: Copenhagen, Denmark, 2018. [Google Scholar]
- Wu, N.; Thodsen, H.; Andersen, H.E.; Tornbjerg, H.; Baattrup-Pedersen, A.; Riis, T. Flow regimes filter species traits of benthic diatom communities and modify the functional features of lowland streams—A nationwide scale study. Sci. Total Environ. 2019, 651, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Springe, G.; Sandin, L.; Briede, A.; Skuja, A. Biological quality metrics: Their variability and appropriate scale for assessing stream. Hydrobiologia 2006, 566, 153–172. [Google Scholar] [CrossRef]
- Kalogianni, E.; Vourka, A.; Karaouzas, I.; Vardakas, L.; Laschou, S.; Skoulikidis, N.T. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river. Sci. Total Environ. 2017, 604, 639–650. [Google Scholar] [CrossRef]
- Vardakas, L.; Kalogianni, E.; Zogaris, S.; Koutsikos, N.; Vavalidis, T. Distribution patterns of fish assemblages in an Eastern Mediterranean intermittent river. Knowl. Manag. Aquat. Ecosyst. 2015, 416, 30. [Google Scholar] [CrossRef] [Green Version]
- Poikane, S.; Salas, F.; Kelly, M.G.; Borja, A.; Birk, S.; Van De Bund, W. European aquatic ecological assessment methods: A critical review of their sensitivity to key pressures. Sci. Total Environ. 2020, 740, 140075. [Google Scholar] [CrossRef] [PubMed]
- Larson, F.; Sundbäck, K. Recovery of microphytobenthos and benthic functions after sediment deposition. Mar. Ecol. 2012, 446, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Calapez, A.R.; Elias, C.L.; Almeida, S.F.P.; Feio, M.J. Extreme drought effects and recovery patterns in the benthic communities of temperate streams. Limnetica 2014, 33, 281–296. [Google Scholar]
- Cemagref. Etude des Methodes Biologiques Quantitatives d’Appreciation de la Qualite des Eaux; Agence de l’eau Rhône Méditerranée Corse: Lyon, France, 1982; p. 28. [Google Scholar]
- Coste, M.; Ayphasshorho, H. Etude de la Qualite des Eaux du Bassin Artois-Picardie a l’Aide des Communautes de Diatomees Benthiques (Application des Indices Diatomiques); Hal Inrae: Lyon, France, 1991; p. 227. [Google Scholar]
- Kelly, M.G.; Whitton, B.A. The Trophic Diatom Index: A new index for monitoring eutrophication in rivers. Environ. Biol. Fishes 1995, 7, 433–444. [Google Scholar] [CrossRef]
- Álvarez-Blanco, I.; Blanco, S.; Cejudo-Figueiras, C.; Bécares, E. The Duero Diatom Index (DDI) for river water quality assessment in NW Spain: Design and validation. Environ. Monit. Assess. 2013, 185, 969–981. [Google Scholar] [CrossRef] [PubMed]
- Dell’uomo, A. Assessment of Water Quality of an Apennine River as a Piìot Study for Diatom-based Monitoring of Italian Wa-tercourses. In Use of Algae for Monitoring Rivers; Institut Fur Botanik, Universitàt: Vienna, Austria, 1996; pp. 65–72. [Google Scholar]
- Descy, J.P. A new approach to water quality estimation using diatoms. Nova Hedwig. 1979, 64, 305–323. [Google Scholar]
- Rumeau, A.; Coste, M.; Diatomees, L.E.S.; Generaux, C. Initation a la systematique des diatomees d’eau douce Pour l’ utilisation pratique d’ un indice diatomique générique for a useful generic diatomic index, bulletin français de la peche et de la protection des milieux aquatiques. Bull. Fr. Peche Piscic. 1988, 309, 1–69. [Google Scholar]
- Coste, M.; Boutry, S.; Tison-Rosebery, J.; Delmas, F. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecol. Indic. 2009, 9, 621–650. [Google Scholar] [CrossRef]
- Rott, E.; Pfister, P.; van Dam, H.; Pipp, E.; Pall, K. Indikationslisten für Aufwuchsalgen in österreichschen Fliebgewässern. In Teil 2: Trophiendikation Sowie Geochemische Präferenz, Taxonomische und Toxikologische Anmerkungen; Bundesministerium Für Land-Und Forstwirtschaft: Vienna, Austria, 1999; p. 248. [Google Scholar]
- Rott, E.; Hofmann, G.; Pall, K.; Pfister, P.; Pipp, E. Indikationslisten für Aufwuchsalgen. In Teil 1: Saprobielle Indikation; Bun-desministerium Für Land-Und Forstwirtschaft: Vienna, Austria, 1997; p. 73. [Google Scholar]
- Szczepocka, E.; Żelazna-Wieczorek, J. Diatom biomonitoring—Scientific foundations, commonly discussed issues and fre-quently made errors. Oceanol. Hydrobiol. Stud. 2018, 47, 313–325. [Google Scholar] [CrossRef]
- Juggins, S.; Kelly, M.; Allott, T.; Kelly-Quinn, M.; Monteith, D. A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. Sci. Total Environ. 2016, 568, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Saliba, F.M.; Ghobara, M.M.; Attard, E.; Ellul, B. Primary Study of the Non-Marine Epilithic Diatom Communities of Malta and Gozo. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Van de Bund, W. Water Framework Directive Intercalibration Technical Report, Part 1: Rivers; European Communities: Luxemberg, 2009. [Google Scholar]
- Prygiel, J. Management of the diatom monitoring networks in France. Environ. Biol. Fishes 2002, 14, 19–26. [Google Scholar] [CrossRef]
- Kelly, M.; Bennett, C.; Coste, M.; Delgado, C.; Delmas, F.; Denys, L.; Ector, L.; Fauville, C.; Ferréol, M.; Golub, M.; et al. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: Results of an intercalibration exercise. Hydrobiologia 2009, 621, 169–182. [Google Scholar] [CrossRef]
- Kelly, M. Role of benthic diatoms in the implementation of the Urban Wastewater Treatment Directive in the River Wear, North-East England. Environ. Biol. Fishes 2002, 14, 9–18. [Google Scholar] [CrossRef]
- Eloranta, P.; Soininen, J. cological status of some Finnish rivers evaluated using benthic diatom communities. J. Appl. Phycol. 2002, 14, 1–7. [Google Scholar] [CrossRef]
- Lecointe, C.; Coste, M.; Prygiel, J. “Omnidia”: Software for taxonomy, calculation of diatom indices and inventories man-agement. Hydrobiologia 1993, 269–270, 509–513. [Google Scholar] [CrossRef]
- Kelly, M. Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. Eur. J. Phycol. 2013, 48, 437–450. [Google Scholar] [CrossRef]
- Philibert, A.; Prairie, Y.T. Diatom Inferred Paleolimnological Reconstructions: Do They Work in Nutrient Rich Lakes. In Proceedings of the Sustainable Forest Management Network Conference, Edmonton, AB, Canada, 14–17 February 1999; pp. 155–160. [Google Scholar]
- Pipp, E. A regional diatom-based trophic state indication system for running water sites in Upper Austria and its over regional applicability. Verh. Int. Ver. Limnol. 2001, 27, 3376–3380. [Google Scholar]
- Tapolczai, K.; Bouchez, A.; Stenger-Kovács, C.; Padisák, J.; Rimet, F. Trait-based ecological classifications for benthic algae: Review and perspectives. Hydrobiologia 2016, 776, 1–17. [Google Scholar] [CrossRef]
- Toudjani, A.A.; Çelekli, A.; Gümüş, E.Y.; Kayhan, S.; Lekesiz, H.Ö.; Çetin, T. A new diatom index to assess ecological quality of running waters: A case study of water bodies in western Anatolia. Ann. Limnol. Int. J. Limnol. 2017, 53, 333–343. [Google Scholar] [CrossRef] [Green Version]
- McElligott, P. Developing Biocriteria as a Water Quality Assessment Tool in Canada: Scoping Assessment; Report; Canadian Council of Ministers of the Environment: North Vancouver, BC, Canada, 2006. [Google Scholar]
- Morley, R.J.; Newall, P.R.; Bennison, G.L. The Biology and Chemistry of Selected Mt. Stirling Sub-Alpine Streams 1986–1988; Final Report, No. 100; Water Materials and Environmental Sciences Branch, Rural Water Commission: Victoria, Austalia, 1989. [Google Scholar]
- Dalu, T.; Froneman, P.W. Diatom-based water quality monitoring in southern Africa: Challenges and future prospects. Water SA 2016, 42, 551. [Google Scholar] [CrossRef] [Green Version]
- Moog, O.; Schmutz, S.; Schwarzinger, I. Biomonitoring and Bioassessment. Riverine Ecosyst. Manag. 2018, 8, 371–390. [Google Scholar] [CrossRef]
- Rimet, F.; Bouchez, A.; Tapolczai, K. Spatial heterogeneity of littoral benthic diatoms in a large lake: Monitoring implications. Hydrobiologia 2016, 771, 179–193. [Google Scholar] [CrossRef]
- Riato, L.; Bella, V.D.; Leira, M.; Taylor, J.C.; Oberholster, P.J. A diatom functional-based approach to assess changing environmental conditions in temporary depressional wetlands. Ecol. Indic. 2017, 78, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Zorzal-Almeida, S.; Soininen, J.; Bini, L.M.; Bicudo, D.C. Local environment and connectivity are the main drivers of diatom species composition and trait variation in a set of tropical reservoirs. Freshw. Biol. 2017, 62, 1551–1563. [Google Scholar] [CrossRef]
- Stenger-Kovács, C.; Körmendi, K.; Lengyel, E.; Abonyi, A.; Hajnal, É.; Szabó, B.; Buczkó, K.; Padisák, J. Expanding the trait-based concept of benthic diatoms: Development of trait- and species-based indices for conductivity as the master variable of ecological status in continental saline lakes. Ecol. Indic. 2018, 95, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional. Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Berthon, V.; Bouchez, A.; Rimet, F. Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: A case study of rivers in south-eastern France. Hydrobiologia 2011, 673, 259–271. [Google Scholar] [CrossRef]
- Larras, F.; Coulaud, R.; Gautreau, E.; Billoir, E.; Rosebery, J.; Usseglio-Polatera, P. Assessing anthropogenic pressures on streams: A random forest approach based on benthic diatom communities. Sci. Total Environ. 2017, 586, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Rimet, F.; Bouchez, A. Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: Lotic mes-ocosm approaches. Ecol. Indic. 2011, 11, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Passy, S.I. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 2007, 86, 171–178. [Google Scholar] [CrossRef]
- Passy, S.I. Differential cell size optimization strategies produce distinct diatom richness–body size relationships in stream benthos and plankton. J. Ecol. 2007, 95, 745–754. [Google Scholar] [CrossRef]
- Wu, N.; Dong, X.; Liu, Y.; Wang, C.; Baattrup-Pedersen, A.; Riis, T. Using river microalgae as indicators for freshwater biomonitoring: Review of published research and future directions. Ecol. Indic. 2017, 81, 124–131. [Google Scholar] [CrossRef]
- Marcel, R.; Berthon, V.; Castets, V.; Thiers, A.; Labat, F.; Fontan, B.; Rimet, F. Modelling diatom life forms and ecological guilds for river biomonitoring. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 1. [Google Scholar] [CrossRef] [Green Version]
- Novais, M.H.; Morais, M.M.; Rosado, J.; Dias, L.S.; Hoffmann, L.; Ector, L. Diatoms of temporary and permanent watercourses in Southern Europe (Portugal). River Res. Appl. 2014, 30, 1216–1232. [Google Scholar] [CrossRef] [Green Version]
- Tapolczai, K.; Bouchez, A.; Stenger-Kovács, C.; Padisák, J.; Rimet, F. Taxonomy- or trait-based ecological assessment for tropical rivers? Case study on benthic diatoms in Mayotte island (France, Indian Ocean). Sci. Total Environ. 2017, 607, 1293–1303. [Google Scholar] [CrossRef]
- Tapolczai, K.; Keck, F.; Bouchez, A.; Rimet, F.; Kahlert, M.; Vasselon, V. Diatom DNA Metabarcoding for Biomonitoring: Strategies to Avoid Major Taxonomical and Bioinformatical Biases Limiting Molecular Indices Capacities. Front. Ecol. Evol. 2019, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Burillo, J.; Trobajo, R.; Vasselon, V.; Rimet, F.; Bouchez, A.; Mann, D.G. Evaluation and sensitivity analysis of dia-tom DNA metabarcoding for WFD bioassessment of Mediterranean rivers. Sci. Total Environ. 2020, 727, 138–445. [Google Scholar] [CrossRef]
- Bailet, B.; Bouchez, A.; Franc, A.; Frigerio, J.-M.; Keck, F.; Karjalainen, S.-M.; Rimet, F.; Schneider, S.; Kahlert, M. Molecular versus morphological data for benthic diatoms biomonitoring in Northern Europe freshwater and consequences for ecological status. Metabarcoding Metagenom. 2019, 3, 21–35. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
- Apothéloz-Perret-Gentil, L.; Cordonier, A.; Straub, F.; Iseli, J.; Esling, P.; Pawlowski, J. Taxonomy-free molecular diatom index for high-throughput eDNA biomonitoring. Mol. Ecol. Resour. 2017, 17, 1231–1242. [Google Scholar] [CrossRef]
- Keck, F.; Vasselon, V.; Rimet, F.; Bouchez, A.; Kahlert, M. Boosting DNA metabarcoding for biomonitoring with phylogenetic estimation of operational taxonomic units’ ecological profiles. Mol. Ecol. Resour. 2018, 1, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, C.K.; Cheng, Y.; Zhang, S.; Zhao, H. A Comparison of Methods for Clustering 16S rRNA Sequences into OTUs. PLoS ONE 2013, 8, e70837. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in markergene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [Green Version]
- Elbrecht, V.; Vamos, E.E.; Steinke, D.; Leese, F. Estimating intraspecific genetic diversity from community DNA metabarcoding data. Bioinform. Genom. 2018, 6, e4644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forster, D.; Lentendu, G.; Filker, S.; Dubois, E.; Wilding, T.A.; Stoeck, T. Improving eDNA-based protist diversity assess-ments using networks of amplicon sequence variants. Environ. Microbiol. 2019, 21, 4109–4124. [Google Scholar] [CrossRef] [PubMed]
- Feio, M.J.; Serra, S.R.; Mortágua, A.; Bouchez, A.; Rimet, F.; Vasselon, V.; Almeida, S.F. A taxonomy-free approach based on machine learning to assess the quality of rivers with diatoms. Sci. Total Environ. 2020, 722, 137900. [Google Scholar] [CrossRef]
- Vasselon, V.; Rimet, F.; Domaizon, I.; Monnier, O.; Reyjol, Y.; Bouchez, A. Assessing pollution of aquatic environments with diatoms DNA metabarcoding: Experience and developments from France Water Framework Directive networks. Metabarcoding Metagenom. 2019, 3, 101–115. [Google Scholar]
- Rivera, S.F.; Vasselon, V.; Ballorain, K.; Carpentier, A.; Wetzel, C.E.; Ector, L.; Bouchez, A.; Rimet, F. DNA metabarcod-ing and microscopic analyses of sea turtles’ biofilms: Complementary to understand turtle behavior. PLoS ONE 2018, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Kermarrec, L.; Franc, A.; Rimet, F.; Chaumeil, P.; Humbert, J.F.; Bouchez, A. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 2013, 13, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.F.; Vasselon, V.; Bouchez, A.; Rimet, F. Diatom metabarcoding applied to large scale monitoring networks: Optimization of bioinformatics strategies using Mothur software. Ecol. Indic. 2020, 109, 105775. [Google Scholar] [CrossRef]
- Vasselon, V.; Bouchez, A.; Rimet, F.; Jacquet, S.; Trobajo, R.; Corniquel, M.; Tapolczai, K.; Domaizon, I. Avoiding quanti-fication bias in metabarcoding: Application of a cell biovolume correction factor in diatom molecular biomonitoring. Methods Ecol. Evol. 2018, 9, 1060–1069. [Google Scholar] [CrossRef] [Green Version]
- Feio, M.J.; Almeida, S.F.; Craveiro, S.C.; Calado, A.J. A comparison between biotic indices and predictive models in stream water quality assessment based on benthic diatom communities. Ecol. Indic. 2009, 9, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Almeida, S.F.; Feio, M.J. Diatmod: Diatom predictive model for quality assessment of Portuguese running waters. Algae for monitoring rivers. Hydrobiologia 2012, 695, 185–197. [Google Scholar] [CrossRef]
- Schiller, D.; Von Acuña, V.; Aristi, I.; Arroita, M.; Basaguren, A.; Bellin, A.; Boyero, L.; Butturini, A.; Ginebreda, A.; Kalogi-anni, E.; et al. River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. Sci. Total Environ. 2017, 597, 465–480. [Google Scholar] [CrossRef]
Advantages | Disadvantages | |
---|---|---|
Biomonitoring | Widespread distribution, even in extreme environments or poor habitats | Heterogeneous distribution (e.g., light/flow dependent) |
Sensitive to any natural or anthropogenic disturbance | Poorly sensitive to habitat alterations | |
Sampling | Quick and easy collection (scraping, pipetting, using corers for soft sediments and sand) | Risks of loss (e.g., floods) of artificial substrates |
Cost efficient with minimal impact on resident biota | ||
Sampling on artificial substrates (when natural substrates missing) | ||
Taxonomic identification | Numerous identification resources (identification guides, articles, websites) | Difficult and frequently changing systematics |
Taxonomic misidentification (due to endemism and rare species) | ||
Time consuming | ||
High quality microscope necessary/skilled taxonomists |
Index name | Focus | Member States Using It | References |
---|---|---|---|
IPS (Specific Pollution Index) | Organic pollution | Most of EU members Greece, Belgium, Estonia, Luxembourg, Sweden, Finland, Bulgaria, Croatia, Cyprus, Spain, Portugal, Hungary, Slovakia, Poland, Latvia | [66,71] |
GDI (Generic Diatom Index) | Organic pollution and trophic status | Belgium, Poland | [67,72] |
ICM (Metal Pollution Index) | Heavy metal pollution | NW Spain, Hungary, Italy, Lithuania | [30] |
DDI (Duero Diatom Index) | Nutrient pollution | Duero basin at NW Spain | [69] |
TDI (Trophic Diatom Index) | Trophic status | UK, Croatia, Ireland, Poland | [68] |
BDI (Biological Diatom Index) | Trophic status | France, Romania, Spain, Poland | [73] |
EPI-D (Eutrophication Diatom Index) | Trophic status | Italy, Slovakia, Poland | [70] |
DIATMIB (Diatom Multimetric Index) | Trophic status | Spain (temporary streams) | [20] |
IO (Multimetric Diatom Index, TI: Trophic Index SI: Saprobic Index) | Trophic status and organic pollution | Poland, Slovenia, Germany, Austria, Hungary, Denmark | [74,75,76] |
DAM (Diatom Acidification Metric) | Acidification status | United Kingdom, Ireland | [77] |
Indices | Advantages | Disadvantages |
---|---|---|
Taxonomy-based | • Accurate method • Many references • Many indices | • Time consuming • Taxonomic misidentification/skilled microscopists • Expensive optical equipment • Access to specialized literature • Lack of rare species database • Different species response in different ecoregions |
Trait-based | • Less time consuming • Less effort • Taxonomy free • Related to environmental stressors | • Need more studies for different ecoregions • Need more generalized environmental gradients |
Molecular-based | • Less time consuming • Taxonomy free | • Complementary tool for biomonitoring • Most of species not represented in the molecular databases • Cannot be linked to observed species in the field |
Predictive models | • Less time consuming • Taxonomy free | • Need more studies to validate their results |
Machine learning techniques | • Less time consuming • Taxonomy free | • Need more studies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masouras, A.; Karaouzas, I.; Dimitriou, E.; Tsirtsis, G.; Smeti, E. Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water 2021, 13, 478. https://doi.org/10.3390/w13040478
Masouras A, Karaouzas I, Dimitriou E, Tsirtsis G, Smeti E. Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water. 2021; 13(4):478. https://doi.org/10.3390/w13040478
Chicago/Turabian StyleMasouras, Andreas, Ioannis Karaouzas, Elias Dimitriou, George Tsirtsis, and Evangelia Smeti. 2021. "Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive" Water 13, no. 4: 478. https://doi.org/10.3390/w13040478
APA StyleMasouras, A., Karaouzas, I., Dimitriou, E., Tsirtsis, G., & Smeti, E. (2021). Benthic Diatoms in River Biomonitoring—Present and Future Perspectives within the Water Framework Directive. Water, 13(4), 478. https://doi.org/10.3390/w13040478