Controlling Factors of Badland Morphological Changes in the Emilia Apennines (Northern Italy)
Abstract
:1. Introduction
- Type A or peculiar badlands (type A sensu [17,83]), characterised by sharp and dissected landforms with knife-shape slopes, sparse vegetation and high drainage. This type of badland has a high intrinsic landscape value, and all interventions and activities that could alter or compromise the conditions of the places, the morphogenetic or biological processes, or the perception of the landscapes are forbidden [103];
- Type B or typical badlands (type B sensu [17,83]), characterised by gentle slopes affected by recurrent surficial slides and mudflows and a less-dense drainage system. For this type of badland, with a medium landscape value, some anthropogenic activities (e.g., the installation of telecommunication lines and systems, and systems for water supply) in the surrounding areas are allowed;
- Type C or pseudo-badlands, characterised by a gentle morphology, with little-to-no landscape value. Anthropogenic activities are allowed in these areas, but measures to mitigate the impacts on the landscape should always be taken;
2. Study Area
2.1. Climatic Setting
2.2. Geological Setting
2.3. Geomorphological Outlines
3. Materials and Methods
3.1. Multitemporal Analysis of Aerial Photos and Satellite Images and Mapping of Badlands’ Drainage Basin Changes
3.2. Morphometric and Multiparametric Analysis
3.3. Pluviometric Data and Land Use
4. Results and Discussion
4.1. Multitemporal Analysis and Mapping of Badland Areas
- In 26 basins, there is no evidence of significant evolution of the upper margin of the badland; the upper margin is indeed apparently stable;
- In 10 basins, the upper margin is moving downward because of the vegetation preventing the erosion;
- In 11 basins, the ridge of the badlands is affected by a regression of the margin;
- Four basins are visible only in the aerial photos of 1973 and not in the orthophotos of 2014: This is due to intensified revegetation processes;
- Four basins are visible only in the orthophotos of 2014 and not in the aerial photos of 1973.
4.2. Morphometric and Multiparametric Analysis
- D fluctuated between 0.018 and 0.064 m/m2 in 1973 and 0.006 and 0.044 m/m2 in 2014. The average values were 0.04 m/m2 (in 1973) and 0.02 m/m2 (in 2014) (Figure 6). In 1973, the maximum value was 0.064 m/m2, and the minimum, 0.018 m/m2; in 2014, the maximum was 0.044 m/m2, and the minimum, 0.006 m/m2. The averages were 0.04 m/m2 (in 1973) and 0.02 m/m2 (in 2014);
- Rdb fluctuated between 2 and 6 in 1973 and between 2 and 5 in 2014, showing that the hydrographic system is not very articulated. The maximum value in 1973 was 6, and the maximum in 2014 was 5; the minimum value was 2 in both 1973 and 2014 (Figure 7).
4.3. Analysis of Pluviometric Data and Land Use Changes
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harvey, A. Badlands. In Encyclopedia of Geomorphology; Goudie, A., Ed.; Routledge: London, UK, 2004; pp. 45–47. [Google Scholar]
- Cappadonia, C.; Coco, L.; Buccolini, M.; Rotigliano, E. From slope morphometry to morphogenetic processes: An integrated approach of field survey, geographic information system morphometric analysis and statistics in Italian badlands. Land Degrad. Dev. 2016, 27, 851–862. [Google Scholar] [CrossRef]
- Bouma, N.A.; Imeson, A. Investigation of relationships between measured field indicators and erosion processes on badland surfaces at Petrer, Spain. Catena 2000, 40, 147–171. [Google Scholar] [CrossRef]
- Kasanin-Grubin, M.; Bryan, R. Lithological properties and weathering response on badland hillslopes. Catena 2007, 70, 68–78. [Google Scholar] [CrossRef]
- Battaglia, S.; Leoni, L.; Sartori, F. Mineralogical and grain size composition of clays developing calanchi and biancane erosional landforms. Geomorphology 2002, 49, 153–170. [Google Scholar] [CrossRef]
- Bucciante, M. Sulla Distribuzione Geografica dei Calanchi in Italia. L’Universo 1922, 3, 585–605. [Google Scholar]
- Rapetti, F.; Vittorini, S. La temperatura del suolo in due versanti contrapposti del preappennino argilloso toscano. Boll. Soc. Ital. Sci. Suolo 1975, 9, 9–25. [Google Scholar]
- Alexander, D.E. I calanchi, accelerated erosion in Italy. Geography 1980, 65, 95–100. [Google Scholar]
- Torri, D.; Bryan, R.B. Micropiping processes and biancana evolution in southest Tuscany, Italy. Geomorphology 1997, 20, 219–235. [Google Scholar] [CrossRef]
- Buccolini, M.; Coco, L.; Cappadonia, C.; Rotigliano, E. Relationships between a new slope morphometric index and calanchi erosion in northern Sicily, Italy. Geomorphology 2012, 149–150, 41–48. [Google Scholar] [CrossRef]
- Bollati, I.; Masseroli, A.; Mortara, G.; Pelfini, M.; Trombino, L. Alpine gullies system evolution: Erosion drivers and control factors. Two examples from the western Italian Alps. Geomorphology 2019, 327, 248–263. [Google Scholar] [CrossRef]
- Buccolini, M.; Coco, L. The role of the hillside in determining the morphometric characteristics of “calanchi”: The example of Adriatic central Italy. Geomorphology 2010, 191, 142–149. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Conoscenti, C.; Di Stefano, C.; Ferro, V. Testing GIS-morphometric analysis of some Sicilian badlands. Catena 2014, 113, 370–376. [Google Scholar] [CrossRef]
- Brandolini, P.; Pepe, G.; Capolongo, D.; Cappadonia, C.; Cevasco, A.; Conoscenti, C.; Marsico, A.; Vergari, F.; Del Monte, M. Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degrad. Dev. 2018, 29, 3050–3068. [Google Scholar] [CrossRef]
- Vittorini, S. Osservazioni sull’origine e sul ruolo di due forme di erosione nelle argille: Calanchi e biancane. Boll. Soc. Geogr. Ital. 1977, 10, 25–54. [Google Scholar]
- Faulkner, H. Vegetation cover density variations and infiltration pattern on piped alkali sodic soils; implications for the modelling of overland flow in semi-arid areas. In Vegetation and Erosion; Thornes, J.B., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 1990; pp. 317–346. [Google Scholar]
- Moretti, S.; Rodolfi, G. A typical “calanchi” landscape on the Eastern Apennine margin (Atri, Central Italy): Geomorphological features and evolution. Catena 2000, 40, 217–228. [Google Scholar] [CrossRef]
- Biondi, E.; Pesaresi, S. The badland vegetation of the northern-central Apennines (Italy). Fitosociologia 2004, 41, 155–170. [Google Scholar]
- Regüés, D.; Guàrdia, R.; Gallart, F. Geomorphic agents versus vegetation spreading as causes of badland occurrence in a Mediterranean subhumid mountainous area. Catena 2000, 40, 173–187. [Google Scholar] [CrossRef]
- Howard, A.D. Badlands. In Geomorphology of Desert Environments; Abrahams, A.D., Parsons, A.J., Eds.; Chapman and Hall: London, UK, 1994; pp. 213–242. [Google Scholar]
- Gallart, F.; Pérez-Gallego, N.; Latron, J.; Catari, G.; Martínez-Carreras, N.; Nord, G. Short- and long-term studies of sediment dynamics in a small humid mountain Mediterranean basin with Badlands. Geomorphology 2013, 196, 242–251. [Google Scholar] [CrossRef]
- Yair, A.; Lavee, H.; Bryan, R.B.; Adar, E. Runoff and erosion processes and rates in the Zion Valley Badlands, northern Negev, Israel. Earth Surf. Process. 1980, 5, 205–225. [Google Scholar] [CrossRef]
- Alexander, D.E. Difference between «calanchi» and «biancane» badlands in Italy. In Badland Geomorphology and Piping; Bryan, R., Yair, A., Eds.; Geo Books: Norwich, UK, 1982; pp. 71–87. [Google Scholar]
- Harvey, A. The role of piping in the development of badlands and gully systems in south-east Spain. In Badland Geomorphology and Piping; Bryan, R., Yair, A., Eds.; Geo Books: Norwich, UK, 1982; pp. 317–335. [Google Scholar]
- Imeson, A.C. Studies of erosion thresholds in semiarid areas: Field measurement of soil loss and infiltration in northern Morocco. Catena Suppl. 1983, 4, 79–89. [Google Scholar]
- Sdao, G.; Simone, A.; Vittorini, S. Osservazioni geomorfologiche su calanchi e biancane in Calabria (Geomorphology observation of calanchi and biancane in Calabria). Geografia Fisica e Dinamica Quaternaria 1984, 7, 10–16. [Google Scholar]
- Berndtsson, R. Spatial Hydrological Processes in a Water Resources Planning Perspective. An Investigation of Rainfall and Infiltration in Tunisia; Report No.1009; Department of Water Resources Engineering, Institute of Technology, University of Lund: Lund, Sweden, 1988; p. 315. [Google Scholar]
- Alexander, D.E.; Calvo, A. The influence of lichens on slope processes in some Spanish Badlands. In Vegetation and Erosion: Process and Environments; Thornes, J.B., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 1990; pp. 385–398. [Google Scholar]
- McCloskey, G.L.; Wasson, R.J.; Boggs, G.; Douglas, M.M. Timing and causes of gully erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: Management implications. Geomorphology 2016, 266, 96–104. [Google Scholar] [CrossRef]
- Bryan, R.B.; Yair, A. Badland Geomorphology and Piping; Geo Books: Norwich, UK, 1982. [Google Scholar]
- Campbell, I.A. Badlands and badlands gullies. In Arid Zone Geomorphology; Thomas, D.S.G., Ed.; Belhaven: London, UK, 1989; pp. 159–183. [Google Scholar]
- Regüés, D.; Pardini, G.; Gallart, F. Regolith behaviour and physical weathering of clayey mudrock as dependent on seasonal weather conditions in a badland area at Vallcebre, Eastern Pyrenees. Catena 1995, 25, 199–212. [Google Scholar] [CrossRef]
- Pardini, G.; Vigna Guidi, G.; Pini, R.; Regues, D.; Gallart, F. Structure and porosity of smectitic mudrocks as affected by experimental wetting-drying cycles and freezing-thawing cycles. Catena 1996, 27, 149–165. [Google Scholar] [CrossRef]
- Torri, D.; Calzolari, C.; Rodolfi, G. Badlands in changing environments: An introduction. Catena 2000, 40, 119–125. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Regüés, D. Geomorphological dynamics of subhumid mountain badland areas—Weathering, hydrological and suspended sediment transport processes: A case study in the Araguás catchment (Central Pyrenees) and implications for altered hydroclimatic regimes. Prog. Phys. Geogr. 2010, 34, 123–150. [Google Scholar] [CrossRef]
- Dube, H.B.; Mutema, M.; Muchaonyerwa, P.; Poesen, J.; Chaplot, V. A Global Analysis of the Morphology of Linear Erosion Features. Catena 2020, 190, 104542. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Wijdenes, D.O.; Nachtergaele, J.; Kosmas, C.; Roxo, M.; De Figueiredo, T. Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf. Process. 2000, 25, 1201–1220. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Antón-Fernández, C.; Ramos, M.C. Sediment production in large gullies of the Mediterranean area (NE Spain) from high-resolution digital elevation models and geographical information systems analysis. Earth Surf. Process. 2003, 28, 443–456. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully Erosion and Environmental Change: Importance and Research Needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Müller-Nedebock, D.; Chaplot, V. Soil carbon losses by sheet erosion: A potentially critical contribution to the global carbon cycle: Soil Carbon Erosion by Sheet Erosion. Earth Surf. Process. Landf. 2015, 40. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Poesen, J.; Nachtergaele, J.; Verstraeten, G. Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils. Geomorphology 2005, 69, 76–91. [Google Scholar] [CrossRef]
- De Santisteban, L.M.; Casalí, J.; Lopez, J.J. Assessing soil erosion rates in cultivated areas of Navarre (Spain). Earth Surf. Process. Landf. 2006, 31, 487–506. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Martínez-Murillo, J.F.; Vanmaercke, M.; Poesen, J. Scale-dependency of sediment yield from badlands areas in Mediterranean environments. Prog. Phys. Geogr. Earth Environ. 2011, 35, 297–332. [Google Scholar] [CrossRef]
- Gallart, F.; Marignani, M.; Pérez-Gallego, N.; Santi, E.; Maccherini, S. Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review. Catena 2013, 106, 4–11. [Google Scholar] [CrossRef]
- Boardman, J.; Favis-Mortlock, D.; Foster, I. A 13-year record of erosion on badland sites in the Karoo, South Africa. Earth Surf. Process. Landf. 2015, 40, 1964–1981. [Google Scholar] [CrossRef] [Green Version]
- Migoń, P. Geoturystyka; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2012. [Google Scholar]
- Palacio-Prieto, J.L.; Rosado-González, E.; Ramírez-Miguel, X.; Oropeza-Orozco, O.; CramHeydrich, S.; Ortiz-Pérez, M.A.; Figueroa-Mah-Eng, J.M.; Fernández de Castro-Martínez, G. Erosion, culture and geoheritage; the case of Santo Domingo Yanhuitlán, Oaxaca, México. Geoheritage 2016, 8, 359–369. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Poesen, J.; Cohen, M.; Del Monte, M.; García-Ruiz, J.M.; Ionita, I.; Niacsu, L.; Machová, Z.; Martín-Duque, J.F.; Nadal-Romero, E.; et al. The potential of permanent gullies in Europe as geomorphosites. Geoheritage 2017, 11, 217–239. [Google Scholar] [CrossRef]
- Bollati, I.; Vergari, F.; Del Monte, M.; Pelfini, M. Multitemporal dendrogeomorphological analysis of slope instability in upper Orcia valley (Southern Tuscany, Italy). Geogr. Fis. Dinam. Quat. 2016, 39, 105–120. [Google Scholar]
- Poesen, J.; Valentin, C. Gully erosion and global change—Preface. Catena 2003, 50, 87–89. [Google Scholar] [CrossRef]
- Li, Y.; Poesen, J.; Valentin, C. Gully Erosion under Global Change; Sichuan Science Technology Press: Chengu, China, 2004. [Google Scholar]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Martínez-Murillo, J.F.; Nadal-Romero, E. Perspectives on Badland Studies in the Context of Global Change. In Badlands Dynamics in a Context of Global Change; Nadal-Romero, E., Martínez-Murillo, J.F., Kuhn, N.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–25. [Google Scholar]
- Dramis, F.; Gentili, B.; Coltorti, M.; Cherubini, C. Geological observations on badlands in the Marche region. Geogr. Fis. Dinam. Quat. 1982, 5, 38–45. [Google Scholar]
- Phillips, C.P. The Crete Senesi, Tuscany. A vanishing landscape? Landscape Urban Plann. 1998, 41, 19–26. [Google Scholar] [CrossRef]
- Clarke, M.L.; Rendell, H.M. The impact of the farming practice of remodelling hillslope topography on badlands morphology and soil erosion processes. Catena 2000, 40, 229–250. [Google Scholar] [CrossRef]
- Buccolini, M.; Gentili, B.; Materazzi, M.; Aringoli, D.; Pambianchi, G.; Piacentini, T. Human impact and slope dynamics evolutionary trends in the monoclinal relief of Adriatic area of central Italy. Catena 2007, 71, 96–109. [Google Scholar] [CrossRef]
- Gallart, F. Algunos criterios topográficos para identificar el origen antrópico decárcavas. Cuadernos Investig. Geogr. 2009, 35, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Keay-Bright, J.; Boardman, J. The influence of land management on soil erosion in the Sneeuberg Mountains, Central Karoo, South Africa. Land Degrad. Dev. 2007, 18, 423–439. [Google Scholar] [CrossRef]
- Torri, D.; Santi, E.; Marignani, M.; Rossi, M.; Borselli, L.; Maccherini, S. The recurring cycles of biancana badlands: Erosion, vegetation and human impact. Catena 2013, 106, 22–30. [Google Scholar] [CrossRef]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Barbieri, M. Badlands denudation “hot spots”: The role of parental material properties on geomorphic processes in 20 years monitored sites of Southern Tuscany (Italy). Catena 2013, 106, 31–41. [Google Scholar] [CrossRef]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. 2017, 43, 64–84. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J.; Govers, G.; Van Wesemael, B. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 1996, 16, 161–173. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M.; White, S.M.; Làsanta, T.; Marti, C.; Gonzalez, C.; Paz Errea, M.; Valero, B. Assessing the effects of land-use changes on sediment yield and channel dynamics in the central Spanish Pyrenees. IAHS Publ. 1997, 245, 151–158. [Google Scholar]
- Vandekerckhove, L.; Poesen, J.; Oostwoud Wijidenes, D.; Figueiredo, T. Topographical threshold for ephemeral gully initiation in intensively cultivated areas of the Mediterranean. Catena 1998, 33, 271–292. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Boenzi, F.; Bentivenga, M. Implications of decadal changes in precipitation and land use policy to soil erosion in Basilicata, Italy. Catena 2006, 65, 138–151. [Google Scholar] [CrossRef]
- Capolongo, D.; Pennetta, L.; Piccarreta, M.; Fallacara, G.; Boenzi, F. Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (southern Italy). Earth Surf. Process. Landf. 2008, 33, 364–379. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and Erosive Consequences of Farmland Abandonment in Europe, with Special Reference to the Mediterranean Region—A Review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Arnáez, J.; Lasanta, T.; Errea, M.P.; Ortigosa, L. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land. Degrad. Dev. 2011, 22, 537–550. [Google Scholar] [CrossRef]
- Lukey, B.; Sheffield, J.; Bathurst, J.; Hiley, R.A.; Mathys, N. Test of the SHETRAN technology for modelling the impact of reforestation on badlands runoff and sediment yield at Draix, France. J. Hydrol. 2000, 235, 44–62. [Google Scholar] [CrossRef]
- Vallauri, D.; Aronson, J.; Barbero, M. An analysis of forest restoration 120 years after reforestation on badlands in the Southwestern Alps. Restor. Ecol. 2002, 10, 16–26. [Google Scholar] [CrossRef]
- Castaldi, F.; Chiocchini, U. Effects of land use changes on badland erosion in clayey drainage basins, Radicofani, Central Italy. Geomorphology 2012, 169–170, 98–108. [Google Scholar] [CrossRef]
- Ballesteros-Canovas, J.A.; Stoffel, M.; Martín-Duque, J.F.; Corona, C.; Lucía, A.; Bodoque, J.M.; Montgomery, D.R. Gully evolution and geomorphic adjustments of badlands to reforestation. Sci. Rep. 2017, 7, 45027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renschler, C.S.; Mannaerts, C.; Diekkrüger, B. Evaluating spatial and temporal variability in soil erosion risk—Rainfall erosivity and soil loss ratios in Andalusia, Spain. Catena 1999, 34, 209–225. [Google Scholar] [CrossRef]
- Torri, D.; Regües-Muñoz, D.; Pellegrini, S.; Bazzoffi, P. Within-storm soil surface dynamics and erosive effects of rainstorms. Catena 1999, 38, 131–150. [Google Scholar] [CrossRef]
- Mannaerts, C.M.; Gabriels, D. A probabilistic approach for predicting rainfall soil erosion losses in semiarid areas. Catena 2000, 40, 403–420. [Google Scholar] [CrossRef]
- Archibold, O.W.; Lévesque, L.M.J.; Boer, D.H.; Aitken, A.E.; Delanoy, L. Gully retreat in a semi-urban catchment in Saskatoon, Saskatchewan. Appl. Geogr. 2003, 23, 261–279. [Google Scholar] [CrossRef]
- Boardman, J.; Parsons, A.J.; Holland, R.; Holmes, P.J. Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. Catena 2003, 50, 165–184. [Google Scholar] [CrossRef]
- Øygarden, L. Rill and gully development during extreme winter runoff event in Norway. Catena 2003, 50, 217–242. [Google Scholar] [CrossRef]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Fredi, P.; Palmieri, E.L. Long-and short-term evolution of several Mediterranean denudation hot spots: The role of rainfall variations and human impact. Geomorphology 2013, 183, 14–27. [Google Scholar] [CrossRef]
- Del Monte, M. The typical Badlands Landscape between the Tyrrhenian Sea and Tiber River. In Landscape and Landforms of Italy; World Geomorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 281–291. [Google Scholar]
- Castiglioni, B. Osservazioni sui calanchi appenninici. Boll. Soc. Geol. Ital. 1933, 52, 357–360. [Google Scholar]
- Rodolfi, G.; Frascati, F. Cartografia di base per la programmazione in aree marginali (area rappresentativa dell’alta Vadera): Memorie illustrative della carta geomorfologica. Annali dell’Istituto Sperimentale per lo Studi e la Difesa del Suolo 1979, 10, 37–80. [Google Scholar]
- Biancotti, A.; Cortemiglia, G.C. Morphogenetic evolution of the river system of southern Piedmont (Italy). Geogr. Fis. Dinam. Quat. 1982, 5, 10–13. [Google Scholar]
- Del Prete, M.; Bentivenga, M.; Coppola, L.; Rendell, H. Aspetti evolutivi dei reticoli calanchivi a sud di Pisticci. Geol. Romana 1994, 30, 295–306. [Google Scholar]
- Calzolari, C.; Ungaro, F. Geomorphic features of a badland (biancane) area (Central Italy): Characterisation, distribution and quantitative spatial analysis. Catena 1998, 31, 237–256. [Google Scholar] [CrossRef]
- Farabegoli, E.; Agostini, C. Identification of Calanco, a badland landform in the northern Apennines, Italy. Earth Surf. Process. Landf. 2000, 25, 307–318. [Google Scholar] [CrossRef]
- Battaglia, S.; Leoni, L.; Rapetti, F.; Spagnolo, M. Dynamic evolution of badlands in the Roglio basin (Tuscany, Italy). Catena 2011, 86, 14–23. [Google Scholar] [CrossRef]
- Ciccacci, S.; Galiano, M.; Roma, M.A.; Salvatore, M.C. Morphological analysis and erosion rate evaluation in badlands of Radicofani area (Southern Tuscany-Italy). Catena 2008, 74, 87–97. [Google Scholar] [CrossRef]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Palmieri, E.L. Space–time variability of denudation rates at the catchment and hillslope scales on the Tyrrhenian side of Central Italy. Geomorphology 2009, 107, 161–177. [Google Scholar] [CrossRef]
- Clarke, M.L.; Rendell, H.M. Climate-driven decrease in erosion in extant Mediterranean badlands. Earth Surf. Process. Landf. 2010, 35, 1281–1288. [Google Scholar] [CrossRef]
- Piccarreta, M.; Caldara, M.; Capolongo, D.; Boenzi, F. Holocene geomorphic activity related to climatic change and human impact in Basilicata, Southern Italy. Geomorphology 2011, 128, 137–147. [Google Scholar] [CrossRef]
- Buccolini, M.; Coco, L. MSI (morphometric slope index) for analyzing activation and evolution of calanchi in Italy. Geomorphology 2013, 191, 142–149. [Google Scholar] [CrossRef]
- Bollati, I.; Della Seta, M.; Pelfini, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Dendrochronological and geomorphological investigations to assess water erosion and mass wasting processes in the Apennines of Southern Tuscany (Italy). Catena 2012, 90, 1–17. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Conoscenti, C.; Di Stefano, C.; Ferro, V. A new empirical model for estimating calanchi Erosion in Sicily, Italy. Geomorphology 2015, 231, 292–300. [Google Scholar] [CrossRef]
- Coco, L.; Cestrone, V.; Buccolini, M. Geomorphometry for studying the evolution of small basins: An example in the Italian Adriatic foredeep. In Geomorphometry for Geosciences; Jasiewicz, J., Zwoliński, Z., Mitasova, H., Hengl, T., Eds.; Bogucki Wydawnictwo Naukowe, Adam Mickiewicz University in Poznań—Institute of Geoecology and Geoinformation, International Society for Geomorphometry: Poznań, Poland, 2015; pp. 107–110. [Google Scholar]
- Aucelli, P.P.C.; Conforti, M.; Della Seta, M.; Del Monte, M.; D’uva, L.; Rosskopf, C.M.; Vergari, F. Multi-temporal digital photogrammetric analysis for quantitative assessment of soil erosion rates in the Landola catchment of the Upper Orcia Valley (Tuscany, Italy). Land Degrad. Dev. 2016, 27, 1075–1092. [Google Scholar] [CrossRef]
- Bianchini, S.; Del Soldato, M.; Solari, L.; Nolesini, T.; Pratesi, F.; Moretti, S. Badland susceptibility assessment in Volterra municipality (Tuscany, Italy) by means of GIS and statistical analysis. Environ. Earth Sci. 2016, 75, 889. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Ferro, V. Are calanco landforms similar to river basins? Sci. Total Environ. 2017, 603–604, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Caraballo-Arias, N.A.; Ferro, V. Assessing, measuring and modelling erosion in calanchi areas: A review. J. Agric. Eng. 2016, 47, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Bosino, A.; Omran, A.; Maerker, M. Identification, characterization and analysis of the Oltrepo Pavese Calanchi in the northern Apennines, Italy. Geomorphology 2019, 340, 53–66. [Google Scholar] [CrossRef]
- Provincia di Modena. PTCP. Piano Territoriale di Coordinamento Provinciale. Variante di Adeguamento in Materia di Dissesto Idrogeologico ai Piani di Bacino dei Fiumi Po e Reno; Area Programmazione e Pianificazione Territoriale: Modena, Italy, 2009. [Google Scholar]
- Smiraglia, C.; Azzoni, R.S.; D’Agata, C.; Maragno, D.; Fugazza, D.; Diolaiuti, G.A. The evolution of the Italian glaciers from the previous data base to the New Italian Inventory. Preliminary considerations and results. Geogr. Fis. Dinam. Quat. 2015, 38, 79–87. [Google Scholar]
- Köppen, W. Grundriß der Klimakunde, 2nd ed.; Walter de Gruyter and Co.: Berlin, Germany; Leipzig, Germany, 1931. [Google Scholar]
- Gasperi, G.; Bettelli, G.; Panini, F.; Pizziolo, M. Note Illustrative della Carta Geologica d’Italia alla Scala 1: 50.000, Foglio 219 Sassuolo; S.EL.CA (Società Elaborazioni Cartografiche): Florence, Italy, 2005. [Google Scholar]
- Regione Emilia-Romagna. Cartografia Geologica Online in Scala 1:10.000 della Regione Emilia-Romagna. 2017. Available online: https://geo.regione.emilia-romagna.it/cartografia_sgss/user/viewer.jsp?service=geologia (accessed on 28 January 2021).
- Boni, A.; Casnedi, R. Note Illustrative della Carta Geologica d’Italia alla Scala 1:100.000. Fogli 69 e 70 “Asti” e “Alessandria”; Servizio Geologico d’Italia: Rome, Italy, 1970; p. 83. [Google Scholar]
- Tomadin, L. Ricerche sui Sedimenti Argillosi Fluviali dal Brenta al Reno. Giorn. Geol. 1969, 36, 1. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A. Dynamic Basis of Geomorphology. Geol. Soc. Am. Bull 1952, 63, 923–938. [Google Scholar] [CrossRef]
- Avena, G.C.; Giuliano, G.; Palmieri, E.L. Sulla valutazione quantitativa della gerarchizzazione ed evoluzione dei reticoli fluviali. Boll. Soc. Geol. Ital. 1967, 86, 781–796. [Google Scholar]
- Caloiero, D.; Mercuri, T. Le alluvioni in Basilicata dal 1921 al 1980; CNR-IRPI, Geodata 16: Cosenza, Italy, 1982. [Google Scholar]
- Buffoni, L.; Maugeri, M.; Nanni, T. Precipitation in Italy from 1833–1996. Theor. Appl. Climatol. 1999, 63, 33–40. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M. Variations of Temperature and Precipitation in Italy from 1866 to 1995. Theor. Appl. Clim. 2000, 65, 165–174. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Clim. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Pavan, S.; Zheng, Z.; Berg, P.; Lotti, C.; Giovanni, C.; Borisova, M.; Lindhout, P.; Jong, H.; Ricciardi, L.; Visser, R.; et al. Map- vs homology-based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew. Euphytica 2008, 162, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Abrantes, F.F.; Gacic, M. The climate of the Mediterranean region: Research progress and climate change impacts. Reg. Environ. Chang. 2014, 14, 1679–1684. [Google Scholar] [CrossRef]
- Dallai, D.; Del Prete, C. Gli Ambienti delle Salse: Problemi di Tutela della Biodiversità Vegetale. In Proceedings of the Convegno Internazionale “I Vulcani di Fango”, Modena, Italy, 9–10 June 2007. [Google Scholar]
- Ciccacci, S.; Galiano, M.; Roma, M.A.; Salvatore, M.C. Morphodynamics and morphological changes of the last 50 years in a badland sample area of Southern Tuscany (Italy). Z. Geomorphol. 2009, 53, 273–297. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Miccoli, M.N.; Bentivenga, M. Global change and long-term gully sediment production dynamics in Basilicata, southern Italy. Environ. Earth Sci. 2012, 67, 1619–1630. [Google Scholar] [CrossRef]
- Cappadonia, C.; Conoscenti, C.; Rotigliano, E. Monitoring of erosion on two calanchi fronts—Northern Sicily (Italy). Landf. Anal. 2011, 17, 21–25. [Google Scholar]
- García-Ruiz, J.M.; Lasanta, T.; Ruiz-Flaño, P.; Ortigosa, L.; White, S.; González, C.; Martí, C. Land-use changes and sustainable development in mountain areas: A case study in the Spanish Pyrenees. Landsc. Ecol. 1996, 11, 267–277. [Google Scholar] [CrossRef]
- Molinillo, M.; Lasanta, T.; García-Ruiz, J.M. Managing mountainous degraded landscapes after farmland abandonment in the Central Spanish Pyrenees. Environ. Manag. 1997, 21, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gutiérrez, A.; Schnabel, S.; Lavado-Contador, F. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land. Degrad. Dev. 2009, 20, 535–550. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Cammeraat, E.L.H.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in semi-arid environment. Earth Surf. Process. Landf. 2008, 33, 1574–1584. [Google Scholar] [CrossRef]
1954–2018 | |
---|---|
Mean annual rainfall (mm) | 840 |
Minimum annual rainfall (mm) | 449 |
Maximum annual rainfall (mm) | 1160 |
Absolute minimum monthly rainfall (mm) | 39 (July) |
Absolute maximum monthly rainfall (mm) | 93 (November) |
Mean annual temperature (°C) | 13 |
Minimum monthly temperature (°C) | 2 (January) |
Maximum monthly temperature (°C) | 29 (July) |
Type | Year | Scale | Flight | Color |
---|---|---|---|---|
Aerial photos | 1954 | 1:66,000 | Volo GAI | B/W |
Aerial photos | 1973 | 1:15,000 | Volo RER | B/W |
Aerial photos | 1981 | 1:33,000 | Volo Romagna | B/W |
Orthophotos | 1988 | 1:10,000 | National Web Map Service | B/W |
Orthophotos | 1996 | 1:10,000 | National Web Map Service | B/W |
Orthophotos | 2006 | 1:10,000 | National Web Map Service | C |
Orthophotos AGEA | 2008 | 1:10,000 | National Web Map Service | C |
Orthophotos AGEA | 2011 | 1:10,000 | National Web Map Service | C |
Orthophotos TeA | 2014 | 1:10,000 | Regione Emilia-Romagna Web Map Service | C |
CODE | Land Use | 1994 (m2) | 2014 (m2) | Δ (%) |
---|---|---|---|---|
11 | Urban fabric | 118,361 | 301,359 | 155% |
12 | Industrial, commercial, and transport units | 99,964 | 100,606 | 1% |
13 | Mine, dump, and construction sites | 225,865 | 224,716 | −1% |
14 | Artificial, non-agricultural vegetated areas | 66,297 | 74,995 | 13% |
21 | Arable land | 3,182,080 | 2,098,310 | −34% |
22 | Permanent crops | 159,478 | 365,372 | 129% |
23 | Pastures | 14,033 | 517,243 | 3586% |
31 | Forest | 1,861,610 | 2,497,780 | 34% |
32 | Shrubs and/or herbaceous vegetation associations | 1,862,140 | 1,195,760 | −36% |
33 | Open spaces with little or no vegetation | 1,254,490 | 1,320,920 | 5% |
51 | Inland waters | 71,782 | 119,043 | 66% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coratza, P.; Parenti, C. Controlling Factors of Badland Morphological Changes in the Emilia Apennines (Northern Italy). Water 2021, 13, 539. https://doi.org/10.3390/w13040539
Coratza P, Parenti C. Controlling Factors of Badland Morphological Changes in the Emilia Apennines (Northern Italy). Water. 2021; 13(4):539. https://doi.org/10.3390/w13040539
Chicago/Turabian StyleCoratza, Paola, and Carlotta Parenti. 2021. "Controlling Factors of Badland Morphological Changes in the Emilia Apennines (Northern Italy)" Water 13, no. 4: 539. https://doi.org/10.3390/w13040539
APA StyleCoratza, P., & Parenti, C. (2021). Controlling Factors of Badland Morphological Changes in the Emilia Apennines (Northern Italy). Water, 13(4), 539. https://doi.org/10.3390/w13040539