Salt Marsh Hydrogeology: A Review
Abstract
:1. Introduction
2. Defining Groundwater–Surface Water Exchange and Zonation in Salt Marshes
3. Drivers of SGD and PEX in Salt Marsh Ecosystems
3.1. Driving Forces of SGD
3.2. Driving Forces of Porewater Drainage (PEX)
4. Methods
4.1. Hydrologic Approaches
4.1.1. Direct Measurements
4.1.2. Indirect Approaches
4.1.3. Numerical Models
4.2. Geochemical Approaches
5. Literature Synthesis
5.1. Results
5.2. Regional and Global Significance
6. Targeted Questions
- 1.
- How do patterns and magnitudes of SGD and PEX vary across meso-, macro, and megatidal settings?
- 2.
- How does marsh PEX respond to extreme events?
- 3.
- How will global climate change-induced marsh migration impact fluxes and the composition of PEX and SGD?
- 4.
- How do ecosystem components (e.g., climate, geomorphology, vegetation) impact PEX and SGD?
- 5.
- What are the links between ecosystem hydrogeology, water exchange, and carbon budgets?
7. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, W.S. The Effect of Submarine Groundwater Discharge on the Ocean. Annu. Rev. Mar. Sci. 2010, 2, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.E.; Xin, P.; Santos, I.R.; Charette, M.A.; Li, L.; Barry, D. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean. Adv. Water Resour. 2018, 115, 315–331. [Google Scholar] [CrossRef]
- Taniguchi, M.; Dulai, H.; Burnett, K.M.; Santos, I.R.; Sugimoto, R.; Stieglitz, T.; Kim, G.; Moosdorf, N.; Burnett, W.C. Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects. Front. Environ. Sci. 2019, 7, 1–26. [Google Scholar] [CrossRef]
- Wang, Z.A.; Kroeger, K.D.; Ganju, N.K.; Gonneea, M.E.; Chu, S.N. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnol. Oceanogr. 2016, 61, 1916–1931. [Google Scholar] [CrossRef] [Green Version]
- Najjar, R.G.; Herrmann, M.; Alexander, R.; Boyer, E.W.; Burdige, D.J.; Butman, D.; Cai, W.; Canuel, E.A.; Chen, R.F.; Friedrichs, M.A.M.; et al. Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America. Glob. Biogeochem. Cycles 2018, 32, 389–416. [Google Scholar] [CrossRef] [Green Version]
- Tamborski, J.; Eagle, M.; Kurylyk, B.L.; Kroeger, K.; Wang, Z.A.; Henderson, P.; Charette, M.A. Porewater exchange driven inorganic carbon export from intertidal salt marshes. Limnol. Oceanogr. 2021. [Google Scholar] [CrossRef]
- Braswell, A.E.; Heffernan, J.B.; Kirwan, M.L. How Old Are Marshes on the East Coast, USA? Complex Patterns in Wetland Age Within and Among Regions. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Allen, J. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 2000, 19, 1155–1231. [Google Scholar] [CrossRef]
- Mitchell, M.; Herman, J.; Bilkovic, D.M.; Hershner, C. Marsh persistence under sea-level rise is controlled by multiple, geologically variable stressors. Ecosyst. Heal. Sustain. 2017, 3, 1379888. [Google Scholar] [CrossRef]
- Perillo, G.M.E.; Wolanski, E.; Cahoon, D.R.; Hopkinson, C.S. (Eds.) Coastal Wetlands: An Integrated Ecosystem Approach, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Evans, T.B.; White, S.M.; Wilson, A.M. Coastal Groundwater Flow at the Nearshore and Embayment Scales: A Field and Modeling Study. Water Resour. Res. 2020, 56, 1–15. [Google Scholar] [CrossRef]
- Moffett, K.B.; Gorelick, S.M.; McLaren, R.G.; Sudicky, E.A. Salt marsh ecohydrological zonation due to heterogeneous vegetation-groundwater-surface water interactions. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Guimond, J.A.; Seyfferth, A.L.; Moffett, K.B.; Michael, H.A. A physical-biogeochemical mechanism for negative feedback between marsh crabs and carbon storage. Environ. Res. Lett. 2020, 15, 034024. [Google Scholar] [CrossRef]
- Xiao, K.; Wilson, A.M.; Li, H.; Ryan, C. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: A modeling study. Adv. Water Resour. 2019, 132, 103408. [Google Scholar] [CrossRef]
- Stumpf, R.P. The process of sedimentation on the surface of a salt marsh. Estuar. Coast. Shelf Sci. 1983, 17, 495–508. [Google Scholar] [CrossRef]
- Harvey, J.W.; Nuttle, W.K. Fluxes of water and solute in a coastal wetland sediment. 2. Effect of macropores on solute exchange with surface water. J. Hydrol. 1995, 164, 109–125. [Google Scholar] [CrossRef]
- Xin, P.; Yuan, L.-R.; Li, L.; Barry, D.A. Tidally driven multiscale pore water flow in a creek-marsh system. Water Resour. Res. 2011, 47, 1–19. [Google Scholar] [CrossRef]
- Howes, B.; Goehringer, D. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creek-banks of a New England salt marsh. Mar. Ecol. Prog. Ser. 1994, 114, 289–301. [Google Scholar] [CrossRef]
- Seyfferth, A.L.; Bothfeld, F.; Vargas, R.; Stuckey, J.W.; Wang, J.; Kearns, K.; Michael, H.A.; Guimond, J.; Yu, X.; Sparks, D.L. Spatial and temporal heterogeneity of geochemical controls on carbon cycling in a tidal salt marsh. Geochim. Cosmochim. Acta 2020, 282, 1–18. [Google Scholar] [CrossRef]
- Valiela, I.; Teal, J.M.; Volkmann, S.; Shafer, D.J.; Carpenter, E.J. Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater 1. Limnol. Oceanogr. 1978, 23, 798–812. [Google Scholar] [CrossRef]
- Dame, R.; Gardner, L. Nutrient processing and the development of tidal creek ecosystems. Mar. Chem. 1993, 43, 175–183. [Google Scholar] [CrossRef]
- Teal, J.M. Energy Flow in the Salt Marsh Ecosystem of Georgia. Ecol. Soc. Am. 1962, 43, 614–624. [Google Scholar] [CrossRef]
- Odum, E.P. Energy Flow in Ecosystems: A Historical Review. Integr. Comp. Biol. 1968, 8, 11–18. [Google Scholar] [CrossRef]
- Whiting, G.J.; McKellar, H.N.; Spurrier, J.D.; Wolaver, T.G. Nitrogen exchange between a portion of vegetated salt marsh and the adjoining creek. Limnol. Oceanogr. 1989, 34, 463–473. [Google Scholar] [CrossRef]
- Childers, D.; Day, J.W.; McKellar, H.N. Twenty more years of marsh and estuarine flux studies: Revisting Nixon (1980). In Concepts and Controversies in Tidal Marsh Ecology; Weinstein, D.A., Kreeger, M., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2000; pp. 391–424. [Google Scholar]
- Krest, J.M.; Moore, W.S.; Gardner, L.R.; Morris, J.T. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Glob. Biogeochem. Cycles 2000, 14, 167–176. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M.; Najjar, R.G.; Kemp, W.M.; Alexander, R.B.; Boyer, E.W.; Cai, W.-J.; Griffith, P.C.; Kroeger, K.D.; McCallister, S.L.; Smith, R.A. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: A synthesis approach. Glob. Biogeochem. Cycles 2015, 29, 96–111. [Google Scholar] [CrossRef]
- Tobias, C.; Neubauer, S.C. Salt Marsh Biogeochemistry: An overview. In Coastal Wetlands: An Integrated Ecosystem Approach; Elsevier Science: Amsterdam, The Netherlands, 2009; pp. 445–492. [Google Scholar]
- Burnett, W.C.; Bokuniewicz, H.; Huettel, M.; Moore, W.S.; Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 2003, 66, 3–33. [Google Scholar] [CrossRef]
- Hemond, H.F.; Nuttle, W.K.; Burke, R.W.; Stolzenbach, K.D. Surface Infiltration in Salt Marshes: Theory, Measurement, and Biogeochemical Implications. Water Resour. Res. 1984, 20, 591–600. [Google Scholar] [CrossRef]
- Harvey, J.W.; Germann, P.F.; Odum, W.E. Geomorphological control of subsurface hydrology in the creekbank zone of tidal marshes. Estuar. Coast. Shelf Sci. 1987, 25, 677–691. [Google Scholar] [CrossRef]
- Nuttle, W.K.; Hemand, H.F. Salt marsh hydrology: Implications for biogeochemical fluxes to the atmosphere and estuaries. Glob. Biogeochem. Cycles 1988, 2, 91–114. [Google Scholar] [CrossRef]
- Harvey, J.W.; Odum, W.E. The influence of tidal marshes on upland groundwater discharge to estuaries. Biogeochemistry 1990, 10, 217–236. [Google Scholar] [CrossRef]
- Santos, I.R.; Eyre, B.D.; Huettel, M. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuar. Coast. Shelf Sci. 2012, 98, 1–15. [Google Scholar] [CrossRef]
- Nuttle, W.K.; Harvey, J.W. Fluxes of water and solute in a coastal wetland sediment. l. The contribution of regional groundwater discharge. J. Hydrol. 1995, 164, 89–107. [Google Scholar] [CrossRef]
- Wilson, A.M.; Evans, T.; Moore, W.; Schutte, C.A.; Joye, S.B.; Hughes, A.H.; Anderson, J.L. Groundwater controls ecological zonation of salt marsh macrophytes. Ecology 2015, 96, 840–849. [Google Scholar] [CrossRef]
- Tait, D.R.; Maher, D.T.; Macklin, P.A.; Santos, I.R. Mangrove pore water exchange across a latitudinal gradient. Geophys. Res. Lett. 2016, 43, 3334–3341. [Google Scholar] [CrossRef] [Green Version]
- Santos, I.R.; Maher, D.T.; Larkin, R.; Webb, J.R.; Sanders, C.J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 2019, 64, 996–1013. [Google Scholar] [CrossRef]
- Sadat-Noori, M.; Santos, I.R.; Tait, D.R.; Reading, M.J.; Sanders, C.J. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. J. Hydrol. 2017, 553, 188–198. [Google Scholar] [CrossRef]
- Tait, D.R.; Maher, D.T.; Sanders, C.J.; Santos, I.R. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves. Geochim. Cosmochim. Acta 2017, 200, 295–309. [Google Scholar] [CrossRef]
- Moffett, K.B.; Robinson, D.A.; Gorelick, S.M. Relationship of Salt Marsh Vegetation Zonation to Spatial Patterns in Soil Moisture, Salinity, and Topography. Ecosystems 2010, 13, 1287–1302. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, S.; Defina, A.; Marani, M. Tidal regime, salinity and salt marsh plant zonation. Estuar. Coast. Shelf Sci. 2005, 62, 119–130. [Google Scholar] [CrossRef]
- Xin, P.; Kong, J.; Li, L.; Barry, D. Modelling of groundwater–vegetation interactions in a tidal marsh. Adv. Water Resour. 2013, 57, 52–68. [Google Scholar] [CrossRef]
- Michael, H.A.; Mulligan, A.E.; Harvey, C.F. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 2005, 436, 1145–1148. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Sun, G.; Miao, G.; Noormets, A.; Emanuel, R.; King, J.S. Understanding coastal wetland hydrology with a new regional-scale, process-based hydrological model. Hydrol. Process. 2018, 32, 3158–3173. [Google Scholar] [CrossRef]
- Wilson, A.M.; Evans, T.B.; Moore, W.S.; Schutte, C.A.; Joye, S.B. What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. Water Resour. Res. 2015, 51, 4198–4207. [Google Scholar] [CrossRef]
- Wilson, A.M.; Moore, W.S.; Joye, S.B.; Anderson, J.L.; Schutte, C.A. Storm-driven groundwater flow in a salt marsh. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Peterson, R.N.; Meile, C.; Peterson, L.E.; Carter, M.; Miklesh, D. Groundwater discharge dynamics into a salt marsh tidal river. Estuar. Coast. Shelf Sci. 2019, 218, 324–333. [Google Scholar] [CrossRef]
- Wilson, A.M.; Gardner, L.R. Tidally driven groundwater flow and solute exchange in a marsh: Numerical simulations. Water Resour. Res. 2006, 42, 1–9. [Google Scholar] [CrossRef]
- Xin, P.; Zhou, T.; Lu, C.; Shen, C.; Zhang, C.; D’Alpaos, A.; Li, L. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system. Adv. Water Resour. 2017, 103, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ursino, N.; Silvestri, S.; Marani, M. Subsurface flow and vegetation patterns in tidal environments. Water Resour. Res. 2004, 40, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Barry, D.A.; Stagnitti, F.; Parlange, J.-Y. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 1999, 35, 3253–3259. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Morris, J.T. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 2012, 108, 27–38. [Google Scholar] [CrossRef]
- Bollinger, M.; Moore, W. Evaluation of salt marsh hydrology using radium as a tracer. Geochim. Cosmochim. Acta 1993, 57, 2203–2212. [Google Scholar] [CrossRef]
- Wilson, C.; Hughes, Z.; Fitzgerald, D. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes. Estuar. Coast. Shelf Sci. 2012, 106, 33–44. [Google Scholar] [CrossRef]
- Zhou, T.; Xin, P.; Li, L.; Barry, D.; Šimůnek, J. Effects of large macropores on soil evaporation in salt marshes. J. Hydrol. 2020, 584, 124754. [Google Scholar] [CrossRef]
- Katz, L.C. Effects of burrowing by the fiddler crab, Uca pugnax (Smith). Estuar. Coast. Mar. Sci. 1980, 11, 233–237. [Google Scholar] [CrossRef]
- McCraith, B.J.; Gardner, L.R.; Wethey, D.S.; Moore, W.S. The effect of fiddler crab burrowing on sediment mixing and radionuclide profiles along a topographic gradient in a southeastern salt marsh. J. Mar. Res. 2003, 61, 359–390. [Google Scholar] [CrossRef]
- Xin, P.; Jin, G.; Li, L.; Barry, D. Effects of crab burrows on pore water flows in salt marshes. Adv. Water Resour. 2009, 32, 439–449. [Google Scholar] [CrossRef]
- Gonneea, M.E.; Mulligan, A.E.; Charette, M.A. Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge. Geophys. Res. Lett. 2013, 40, 2701–2706. [Google Scholar] [CrossRef] [Green Version]
- Guimond, J.A.; Yu, X.; Seyfferth, A.L.; Michael, H.A. Using Hydrological-Biogeochemical Linkages to Elucidate Carbon Dynamics in Coastal Marshes Subject to Relative Sea Level Rise. Water Resour. Res. 2020, 56, 1–16. [Google Scholar] [CrossRef]
- Wasson, K.; Raposa, K.; Almeida, M.; Beheshti, K.; Crooks, J.A.; Deck, A.; Dix, N.; Garvey, C.; Goldstein, J.; Johnson, D.S.; et al. Pattern and scale: Evaluating generalities in crab distributions and marsh dynamics from small plots to a national scale. Ecology 2019, 100, e02813. [Google Scholar] [CrossRef] [Green Version]
- Rosenberry, D.O.; Duque, C.; Lee, D.R. History and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1—Freshwater settings. Earth-Sci. Rev. 2020, 204, 103167. [Google Scholar] [CrossRef]
- Duque, C.; Russoniello, C.J.; Rosenberry, D.O. History and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 2—Marine settings and submarine groundwater discharge. Earth-Sci. Rev. 2020, 204, 103168. [Google Scholar] [CrossRef]
- Lee, D.R. A device for measuring seepage flux in lakes and estuaries1. Limnol. Oceanogr. 1977, 22, 140–147. [Google Scholar] [CrossRef]
- Paulsen, R.J.; Smith, C.F.; O’Rourke, D.; Wong, T.-F. Development and Evaluation of an Ultrasonic Ground Water Seepage Meter. Ground Water 2001, 39, 904–911. [Google Scholar] [CrossRef]
- Taniguchi, M.; Fukuo, Y. Continuous Measurements of Ground-Water Seepage Using an Automatic Seepage Meter. Ground Water 1993, 31, 675–679. [Google Scholar] [CrossRef]
- Sholkovitz, E.; Herbold, C.; Charette, M. An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnol. Oceanogr. Methods 2003, 1, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Rosenberry, D.O.; LaBaugh, J.W. Field Techniques for Estimating Water Fluxes between Surface Water and Ground Water. U.S. Geol. Surv. 2008, 128. [Google Scholar] [CrossRef] [Green Version]
- Whiting, G.J.; Childers, D.L. Subtidal advective water flux as a potentially important nutrient input to southeastern U.S.A. Saltmarsh estuaries. Estuar. Coast. Shelf Sci. 1989, 28, 417–431. [Google Scholar] [CrossRef]
- Gardner, L.R. A modeling study of the dynamics of pore water seepage from intertidal marsh sediments. Estuar. Coast. Shelf Sci. 2005, 62, 691–698. [Google Scholar] [CrossRef]
- Burnett, W.; Aggarwal, P.; Aureli, A.; Bokuniewicz, H.; Cable, J.; Charette, M.; Kontar, E.; Krupa, S.; Kulkarni, K.; Loveless, A.; et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef]
- Cable, J.; Burnett, W.; Chanton, J.; Corbett, D.; Cable, P. Field Evaluation of Seepage Meters in the Coastal Marine Environment. Estuar. Coast. Shelf Sci. 1997, 45, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Russoniello, C.J.; Michael, H.A. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions. Ground Water 2014, 53, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Bouwer, H.; Rice, R.C. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour. Res. 1976, 12, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Byers, S.E.; Chmura, G.L. Observations on Shallow Subsurface Hydrology at Bay of Fundy Macrotidal Salt Marshes. J. Coast. Res. 2014, 297, 1006–1016. [Google Scholar] [CrossRef]
- Xiao, K.; Wilson, A.M.; Li, H.; Santos, I.R.; Tamborski, J.; Smith, E.; Lang, S.Q.; Zheng, C.; Luo, X.; Lu, M.; et al. Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnol. Oceanogr. 2020, 66, 14–29. [Google Scholar] [CrossRef]
- Chen, X. Measurement of streambed hydraulic conductivity and its anisotropy. Environ. Geol. 2000, 39, 1317–1324. [Google Scholar] [CrossRef]
- Schultz, G.; Ruppel, C. Constraints on hydraulic parameters and implications for groundwater flux across the upland–estuary interface. J. Hydrol. 2002, 260, 255–269. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Gardner, L.R. Assessing the accuracy of monitoring wells in tidal wetlands. Water Resour. Res. 2009, 45, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gardner, L.R.; Gaines, E.F. A method for estimating pore water drainage from marsh soils using rainfall and well records. Estuar. Coast. Shelf Sci. 2008, 79, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Tobias, C.R.; Harvey, J.W.; Anderson, I.C. Quantifying groundwater discharge through fringing wetlands to estuaries: Seasonal variability, methods comparison, and implications for wetland-estuary exchange. Limnol. Oceanogr. 2001, 46, 604–615. [Google Scholar] [CrossRef] [Green Version]
- Drexler, J.Z.; Snyder, R.L.; Spano, D.; Paw U, K.T. A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol. Process. 2004, 18, 2071–2101. [Google Scholar] [CrossRef]
- Gardner, L.R. Role of geomorphic and hydraulic parameters in governing pore water seepage from salt marsh sediments. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, C.; Jin, G.; Kong, J.; Li, L. Effects of unstable flow on solute transport in the marsh soil and exchange with coastal water. Geophys. Res. Lett. 2016, 43, 1–11. [Google Scholar] [CrossRef]
- Xiao, K.; Li, H.; Xia, Y.; Yang, J.; Wilson, A.M.; Michael, H.A.; Geng, X.; Smith, E.; Boufadel, M.C.; Yuan, P.; et al. Effects of Tidally Varying Salinity on Groundwater Flow and Solute Transport: Insights From Modelling an Idealized Creek Marsh Aquifer. Water Resour. Res. 2019, 55, 9656–9672. [Google Scholar] [CrossRef]
- Yuan, L.-R.; Xin, P.; Kong, J.; Li, L.; Lockington, D. A coupled model for simulating surface water and groundwater interactions in coastal wetlands. Hydrol. Process. 2011, 25, 3533–3546. [Google Scholar] [CrossRef]
- Gardner, L.R.; Wilson, A.M. Comparison of four numerical models for simulating seepage from salt marsh sediments. Estuar. Coast. Shelf Sci. 2006, 69, 427–437. [Google Scholar] [CrossRef]
- Reeves, H.W.; Thibodeau, P.M.; Underwood, R.G.; Gardner, L.R. Incorporation of Total Stress Changes into the Ground Water Model SUTRA. Ground Water 2000, 38, 89–98. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, C.; Xin, P.; Kong, J.; Li, L. Salt Dynamics in Coastal Marshes: Formation of Hypersaline Zones. Water Resour. Res. 2018, 54, 3259–3276. [Google Scholar] [CrossRef]
- Moffett, K.B.; Wolf, A.; Berry, J.A.; Gorelick, S.M. Salt marsh–atmosphere exchange of energy, water vapor, and carbon dioxide: Effects of tidal flooding and biophysical controls. Water Resour. Res. 2010, 46, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Moffett, K.B.; Gorelick, S.M. A method to calculate heterogeneous evapotranspiration using submeter thermal infrared imagery coupled to a stomatal resistance submodel. Water Resour. Res. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Swarzenski, P.W. U/Th Series Radionuclides as Coastal Groundwater Tracers. Chem. Rev. 2007, 107, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Charette, M.; Moore, W.; Burnett, W. Uranium- and thorium-series nuclides as tracers of submarine groundwater discharge. In U-Th Series Nuclides in Aquatic Systems; Elsevier: Amsterdam, The Netherlands, 2008; pp. 155–191. [Google Scholar]
- Bollinger, M.S.; Moore, W.S. Radium fluxes from a salt marsh. Nature. 1984, 309, 444–446. [Google Scholar] [CrossRef]
- Rama; Moore, W.S. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochim. Cosmochim. Acta 1996, 60, 4645–4652. [Google Scholar] [CrossRef]
- Krest, J.M.; Harvey, J.W. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge. Limnol. Oceanogr. 2003, 48, 290–298. [Google Scholar] [CrossRef]
- Michael, H.A.; Charette, M.A.; Harvey, C.F. Patterns and variability of groundwater flow and radium activity at the coast: A case study from Waquoit Bay, Massachusetts. Mar. Chem. 2011, 127, 100–114. [Google Scholar] [CrossRef]
- Tamborski, J.J.; Cochran, J.K.; Heilbrun, C.; Rafferty, P.; Fitzgerald, P.; Zhu, Q.; Salazar, C. Investigation of pore water residence times and drainage velocities in salt marshes using short-lived radium isotopes. Mar. Chem. 2017, 196, 107–115. [Google Scholar] [CrossRef]
- Cai, P.; Shi, X.; Moore, W.S.; Dai, M. Measurement of 224Ra:228Th disequilibrium in coastal sediments using a delayed coincidence counter. Mar. Chem. 2012, 138–139, 1–6. [Google Scholar] [CrossRef]
- Shi, X.; Benitez-Nelson, C.R.; Cai, P.; He, L.; Moore, W.S. Development of a two-layer transport model in layered muddy-permeable marsh sediments using 224Ra-228Th disequilibria. Limnol. Oceanogr. 2019, 64, 1672–1687. [Google Scholar] [CrossRef]
- Shi, X.; Mason, R.P.; Charette, M.A.; Mazrui, N.M.; Cai, P. Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochim. Cosmochim. Acta 2018, 222, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.M.C.; Copeland, J.M.; Milliken, C.L.; Shi, X.; Ferry, J.L.; Shaw, T.J. Production of Reactive Oxygen Species in the Rhizosphere of a Spartina-Dominated Salt Marsh Systems. Aquat. Geochem. 2016, 22, 573–591. [Google Scholar] [CrossRef]
- Charette, M.A.; Splivallo, R.; Herbold, C.; Bollinger, M.S.; Moore, W.S. Salt marsh submarine groundwater discharge as traced by radium isotopes. Mar. Chem. 2003, 84, 113–121. [Google Scholar] [CrossRef]
- Schutte, C.A.; Moore, W.S.; Wilson, A.M.; Joye, S.B. Groundwater-Driven Methane Export Reduces Salt Marsh Blue Carbon Potential. Glob. Biogeochem. Cycles 2020, 34, 1–16. [Google Scholar] [CrossRef]
- Beck, A.J.; Rapaglia, J.P.; Cochran, J.K.; Bokuniewicz, H.J. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater. Mar. Chem. 2007, 106, 419–441. [Google Scholar] [CrossRef]
- Charette, M.A. Hydrologic forcing of submarine groundwater discharge: Insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary. Limnol. Oceanogr. 2007, 52, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Charette, M.A.; Buesseler, K.O. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol. Oceanogr. 2004, 49, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, J.; Santos, I.R.; Maher, D.T.; Golsby-Smith, L. Groundwater–surface water exchange in a mangrove tidal creek: Evidence from natural geochemical tracers and implications for nutrient budgets. Mar. Chem. 2013, 156, 27–37. [Google Scholar] [CrossRef]
- Xiao, K.; Li, H.; Wilson, A.M.; Xia, Y.; Wan, L.; Zheng, C.; Ma, Q.; Wang, C.; Wang, X.; Jiang, X. Tidal groundwater flow and its ecological effects in a brackish marsh at the mouth of a large sub-tropical river. J. Hydrol. 2017, 555, 198–212. [Google Scholar] [CrossRef]
- Giblin, A.E.; Gaines, A.G. Nitrogen inputs to a marine embayment: The importance of groundwater. Biogeochemistry 1990, 10, 309–328. [Google Scholar] [CrossRef]
- Hemond, H.F.; Fifield, J.L. Subsurface flow in salt marsh peat: A model and field study1. Limnol. Oceanogr. 1982, 27, 126–136. [Google Scholar] [CrossRef]
- Lee, D.R. Groundwater-solute influx. Limnol. Oceanogr. 1980, 25, 183–186. [Google Scholar] [CrossRef]
- Valiela, I.; Teal, J.M.; Volkmann, S.B.; Cogswell, C.M.; Harrington, R.A. On the measurement of tidal exchanges and groundwater flow in salt marshes. Limnol. Oceanogr. 1980, 25, 187–192. [Google Scholar] [CrossRef]
- Osgood, D.T. Subsurface hydrology and nutrient export from barrier island marshes at different tidal ranges. Wetl. Ecol. Manag. 2000, 8, 133–146. [Google Scholar] [CrossRef]
- Morris, J.T. The Mass Balance of Salt and Water in Intertidal Sediments: Results from North Inlet, South Carolina. Estuaries 1995, 18, 556–567. [Google Scholar] [CrossRef]
- Bradley, P.M.; Morris, J.T. Physical characteristics of salt marsh sediments: Ecological implications. Mar. Ecol. Prog. Ser. 1990, 61, 245–252. [Google Scholar] [CrossRef]
- Webb, J.R.; Santos, I.R.; Maher, D.T.; Tait, D.R.; Cyronak, T.; Sadat-Noori, M.; Macklin, P.; Jeffrey, L.C. Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems. Limnol. Oceanogr. 2019, 64, 182–196. [Google Scholar] [CrossRef]
- Qu, W.; Li, H.; Huang, H.; Zheng, C.; Wang, C.; Wang, X.; Zhang, Y. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China. J. Hydrol. 2017, 555, 185–197. [Google Scholar] [CrossRef]
- Befus, K.M.; Kroeger, K.D.; Smith, C.G.; Swarzenski, P.W. The Magnitude and Origin of Groundwater Discharge to Eastern U.S. and Gulf of Mexico Coastal Waters. Geophys. Res. Lett. 2017, 44, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hinson, A.L.; Feagin, R.A.; Eriksson, M.; Najjar, R.G.; Herrmann, M.; Bianchi, T.S.; Kemp, M.; Hutchings, J.A.; Crooks, S.; Boutton, T. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Glob. Chang. Biol. 2017, 23, 5468–5480. [Google Scholar] [CrossRef]
- Emery, K. Hypsometry of the continental shelf off eastern North America. Estuar. Coast. Mar. Sci. 1979, 9, 653–658. [Google Scholar] [CrossRef]
- Porubsky, W.; Weston, N.B.; Moore, W.S.; Ruppel, C.D.; Joye, S.B. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina). Geochim. Cosmochim. Acta 2014, 131, 81–97. [Google Scholar] [CrossRef]
Timescale | Local-Scale | Regional-Scale | ||
---|---|---|---|---|
Marsh PEX | SGD | Marsh PEX | SGD | |
Tidal to spring-neap | Shallow wells | Deep wells | ||
Sediment Ra^ | Salt balance | NA | Sediment Ra^^ | |
Porewater Ra/Rn | Salt balance | |||
Seepage meters * | Tidal Ra/Rn ** | |||
Numerical models | Numerical models | |||
Seasonal to Annual | Shallow wells | Deep wells | NA | Water budget |
Numerical models | Numerical models |
Location | Tidal Range (m) | Pore Water Flux | Groundwater Flux | References |
---|---|---|---|---|
L m−2 d−1 | L m−2 d−1 | |||
Belle Isle, MA, USA | 2 | 3 | n/a | [33] |
Nauset Marsh Estuary, MA, USA | 1.3 | n/a | 48 | [113] |
Great Sippewissett Marsh, MA, USA | 1 | 18 | 8 | [18,20,106,114,115,116] |
Pamet River Estuary, MA, USA | 3 | 47 | 67 | [109] |
Sage Lot Pond, MA, USA | 0.5 | 40 | 20 | [4,6] |
Jamaica Bay, NY, USA | 1.5 | 99 | 89 | [101,108] |
St. Jones NERR, DE, USA | 1.2 | 22 | n/a | this study |
Carter Creek, VA, USA | 0.8 | 9.2 | 1 | [34] |
Eagle Bottom, VA, USA | 0.8 | 10.3 | 0.2 | [34] |
South Hog Island, VA, USA | 1.4 | 120 | n/a | [117] |
Ringfield Marsh, VA, USA | 1 | 11 | 7 | [84] |
Elizabeth River Estuary, VA, USA | 1 | 12 | 11 | [110] |
North Inlet, SC, USA | 1.4 | 174 | 51 | [26,55,71,98,103,118,119] |
Folly Beach, SC, USA | 1.5 | 54 | n/a | [105] |
Pritchards Island, SC, USA | 2.5 | 115 | n/a | [117] |
Sapelo Island, GA, USA | 2.5 | n/a | 63 | [49,107] |
Evans Head, Australia | 1 | 106 | n/a | [39] |
Barwons Head, Australia | 1 | n/a | 37 | [120] |
Jiaozhou Bay, China | 2.7 | 0.03 | n/a | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimond, J.; Tamborski, J. Salt Marsh Hydrogeology: A Review. Water 2021, 13, 543. https://doi.org/10.3390/w13040543
Guimond J, Tamborski J. Salt Marsh Hydrogeology: A Review. Water. 2021; 13(4):543. https://doi.org/10.3390/w13040543
Chicago/Turabian StyleGuimond, Julia, and Joseph Tamborski. 2021. "Salt Marsh Hydrogeology: A Review" Water 13, no. 4: 543. https://doi.org/10.3390/w13040543
APA StyleGuimond, J., & Tamborski, J. (2021). Salt Marsh Hydrogeology: A Review. Water, 13(4), 543. https://doi.org/10.3390/w13040543