Late Holocene Peatland Evolution in Terelj and Tuul Rivers Drainage Basins in the Khentii Mountain Range of Northeastern Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiographic Condition
2.2. Fieldwork
2.3. Biogenic Silica, Grain Size, and Diatom Analyses
2.4. Radiocarbon Dating
3. Results
3.1. Physical and Chemical Characteristics
3.2. Diatom Assemblages
3.3. Radiocarbon Age and Accretion Rate
4. Discussion
4.1. Sedimentary Feature in the Drainage Basins
4.2. Diatom Assemblages
4.3. Climate-Induced Peatland Development during the Late Holocene
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mischke, S.; Lee, M.K.; Lee, Y.I. Climate History of Southern Mongolia Since 17 ka: The Ostracod, Gastropod and Charophyte Record from Lake Ulaan. Front. Earth Sci. 2020, 8, 1–15. [Google Scholar] [CrossRef]
- Narantsetseg, T.; Krivonogov, S.K.; Oyunchimeg, T.; Uugantsetseg, B.; Burr, G.S.; Tomurhuu, D.; Dolgorsuren, K. Late Glacial to Middle Holocene climate and environmental changes as recorded in Lake Dood sediments, Darhad Basin, northern Mongolia. Quarter. Intern. 2013, 311, 12–24. [Google Scholar]
- Orkhonselenge, A.; Komatsu, G.; Uuganzaya, M. Middle to late Holocene sedimentation dynamics and paleoclimatic conditions in the Lake Ulaan basin, southern Mongolia. Géomorph. Rel. Proc. Environ. 2018, 24, 351–363. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Y.; Feng, Z.; Narantsetseg, T.; Liu, K.-B.; Zhai, X. A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia. Quat. Int. 2011, 229, 74–83. [Google Scholar] [CrossRef]
- Dugarjav, C. Effects of Peat and Weathered Coal on the Growth of Pinus sylvestris var. Mongolica Seedlings on Aeolian Sandy Soil; Institute of Botany, Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 2004; pp. 1–5. [Google Scholar]
- Minayeva, T.; Gunin, P.; Sirin, A.; Dugardzhav, C.; Bazha, S. Peatlands in Mongolia: The typical and disappearing landscape. Peatlands Int. 2004, 2, 44–47. [Google Scholar]
- Minayeva, T.; Sirin, A.; Dorofeyuk, N.; Smagin, V.; Bayasgalan, D.; Gunin, P.; Dugardjav, C.; Bazha, S.; Tsedendash, G.; Zoyo, D. Mongolia mires: From taiga to desert. In Moore von Sibirien bis Feuerland; Steiner, G.M., Ed.; Stapfia: Biologiezentrum, UK, 2005; Volume 85, pp. 335–352. [Google Scholar]
- Haase, G.; Richter, H.; Barthel, H. Zum Problem landschaftsökologischer Gliederung dargestellt am Beispiel des Changai-gebirges in der Mongolischen Volksrepublik. Wiss. Veruf. Deutsch. Inst. Lunderkd. 1964, 21–22, 489–516. [Google Scholar]
- Kulikovskiy, M.; Lange–Bertalot, H.; Witkowski, A.; Dorofeyuk, N. Morphology and taxonomy of selected cymbelloid diatoms from a Mongolian Sphagnum ecosystem with a description of three species new to science. Fottea 2009, 9, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Hilbig, W.; Knapp, H.D. Vegetationsmosaik und Florenelemente an der Wald-Steppen-Grenze im Khentey-Gebirge (Mongolei). Flora 1983, 174, 1–89. [Google Scholar] [CrossRef]
- Asian Development Bank. Strategic Planning for Peatlands Conservation and Wise Use in Mongolia: Executive Summary of the Assessment Report. Ulaanbaatar, Mongolia. 2017. Available online: https://www.wetlands.org/news/wetlands-international-leads-strategic-planning-for-peatlands-of-mongolia/ (accessed on 10 November 2017).
- International Mire Conservation Group. News from Mongolia. Newsl. Issue 2005, 3, 1–17. [Google Scholar]
- Joosten, H.; Tapio-Biström, M.L.; Tol, S. Peatlands. In Guidance for Climate Change Mitigation through Conservation, Rehabilitation and Sustainable Use, 2nd ed.; Mitigation of Climate Change in Agriculture (MICCA) Programme; Mitigation of Climate Change in Agriculture Series; Food and Agriculture Organization of the United Nations and Wetlands International: Rome, Italy, 2012; Volume 5, 114p. [Google Scholar]
- Hans, J.; Marja, L.; Tapio, B.; Susanna, T. Peatlands—Guidance for Change Mitigation through Conservarion, Rehabilitation and Sustainable Use; Food and Agriculture Organization of the United Nations and Wetlands International: Rome, Italy, 2012; 114p. [Google Scholar]
- Dorofeyuk, N.I.; Tarasov, P.E. Vegetation and lake levels of northern Mongolia since 12,500 yr B.P. based on the pollen and diatom records. Strat. Geol. Correl. 1998, 6, 70–83. [Google Scholar]
- Fukumoto, Y.; Kashima, K.; Orkhonselenge, A.; Ganzorig, U. Holocene environmental changes in northern Mongolia inferred from diatom and pollen records of peat sediment. Quat. Int. 2012, 254, 83–91. [Google Scholar] [CrossRef]
- Asian Development Bank. Mongolia Battles to Save its Peatlands, and a Nomadic Way of Life. Ulaanbaatar, Mongolia. 2018. Available online: https://www.adb.org/results/mongolia-battles-save-its-peatlands-and-nomadic-way-life (accessed on 22 May 2018).
- Minayeva, T.; Sirin, A.; Dugarjav, C. Highland Peatlands of Mongolia. In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherland, 2016; pp. 1–19. [Google Scholar]
- Jigj, S. A Brief Description of Paleoglaciations and Paleoglaciers; Institute of Geography, Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 1976; 51p. [Google Scholar]
- Murzaev, E.M. The Description of Physical Geography of Mongolia, 2nd ed.; State Press: Moscow, Russia, 1952; 472p. [Google Scholar]
- Tsegmid, S. Physical Geography of Mongolia; State Press: Ulaanbaatar, Mongolia, 1969; 405p. [Google Scholar]
- Orkhonselenge, A.; Davaanyam, S.; Altanbagana, M.; Bolorchuluun, C. Long-Term Changes in Ecosystems in Natural Zones of Mongolia. A Report of Research Project Funded by Science and Technology Foundation (ShUT_A/349_005/2013); Laboratory of Geochemistry and Geomorphology, National University of Mongolia, NUM Publishing: Ulaanbaatar, Mongolia, 2019; 384p. [Google Scholar]
- Orkhonselenge, A.; Uuganzaya, M. Glacial Geomorphology of Mt. Asralt Khairkhan and Mt. Baga Khentii Saridag in Khentii Mountain Range, Northeastern Mongolia. Int. J. Geosci. 2018, 9, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Academy of Sciences of Mongolia; Academy of Sciences of USSR. National Atlas of the People’s Republic of Mongolia; Ulaanbaatar: Moscow, Russia, 1990; 156p. [Google Scholar]
- Jambaajamts, C. Climate of Mongolia; State Press: Ulaanbaatar, Mongolia, 1989. [Google Scholar]
- Enkhtaivan, D.; Oyungerel, B.; Avirmed, E.; Renchinmyadag, T.; Nyamkhuu, M.; Munkhdulam, O.; Odbaatar, E.; Davaagatan, T.; Bayanjargal, B.; Batnyam, T. Report on research project: Landscape Structure, Change, Planning and Proper Zonation (the Case Study of Eastern Mongolia); Division of Physical Geography, Institute of Geography and Geoecology, Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 2016; 564p. [Google Scholar]
- Dulamsuren, C.; Hauck, M.; Mühlenberg, M. Vegetation at the taiga forest-steppe borderline in the western Khentey Mountains, northern Mongolia. Ann. Bot. Fennici. 2005, 42, 411–426. [Google Scholar]
- Mortlock, R.A.; Froelich, P.N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 1415–1426. [Google Scholar] [CrossRef]
- Watanabe, T. Picture Book and Ecology of the Freshwater Diatoms; Uchida Rokakuho Publishing Co., Ltd.: Tokyo, Japan, 2005. [Google Scholar]
- Bronk-Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The Oxcal program. Radiocarbon 1995, 37, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Bronk-Ramsey, C. Development of radiocarbon program Oxcal. Radiocarbon 2001, 43, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Baillie, M.G.; Bard, E.; Bayliss, A.; Beck, J.W.; Bertrand, C.J.; Blackwell, P.G.; Buck, C.E.; Burr, G.S.; Cutler, K.B.; et al. Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP. Radiocarbon 2004, 46, 1029–1058. [Google Scholar] [CrossRef] [Green Version]
- Shchetnikov, A.; Bezrukova, E.V.; Alexander, S. Lakes of the Jom-Bolok Volcanoes Valley in the East Sayan Mts., Baikal region. J. Geogr. Sci. 2019, 29, 1823–1840. [Google Scholar] [CrossRef] [Green Version]
- Orkhonselenge, A.; Krivonogov, S.; Mino, K.; Kashiwaya, K.; Safonova, I.; Yamamoto, M.; Kashima, K.; Nakamura, T.; Kim, J. Holocene sedimentary records from Lake Borsog, eastern shore of Lake Khuvsgul, Mongolia, and their paleoenvironmental implications. Quat. Int. 2013, 290, 95–109. [Google Scholar] [CrossRef]
- Oh, J.-S.; Seong, Y.B.; Hong, S.; Yu, B.Y. Paleo-shoreline changes in moraine dammed lake Khagiin Khar, Khentey Mountains, Central Mongolia. J. Mt. Sci. 2019, 16, 1215–1230. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Feng, Z.; Mischke, S.; Gao, X.; Gao, D.; Sun, F. Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 75–86. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, K.-B.; Feng, Z.; Meng, H.; Sang, Y.; Wang, W.; Zhang, H. Vegetation changes and associated climate variations during the past ∼38,000 years reconstructed from the Shaamar eolian-paleosol section, northern Mongolia. Quat. Int. 2013, 311, 25–35. [Google Scholar] [CrossRef]
- Pienitz, R.; Smol, J.P. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 1993, 269, 391–404. [Google Scholar] [CrossRef]
- Blinn, D.W.; Poff, L. Colorado River Basin. In Rivers of North America; Benke, A.C., Cushing, C.E., Eds.; Academic Press: San Diego, CA, USA, 2005; pp. 482–538. [Google Scholar]
- Kociolek, J.P.; Spaulding, S.A. Eunotioid and Asymmetrical Naviculoid Diatoms. Freshw. Algae N. Am. 2003, 655–668. [Google Scholar]
- Wang, J.; Liu, Q.; Zhao, X.; Borthwick, A.G.L.; Liu, Y.; Chen, Q.; Ni, J. Molecular biogeography of planktonic and benthic diatoms in the Yangtze River. Microbiome 2019, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Patrick, R.M.; Reimer, C.W. The diatoms of the United States; Monograph 13; Academy of Natural Sciences of Philadelphia: Philadelphia, PA, USA, 1975; Volume 2, Part 1; 213p. [Google Scholar]
- Afonina, E.Y.; Tashlykova, N.A. Fluctuations in plankton community structure of endorheic soda lakes of southeastern Transbaikalia (Russia). Hydrobiologia 2020, 847, 1383–1398. [Google Scholar] [CrossRef]
- Kokfelt, U.; Struyf, E.; Randsalu, L. Diatoms in peat—Dominant producers in a changing environment? Soil Biol. Biochem. 2009, 41, 1764–1766. [Google Scholar] [CrossRef]
- Grove, J.M. Little Ice Ages: Ancient and Modern; Routledge: London, UK, 2004. [Google Scholar]
- Matthews, J.A.; Briffa, K.R. The ‘little ice age’: Re-evaluation of an evolving concept. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 17–36. [Google Scholar] [CrossRef]
- Demske, D.; Heumann, G.; Granoszewski, W.; Nita, M.; Mamakowa, K.; Tarasov, P.E.; Oberhänsli, H. Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Glob. Planet. Chang. 2005, 46, 255–279. [Google Scholar] [CrossRef] [Green Version]
- Edlund, M.B.; Stoermer, E.F.; Pilskaln, C.H. Siliceousmicrofossil succession in the recent history of two basins in Lake Baikal, Siberia. J. Paleolim. 1995, 14, 165–184. [Google Scholar] [CrossRef]
- Tian, F.; Herzschuh, U.; Dallmeyer, A.; Xu, Q.; Mischke, S.; Biskaborn, B.K. Environmental variability in the monsoon-westerlies transition zone during the last 1200 years: Lake sediment analyses from central Mongolia and supra-regional synthesis. Quarter. Sci. Rev. 2013, 73, 31–47. [Google Scholar] [CrossRef]
- Orkhonselenge, A.; Komatsu, G. Lacustrine Geomorphology of Mongolia; Springer Nature: London, UK, 2021; in press. [Google Scholar]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Prokopenko, A.A.; Khursevich, G.K.; Bezrukova, E.V.; Kuzmin, M.I.; Boes, X.; Williams, D.F.; Fedenya, S.A.; Kulagina, N.V.; Letunova, P.P.; Abzaeva, A.A. Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed. Quat. Res. 2007, 68, 2–17. [Google Scholar] [CrossRef]
Sample No. | Lab. No. | δ13C (‰) | 14C Age (yr BP ± 1σ) | Age for Calibration (yr BP ± 1σ) | Calibrated 14C Age | |
---|---|---|---|---|---|---|
1σ | 2σ | |||||
TE08-1 | PLD-11868 | −29.05 ± 0.16 | 380 ± 25 | 380 ± 23 | 1452–1496 AD (51.3%) | 1446–1523 AD (69.0%) 1573–1627 AD (26.4%) |
1602–1616 AD (14.5%) | ||||||
1508–1511 AD (2.3%) | ||||||
TU08-1 | PLD-12736 | −28.40 ± 0.16 | 910 ± 20 | 909 ± 19 | 1048–1088 AD (41.8%) | 1038–1180 AD (95.4%) |
1122–1139 AD (15.0%) | ||||||
1150–1162 AD (11.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orkhonselenge, A.; Uuganzaya, M.; Davaagatan, T.; Enkhbayar, G. Late Holocene Peatland Evolution in Terelj and Tuul Rivers Drainage Basins in the Khentii Mountain Range of Northeastern Mongolia. Water 2021, 13, 562. https://doi.org/10.3390/w13040562
Orkhonselenge A, Uuganzaya M, Davaagatan T, Enkhbayar G. Late Holocene Peatland Evolution in Terelj and Tuul Rivers Drainage Basins in the Khentii Mountain Range of Northeastern Mongolia. Water. 2021; 13(4):562. https://doi.org/10.3390/w13040562
Chicago/Turabian StyleOrkhonselenge, Alexander, Munkhjargal Uuganzaya, Tuyagerel Davaagatan, and Ganbaatar Enkhbayar. 2021. "Late Holocene Peatland Evolution in Terelj and Tuul Rivers Drainage Basins in the Khentii Mountain Range of Northeastern Mongolia" Water 13, no. 4: 562. https://doi.org/10.3390/w13040562
APA StyleOrkhonselenge, A., Uuganzaya, M., Davaagatan, T., & Enkhbayar, G. (2021). Late Holocene Peatland Evolution in Terelj and Tuul Rivers Drainage Basins in the Khentii Mountain Range of Northeastern Mongolia. Water, 13(4), 562. https://doi.org/10.3390/w13040562