Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Sampling and Analysis
2.3. The QUAL2Kw Model
2.4. LAR Segmentation, Labeling, and Discretization in QUAL2Kw
2.5. Calibration, Validation, Sensitivity Analysis, and Performance Evaluation of QUAL2Kw
2.6. Input Data and Parameter Estimation for QUAL2Kw in LAR
2.7. Development and Evaluation of Pollution Reduction Scenarios in QUAL2Kw
2.7.1. Scenario 1: Modification of Point Sources Load
2.7.2. Scenario 2: Modification of Nonpoint Source Load
2.7.3. Scenario 3: Simultaneous Modification of Point Source and Nonpoint Sources Load (S1 + S2)
2.7.4. Scenario 4: Application of Local Oxygenators—Instream Measures
2.7.5. Scenario 5: Integrated Scenario
3. Results and Discussion
3.1. Point and Nonpoint Source Loads in LAR
3.2. Calibration and Validation of QUAL2Kw in LAR
3.3. Sensitivity Analysis
3.4. Scenario Evaluation and Selection of Optimum Pollution load Reduction Approach
3.5. Optimum Pollution Load Reduction Approach and Rate
4. Conclusions
- The water quality model, QUAL2Kw, is a quite effective tool for pollution management of urban rivers of specifically developing countries with high hydro-meteorological and water quality data scarcity. The output can be effectively interpreted for preliminary water quality management and pollution control programs. Moreover, the model is capable of providing decision-making support to design, execute and manage projects for river improvement in the study area.
- The QUAL2Kw model-based scenario evaluation revealed that the impact of nonpoint sources pollution load on the LAR was much higher than the point source pollution load. An integrated approach on point and nonpoint source pollution control is highly recommended for sustainable water quality management in the study area.
- Despite the rather ambitious source-based pollution load reduction scenarios applied in this study, the intended goal of reducing the pollutants load in the LAR was still not achieved. Hence additional pollution control mechanisms are required for better water quality and pollution management in the catchment.
- Combining pollution reduction with instream measures to improve reaeration can have clear synergistic effects. Since a fast dramatic pollution reduction is hardly achievable in developing and emerging countries, those integrative approaches are cost-efficient mitigation options.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, H.P.; Su, Q.; Khu, S.T.; Tang, N. Water quality changes during rapid urbanization in the Shenzhen river catchment: An integrated view of socio-economic and infrastructure development. Sustainability 2014, 6, 7433–7451. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, T.; Zhu, Z.; Kuang, Y. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China. Environ. Monit. Assess 2006, 120, 313–325. [Google Scholar] [CrossRef] [PubMed]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Lei, X.; Wang, H. New approach for point pollution source identification in rivers based on the backward probability method. Environ. Pollut. 2018, 241, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.D.; Lu, J. Urban River Pollution Control and Remediation. Procedia Environ. Sci. 2012, 13, 1856–1862. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Removal of phosphate ions from aqueous solutions by adsorption onto leftover coal. Water 2020, 12, 1381. [Google Scholar] [CrossRef]
- Waseem, M.; Koegst, T.; Tränckner, J. Groundwater Contribution to Surface Water Contamination in a North German Low Land Catchment with Intensive Agricultural Land Use. J. Water Resour. Prot. 2018, 10, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Awoke, A.; Beyene, A.; Kloos, H.; Goethals, P.L.M.; Triest, L. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries. Environ. Manage. 2016, 58, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.; Bola, J.; Quinteiro, P.; Nadais, H.; Arroja, L. Application of Qual2Kw model as a tool for water quality management: Cértima River as a case study. Environ. Monit. Assess. 2012, 184, 6197–6210. [Google Scholar] [CrossRef]
- Raj, P.; Lee, S.; Lee, Y.; Kanel, S.R.; Pelletier, G.J. Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. Ecol. Modell. 2007, 202, 503–517. [Google Scholar] [CrossRef]
- Xue, C.H.; Yin, H.L.; Ming, X.I.E. Development of integrated catchment and water quality model for urban rivers. J. Hydrodyn. 2015, 27, 593–603. [Google Scholar] [CrossRef]
- León, L.F.; Soulis, E.D.; Kouwen, N.; Farquhar, G.J. Nonpoint source pollution: A distributed water quality modeling approach. Water Res. 2001, 35, 997–1007. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Environ. Pollut. 2009, 157, 3370–3378. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Rifai, H.S.; Petersen, T.M.; Stein, R. Mass balance and water quality modeling for load allocation of Escherichia coli in an urban watershed. J. Water Resour. Plan. Manag. 2011, 137, 412–427. [Google Scholar] [CrossRef]
- Yuceer, M.; Coskun, M.A.A.; Yuceer, M.; Coskun, M.A.; Yuceer, M.; Coskun, M.A.A. Modeling water quality in rivers: A case study of Beylerderesi river in Turkey. Appl. Ecol. Environ. Res. 2016, 14, 383–395. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Leta, O.T.; Bauwens, W. Development of RWQM1-based integrated water quality model in OpenMI with application to the River Zenne, Belgium. Hydrol. Sci. J. 2016, 62, 774–799. [Google Scholar] [CrossRef]
- Gao, L.; Li, D. A review of hydrological/water-quality models. Front. Agric. Sci. Eng. 2014, 1, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Holguin-Gonzalez, J.E.; Boets, P.; Alvarado, A.; Cisneros, F.; Carrasco, M.C.; Wyseure, G.; Nopens, I.; Goethals, P.L.M. Integrating hydraulic, physicochemical and ecological models to assess the effectiveness of water quality management strategies for the River Cuenca in Ecuador. Ecol. Modell. 2013, 254, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.; Farahmand, Z.; Mehrasbi, M.R.; Farahmand Kia, Z. Water Quality Modeling and Evaluation of Nutrient Control Strategies Using QUAL2K in the Small Rivers. J. Human Environ. Heal. Promot. 2015, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.; Fonseca, A.; Vilar, V.J.P.; Boaventura, R.A.R.; Botelho, C.M.S. Water quality modelling of Lis River, Portugal. Environ. Sci. Pollut. Res. 2013, 20, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Qian, X.; Yuan, X.; Ye, R.; Xia, B.; Wang, Y. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management. Int. J. Environ. Res. Public Health 2012, 9, 4504–4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebre, G.; Rooijen, D. Urban water pollution and irrigated vegetable farming in Addis Ababa. In Proceedings of the 34th WEDC International Conference on Water, Sanitation and Hygiene: Sustainable Development and Multisectoral Approaches, Addis Ababa, Ethiopia, 18–22 May 2009; p. 6. [Google Scholar]
- Angello, Z.; Tränckner, J.; Behailu, B. Spatio-Temporal Evaluation and Quantification of Pollutant Source Contribution in Little Akaki River, Ethiopia: Conjunctive Application of Factor Analysis and Multivariate Receptor Model. Polish J. Environ. Stud. 2020, 30, 23–34. [Google Scholar] [CrossRef]
- Abebe, T.A.; Tucho, G.T. Open defecation-free slippage and its associated factors in Ethiopia: A systematic review. Syst. Rev. 2020, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Abegaz, S.M. Investigation of Input and Distribution of Polluting Elements in Tinishu Akaki River, Ethiopia, Based on the Determination by ICP-MS. Ph.D. Dissertation, Institute for Nuclear Sciences, Universiteit Gent, Ghent, Belgium, 2005. [Google Scholar]
- Aschale, M.; Sileshi, Y.; Kelly-Quinn, M.; Hailu, D. Evaluation of potentially toxic element pollution in the benthic sediments of the water bodies of the city of Addis Ababa, Ethiopia. J. Environ. Chem. Eng. 2016, 4, 4173–4183. [Google Scholar] [CrossRef]
- Mekonnen, A. Suitability Assessment of the Little Akaki River for Irrigation. M.Sc. Thesis, Addis Ababa University Technology Faculty, Department of Chemical Engineering, Addis Ababa, Ethiopia, 2007. (Unpublished). [Google Scholar]
- Ministry of Water Irrigation and Electricity. Urban Wastewater Management Strategy; Federal Democratic Republic of Ethiopia Ministry of Water Irrigation and Electricity: Addis Ababa, Ethiopia, 2017.
- Sahilu, G.; Abate, E.; Tadesse, D. The Study of Water Use and Treated Wastewater Discharge Charge; Federal Democratic Republic of Ethiopia Awash Basin Authority: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 20th ed.; Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Eds.; American Public Health Association: Washington, DC, USA, 1999; Volume 51, ISBN 0875532357. [Google Scholar]
- Wang, Q.; Li, S.; Jia, P.; Qi, C.; Ding, F. A review of surface water quality models. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Brito, D.; Neves, R.; Branco, M.A.; Prazeres, Â.; Rodrigues, S.; Gonçalves, M.C.; Ramos, T.B. Assessing water and nutrient long-term dynamics and loads in the Enxoé temporary river basin (southeast Portugal). Water 2019, 11, 354. [Google Scholar] [CrossRef] [Green Version]
- Mamani Larico, A.J.; Zúñiga Medina, S.A. Application of WASP model for assessment of water quality for eutrophication control for a reservoir in the Peruvian Andes. Lakes Reserv. Res. Manag. 2019, 24, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Tsegaye, M.Y. Water Quality Assessment Using Optimal Multi- Objective Waste-Load Allocation Approach: The Case of Little Akaki River. Ph.D. Dissertation, Addis Ababa University, Addis Ababa Institute of Technology, School of Chemical and Bio Engineering, Addis Ababa, Ethiopia, April 2019. [Google Scholar]
- Mateus, M.; Vieira RD, S.; Almeida, C.; Silva, M.; Reis, F. ScoRE-A simple approach to select a water quality model. Water 2018, 10, 1811. [Google Scholar] [CrossRef] [Green Version]
- Benedini, M.; Tsakiris, G. Water Quality Modelling for Rivers and Streams [Online]; Springer Science+Business Media Dordrecht: Berlin, Germany, 2013; Volume 41, ISBN 978-94-007-5508-6. Available online: https://link.springer.com/book/10.1007%2F978-94-007-5509-3#toc (accessed on 23 February 2021).
- Pelletier, G.; Chapra, S.; Tao, H. QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality. Version 5.1: Documentation and Users Manual; Civil and Environmental Engineering Department, Tufts University: Medford, MA, USA, 2008. [Google Scholar]
- Kannel, P.R.; Kanel, S.R.; Lee, S.; Lee, Y.; Gan, T.Y. A Review of Public Domain Water Quality Models for Simulating Dissolved Oxygen in Rivers and Streams. Environ. Model. Assess. 2011, 16, 183–204. [Google Scholar] [CrossRef]
- Pelletier, G.J.; Chapra, S.C.; Tao, H. QUAL2Kw-A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environ. Model. Softw. 2005, 21, 419–425. [Google Scholar] [CrossRef]
- Zhang, R.; Qian, X.; Zhu, W.; Gao, H.; Hu, W.; Wang, J. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China. Int. J. Environ. Res. Public Health 2014, 11, 9306–9324. [Google Scholar] [CrossRef] [Green Version]
- Goktas, R.K.; Aksoy, A. Calibration and Verification of QUAL2E Using Genetic Algorithm Optimization. J. Water Resour. Plan. Manag. 2007, 133, 126–136. [Google Scholar] [CrossRef]
- Xin, Z.; Ye, L.; Zhang, C. Application of export coefficient model and QUAL2K for water environmental management in a rural watershed. Sustainability 2019, 11, 6022. [Google Scholar] [CrossRef] [Green Version]
- Kannel, P.R.; Lee, S.; Kanel, S.R.; Lee, Y.S.; Ahn, K.H. Application of QUAL2Kw for water quality modeling and dissolved oxygen control in the river Bagmati. Environ. Monit. Assess. 2007, 125, 201–217. [Google Scholar] [CrossRef]
- Turner, D.F.; Pelletier, G.; Kasper, B. Dissolved Oxygen and pH Modeling of a Periphyton Dominated, Nutrient Enriched River. J. Environ. Eng. 2009, 135. [Google Scholar] [CrossRef]
- Bowie, G.; Mills, W.B.; Porcella, D.B.; Campbell, C.L.; Pagenkopf, J.R.; Rupp, G.L.; Johnson, K.M.; Chan, P.W.H.; Gherini, S.A.; Chamberlain, C.E. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling, 2nd ed.; US Environmental Protection Agency, Environmental Research Laboratory: Athens, GA, USA, 1985. [Google Scholar]
- Keraga, A.S. Assessment and Modeling of Surface Water Quality Dynamics in Awash River Basin, Ethiopia. Ph.D. Dissertation, Addis Ababa Institute of Technology, School of Chemical and Bio Engineering, Addis Ababa University, Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Bui, H.H.; Ha, N.H.; Nguyen, T.N.D.; Nguyen, A.T.; Pham, T.T.H.; Kandasamy, J.; Nguyen, T.V. Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River basin in Vietnam. Ecohydrol. Hydrobiol. 2019, 19, 210–223. [Google Scholar] [CrossRef]
- Hamda, N.T. Mathematical Modeling of Point Source Pollutants Transport in the Akaki River. M.Sc. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Chapra, S.C.; Pelletier, G.J. QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality: Documentation and Users Manual; Civil and Environmental Engineering Department, Tufts University: Medford, MA, USA, 2003. [Google Scholar]
- Zhu, W.; Leng, X.; Li, H.; Zhang, R.; Ye, R.; Qian, X. Application of the QUAL2K model to design an ecological purification scheme for treated effluent of a wastewater treatment plant. Water Sci. Technol. 2015, 72, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agricultural Organization of the United Nations. Water Quality Management and Control of Water Pollution, Proceedings of the Regional Workshop, Bangkok Thailand, 26–30 October 1999; Food and Agricultural Organization of the United Nations: Rome, Italy, 2000; ISBN 92-5-104503-8. [Google Scholar]
- Jabbar, F.K.; Grote, K. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA. Environ. Sci. Pollut. Res. 2019, 26, 1487–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.H.; Lee, J.H. Automatic calibration and selection of optimal performance criterion of a water quality model for a river controlled by total maximum daily load (TMDL). Water Sci. Technol. 2019, 79, 2260–2270. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, J.; Lao, W.; Zhao, Y.; Hou, Z.; Sun, X. Assessing the impacts of best management practices on nonpoint source pollution considering cost-effectiveness in the source area of the Liao River, China. Water 2019, 11, 1241. [Google Scholar] [CrossRef] [Green Version]
- Amaral, S.D.; Quaresma, A.L.; Branco, P.; Romão, F.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. Assessment of retrofitted ramped weirs to improve passage of potamodromous fish. Water 2019, 11, 2441. [Google Scholar] [CrossRef] [Green Version]
- Mooney, D.D.M.; Holmquist-Johnson, C.L.; Broderick, S. Rock Ramp Design Guidelines; U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center: Denver, CO, USA, 2007. [Google Scholar]
- Ongley, E.D.; Booty, W.G. Pollution remediation planning in developing countries: Conventional modelling versus knowledge-based prediction. Water Int. 1999, 24, 31–38. [Google Scholar] [CrossRef]
- Teklehaimanot, R.R. Program on Sustainable Consumption and Production in the Akaki River Basin: A Situation Analysis of the Akaki River, Final Report; The Ethiopian Science and Technology Commission (ESTC), United Nations Environment Programme (UNEP) and The Ethiopian Cleaner Production Center (ECPC): Addis Ababa, Ethiopia, 2005. [Google Scholar]
- Worku, A.; Tefera, N.; Kloos, H.; Benor, S. Constructed wetlands for phytoremediation of industrial wastewater in Addis Ababa, Ethiopia. Nanotechnol. Environ. Eng. 2018, 3, 1–11. [Google Scholar] [CrossRef]
- Iloms, E.; Ololade, O.O.; Ogola, H.J.O.; Selvarajan, R. Investigating industrial effluent impact on municipal wastewater treatment plant in vaal, South Africa. Int. J. Environ. Res. Public Health 2020, 17, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S. Dairy Wastewater Treatment Using Horizontal Subsurface Flow Constructed Wetland Planted with Tyhpa Latifolia and Scirpus Lacustris. M.Sc. Thesis, Addis Ababa Institute of Technology (AAiT), School of Graduate Studies, Department of Chemical Engineering, Addis Ababa University, Addis Ababa, Ethiopia, 2013. (Unpublished). [Google Scholar]
- Alayu, E.; Yirgu, Z. Advanced technologies for the treatment of wastewaters from agro-processing industries and cogeneration of by-products: A case of slaughterhouse, dairy and beverage industries. Int. J. Environ. Sci. Technol. 2018, 15, 1581–1596. [Google Scholar] [CrossRef]
- Aghapour, A.A.; Nemati, S.; Mohammadi, A.; Nourmoradi, H.; Karimzadeh, S. Nitrate removal from water using alum and ferric chloride: A comparative study of alum and ferric chloride efficiency. Environ. Heal. Eng. Manag. 2016, 3, 69–73. [Google Scholar] [CrossRef]
- Ruzhitskaya, O.; Gogina, E. Methods for Removing of Phosphates from Wastewater. In Proceedings of the MATEC Web of Conferences, St. Petersburg, Russia, 15–17 November 2016; Volume 106, pp. 1–7. [Google Scholar]
- Angello, Z.A.; Behailu, B.M.; Tränckner, J. Integral application of chemical mass balance and watershed model to estimate point and nonpoint source pollutant loads in data-scarce little akaki river, Ethiopia. Sustainability 2020, 12, 7084. [Google Scholar] [CrossRef]
- Lee, S.; Maniquiz, M.C.; Kim, L.H. Appropriate determination method of removal efficiency for nonpoint source best management practices. Desalin. Water Treat. 2012, 48, 138–147. [Google Scholar] [CrossRef]
- Yohannes, H.; Elias, E. Contamination of Rivers and Water Reservoirs in and Around Addis Ababa City and Actions to Combat It. Environ. Pollut. Clim. Chang. 2017, 1, 1–12. [Google Scholar] [CrossRef]
- Shi, Q.; Deng, X.; Wu, F.; Zhan, J.; Xu, L. Best management practices for agricultural non-point source pollution control using PLOAD in Wuliangsuhai watershed. J. Food, Agric. Environ. 2012, 10, 1389–1393. [Google Scholar]
- Armstrong, G.; Apahamian, M.; Fewings, G.; Gough, P.; Reader, N.; Varallo, P. Environment Agency Fish Pass Manual: Guidance Notes on The Legislation, Selection and Approval of Fish Passes in England and Wales; Environmental Agency: Bristol, UK, 2010.
- NSW Department of Primary Industries. Reducing the Impact of Weirs on Aquatic Habitat- New South Wales Detailed Weir Review. Southern Rivers CMA Region. Report to the New South Wales Environmental Trust; NSW Department of Primary Industries: Flemington, NSW, Australia, 2006.
- Federal Democratic Republic of Ethiopia Environmental Protection Authority. Guideline Ambient Environment Standards for Ethiopia; Federal Democratic Republic of Ethiopia Environmental Protection Authority: Addis Ababa, Ethiopia, 2003.
- Pegram, G.C.; Bath, A.J. Role of non-point sources in the development of a water quality management plan for the Mgeni River catchment. Water Sci. Technol. 1995, 32, 175–182. [Google Scholar] [CrossRef]
- Campolo, M.; Andreussi, P.; Soldati, A. Water quality control in the river Arno. Water Res. 2002, 36, 2673–2680. [Google Scholar] [CrossRef]
Parameter | Analytical Method | Apparatus/Equipment |
---|---|---|
BOD | Modified Winkler’s Method | BOD Incubator |
TDS | TDS Probe | HQ40d |
COD | Titrimetric | COD Digester, heating block |
NO2-N | Spectrophotometric | HACH DR-2800 |
PO4-P | Spectrophotometric | HACH DR-2800 |
NO3-N | Spectrophotometric | UV−VIS Spectrophotometer |
TKN | Kjeldahl Method | Kjeldahl Distillation |
TP | Stannous Chloride Method | UV−VIS Spectrophotometer |
NH3-N | Titrimetric | Kjeldahl Distillation |
Measure | Output Response | Performance Rating | ||||
---|---|---|---|---|---|---|
Very Good | Good | Satisfactory | Unsatisfactory | Reference | ||
R2 | Nutrient | >0.70 | 0.60 < R2 ≤ 0.70 | 0.30 < R2 ≤ 0.60 | ≤0.30 | [46] |
Flow | >0.80 | 0.70 ≤ R2 ≤ 0.80 | 0.50 < R2 < 0.70 | ≤0.50 | ||
PBIAS | Nutrient | ≤±15 | ±15 < PBIAS < ±20 | ±20 ≤ PBIAS < ±30 | ≥±30 | [47] |
Flow | ≤±5 | ±5 < PBIAS < ±10 | ±10 ≤ PBIAS ≤ ±15 | >±15 |
Point ⁿ and Nonpoint Source Load for Selected Constituents in LAR, t/yr | |||||||
---|---|---|---|---|---|---|---|
P † | R ‡ | TDS | BOD | COD | PO4-P | TN | NO3-N |
T2 | M1 | 80.76 (26.52) | 27.82 (8.32) | 189.96 (37.73) | 0.72 (0.31) | 1.77 (2.48) | 0.102 (0.02) |
T3 | M2 | 6.56 (89.75) | 132.09 (59.89) | 62.43 (185.74) | 0.15 (1.39) | 5.39 (14.74) | 0.57 (0.013) |
A | M3 | 162.2 (33.76) | 269.68 (6.39) | 482.88 (13.69) | 0.43 (0.45) | 10.22 (0.58) | 1.35 (0.122) |
T4 | M4 | 54.05 (178.36) | 644.27 (98.28) | 14.31 (189.45) | 0.24 (1.18) | 11.23 (10.18) | 4.06 (0.056) |
K | M5 | 36.8 (306.68) | 51.9 (105.96) | 585.63 (821.2) | 1.99 (3.34) | 15.91 (5.3) | 0.083 (0.74) |
T6 | M9 | 581.9 (3185.59) | 1540.12 (1005.59) | 5319.12 (2867.5) | 12.43 (26.2) | 157.24 (342.6) | 67.17 (1.39) |
T5 | M10 | 910.12 (358.87) | 792.22 (98.13) | 1119.37 (341.95) | 13.92 (4) | 674.79 (22.07) | 33.3 (0.115) |
W | M11 | 558.85 (49.42) | 581.5 (3.48) | 1367.92 (60.74) | 7.46 (0.62) | 97.02 (7.076) | 34.82 (0.74) |
B | M12 | 730.78 (103.46) | 1504.8 (14.53) | 2170.24 (27.32) | 23.63 (1.77) | 30.46 (7.617) | 6.53 (1.912) |
M | M13 | 1916.16 (440.96) | 1511.68 (217.12) | 308.91 (622.17) | 23.63 (8.14) | 35.45 (147.26) | 6.79 (1.005) |
M8 | M14 | 389.71 (5874.3) | 2664.75 (1052.19) | 2551.43 (11,661.7) | 7.72 (15.5) | 76.82 (223.04) | 13.45 (16.33) |
T1 | (42.69) | (19.99) | (82.62) | (0.58) | (5.27) | (0.023) |
Parameter | Variation (%) | Disturbance on the Parameter (%) ‡ | |||
---|---|---|---|---|---|
DO | BOD | PO4-P | NO3-N | ||
Point source flow † | +50 | 18.87 | 6.31 | 10.00 | 5.86 |
−50 | 46.93 | 14.84 | 11.80 | 3.84 | |
Headwater Flow † | +50 | 3.85 | 3.78 | 0.37 | 1.34 |
−50 | 3.56 | 5.22 | 0.01 | 1.92 | |
Manning’s Roughness Coefficient † | +50 | 41.59 | 19.50 | 1.25 | 4.33 |
−50 | 49.96 | 19.08 | 2.72 | 11.14 | |
Slow BOD hydrolysis † | +50 | 1.12 | 20.01 | 0.09 | 0.037 |
−50 | 0.90 | 35.26 | 0.14 | 0.32 | |
Slow BOD oxidation rate | +50 | 0.68 | 1.12 | 0.36 | 0.27 |
−50 | 5.90 | 1.20 | 0.42 | 0.28 | |
Organic nitrogen hydrolysis rate | +50 | 1.17 | 0.02 | 0.16 | 6.74 |
−50 | 4.82 | 0.05 | 0.00 | 5.95 | |
Organic nitrogen settling velocity | +50 | 1.09 | 0.01 | 0.05 | 6.41 |
−50 | 6.79 | 0.06 | 0.06 | 5.71 | |
Ammonium nitrification rate | +50 | 2.15 | 0.01 | 0.12 | 0.19 |
−50 | 1.12 | 0.01 | 0.07 | 0.41 | |
Sediment denitrification transfer coefficient † | +50 | 0.32 | 0.01 | 0.17 | 19.73 |
−50 | 1.45 | 0.01 | 0.11 | 35.95 | |
Organic phosphorus hydrolysis | +50 | 0.01 | 0.00 | 0.03 | 0.019 |
−50 | 0.00 | 0.00 | 0.04 | 0.008 | |
Inorganic phosphorus settling velocity † | +50 | 1.26 | 0.01 | 11.78 | 0.22 |
−50 | 0.26 | 0.00 | 17.36 | 0.37 |
Scenario | Description | Average Percentage Improvement | |||
---|---|---|---|---|---|
BOD | PO4-P | NO3-N | |||
S1 | Modification of point source load | 17.72 | 37.47 | 19.63 | |
S2 | Modification of diffuse source load | 58.69 | 30.96 | 51.07 | |
S3 | Simultaneous modification of point and diffuse load | 76.41 | 49.28 | 54.15 | |
S4 | Application of local oxygenation techniques (cascaded rock ramp) | 51.51 | 5.80 | 10.90 | |
S5 | Integrated scenarios (S1 + S2 + S3 + S4) | 87.78 | 53.72 | 55.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angello, Z.A.; Behailu, B.M.; Tränckner, J. Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia. Water 2021, 13, 584. https://doi.org/10.3390/w13050584
Angello ZA, Behailu BM, Tränckner J. Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia. Water. 2021; 13(5):584. https://doi.org/10.3390/w13050584
Chicago/Turabian StyleAngello, Zelalem Abera, Beshah M. Behailu, and Jens Tränckner. 2021. "Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia" Water 13, no. 5: 584. https://doi.org/10.3390/w13050584
APA StyleAngello, Z. A., Behailu, B. M., & Tränckner, J. (2021). Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia. Water, 13(5), 584. https://doi.org/10.3390/w13050584