Eco-Efficiency Assessment of Control Actions in Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Wastewater Treatment Plant Represented by BSM2 Platform
2.2. Plantwide Control Strategy
2.2.1. Selection of Control Actions to Improve Eco-Efficiency of WWTP
- Primary clarifier volume (VP-m3).
- Operation temperature of digester (Top-°C)
- Limits imposed on DO set-point in the primary loop of ammonium control (DOsp-g/m3)
- Internal recycle flow of activated sludge process (Qa-m3/d)
- Wastage flow of activated sludge process (Qw-m3/d)
- Ammonium set-point (SNHSP-g/m3)
2.3. Performance Indicators and Energy Recovery
2.3.1. Definition of Temporal Windows to Observe Seasonal Effects of Temperature and Selection of Performance Indicators
- Biogas flow (Qgas-m3/d)
- Heating energy (HE-kWh) (Equation (9))
- Net energy (Energy net-kWh/d) (Equation (13))
- Electricity consumption (Electricity, PE +AE + ME-kWh/d) (Equations (4)–(6))
- Effluent quality indicators: effluent quality index (EQI-kg/d) (Equation (1)), total nitrogen (Ntot-g/d), ammonium concentration in the effluent (SNH-g/d)
- Sludge for disposal (Sludge-kg/d)
- Effluent quality index (EQI-kg/d)
- Overall Cost Index (OCI-Eur/d) (Equation (3))
- Net energy (Energy net-kWh/d) (Equation (13))
- Excess heating energy (HEExcess- kWh/d) (Equation (12))
- Electricity consumption (Electricity, PE + AE + ME-kWh/d) (Equations (4)–(6))
- Pumping energy (kWh/d) (Equation (4))
- Aeration energy (AE kWh/d) (Equation (5))
- Heating energy (HE kWh/d) (Equation (9))
- Energy/Pollution removed (kg/kWh) (Inverse of Equation (14))
- Energy net/Pollution removed (kg/kWh) (Inverse of Equation (15))
- Violations of the permit limits of total Nitrogen (Ntot-g/d), ammonium concentration (SNH-g/d) and COD in the effluent
2.3.2. Energy Issues Associated with CHP Implementation
3. Results and Discussion
3.1. Assesment of the Effect of Individual Control Actions on WWTP Eco-Efficiency
3.1.1. Impact on Annual Average Performance Indicators
3.1.2. Impact on Bimestrial Average Performance Indicators
3.2. Plantwide Control Solutions to Improve WWTP Eco-Efficiency Framework
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Business Council for Sustainable Development. Available online: https://www.wbcsd.org/ (accessed on 18 January 2021).
- Revollar, S.; Meneses, M.; Vilanova, R.; Vega, P.; Francisco, M. Quantifying the Benefit of a Dynamic Performance Assessment of WWTP. Processes 2020, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Torregrossa, D.; Castellet-Viciano, L.; Hernández-Sancho, F. A data analysis approach to evaluate the impact of the capacity utilization on the energy consumption of wastewater treatment plants. Sustain. Cities Soc. 2019, 45, 307–313. [Google Scholar] [CrossRef]
- Lorenzo Toja, Y.; Vázquez-Rowe, I.; Amores, M.; Termes-Rife, M.; Marín-Navarro, D.; Moreira, M.; Gumersindo, F. Benchmarking wastewater treatment plants under an eco-efficiency perspective. Sci. Total Environ. 2016, 566–567. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency 2020. Available online: https://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures/uwwtd/urban-waste-water-treatment (accessed on 18 January 2021).
- Neczaj, E.; Grosser, A. Circular Economy in Wastewater Treatment Plant–Challenges and Barriers. Proceedings 2018, 2, 614. [Google Scholar] [CrossRef] [Green Version]
- Balkema, A.J.; Preisig, H.A.; Otterpohl, R.; Lambert, F. Indicators for the sustainability assessment of wastewater treatment systems. Urban Water 2002, 4, 153–161. [Google Scholar] [CrossRef]
- Davidson, C.I.; Matthews, H.S.; Hendrickson, C.T.; Bridges, M.W.; Allenby, B.R.; Crittenden, J.C.; Chen, Y.; Williams, E.; Allen, D.T.; Murphy, C.F.; et al. Viewpoint: Adding sustainability to the engineer’s toolbox: A challenge for engineering educators. Environ. Sci. Technol. 2007, 41, 4847–4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revollar, S.; Vilanova, R.; Vega, P.; Francisco, M.; Meneses, M. Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective. Sustainability 2020, 12, 768. [Google Scholar] [CrossRef] [Green Version]
- Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.; Jeppsson, U.; Nopens, I.; Pons, M.; Rosen, C.; Steyer, J.; Vanrolleghem, P.A. Benchmark Simulation Model No. 2 (BSM2); Technical Report No 3; IWA Taskgroup on Benchmarking of Control Strategies for WWTPs: London, UK, 2018. [Google Scholar]
- Ellen Macarthur Foundation 2020. Available online: https://www.ellenmacarthurfoundation.org/explore/systems-and-the-circular-economy (accessed on 15 December 2020).
- Gernaey, K.; Jeppsson, U.; Vanrolleghem, P.; Copp, J.; Steyer, J. Benchmarking of Control Strategies for Wastewater Treatment Plants; IWA Publishing: Colchester, UK, 2010. [Google Scholar]
- Rosén, C.; Jeppsson, U. Aspects on ADM1 Implementation within the BSM2 Framework; Cod.: LUTEDX/(TEIE-7224); Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology, (TEIE): Lund, Sweden, 2006; pp. 1–35. [Google Scholar]
- Gernaey, K.V.; Rosén, C.; Jeppsson, U. BSM2: A Model for Dynamic Influent Data Generation; Cod.: LUTEDX/(TEIE-7231); Lund University: Lund, Sweden, 2005; pp. 1–73. [Google Scholar]
- Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.; Jeppsson, U.; Nopens, I.; Pons, M.; Rieger, L.; Rosen, C.; Steyer, J.; et al. Benchmark Simulation Model No. 1 (BSM1). IWA Taskgroup on Benchmarking of Control Strategies for WWTPs; Cod.: LUTEDX-TEIE 7229; Dpt. of Industrial Electrical Engineering and Automation, Lund University: Lund, Sweden, 2008; pp. 1–62. [Google Scholar]
- Kiselev, A.; Magaril, E.; Magaril, R.; Panepinto, D.; Ravina, M.; Zanetti, M.C. Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions. Resources 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Riley, D.M.; Tian, J.; Güngör-Demirci, G.; Phelan, P.; Villalobos, J.R.; Milcarek, R.J. Techno-Economic Assessment of CHP Systems in Wastewater Treatment Plants. Environments 2020, 7, 74. [Google Scholar] [CrossRef]
- Bordons, C.; Garcia-Torres, F.; Ridao, M.A. Model predictive control of interconnected microgrids and electric vehicles. Rev. Iberoam. Autom. Inform. Ind. 2020, 17, 239. [Google Scholar] [CrossRef]
- Jeppsson, U.; Pons, M.N.; Nopens, I.; Alex, J.; Copp, J.B.; Gernaey, K.V.; Rosen, C.; Steyer, J.P.; Vanrolleghem, P.A. Benchmark simulation model no 2: General protocol and exploratory case studies. Water Sci. Technol. 2007, 56, 67–78. [Google Scholar] [CrossRef] [PubMed]
- EPA 2011. Available online: https://www.epa.gov/sites/production/files/2015-07/documents/opportunities_for_combined_heat_and_power_at_wastewater_treatment_facilities_market_analysis_and_lessons_from_the_field.pdf (accessed on 15 December 2020).
- Rieger, L.; Jones, R.M.; Dold, P.; Bott, C. Ammonia-based feedforward and feedback aeration control in activated sludge processes. Water Environ. Res. 2014, 86, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Molinos-Senante, M.; Gémar, G.; Gómez, T.; Caballero, R.; Sala-Garrido, R. Ecoefficiency assessment of wastewater treatment plants using a weighted Russell directional distance model. J. Clean. Prod. 2016, 137, 1066e1075. [Google Scholar] [CrossRef]
Variable | Average | Maximum | Minimum | Bi-m. Av Max. | Bi-m. Av. Min. |
---|---|---|---|---|---|
T (°C) | 15 | 20.5 | 9.5 | 19.8 | 10.2 |
Qin (m3/d) | 20,648 | 85,841 | 5146 | 23,200 | 18,000 |
Ntot (g/m3) | 55.2 | 114.2 | 7.7 | 59.6 | 50 |
COD influent (g/m3) | 592.2 | 1213.0 | 36.5 | 615 | 540 |
Activated Sludge Process (Water Line) | ||
Control Actions | Parameters | Default Conditions |
Ammonium-based control scheme | Kp = −1, Ti = 1, Tt = 0.2 | Ammonium set-point: SNHSP = 1 g/m3 DO set-point range: 1.0–2.5 g/m3 |
Open loop control of [2,9,10]: | ||
Carbon dosage (Qcarb) | Qcarb = 2 m3/d | |
Sludge age manipulating Qw | Warm season: Qw = 450 m3/d Cold season: Qw = 300 m3/d | |
F:M ratio manipulating Qr | Qr = 20,648 m3/d | |
Nitrates concentration in the anoxic zone manipulating Qa | Qa = 61,944 m3/d | |
Primary clarifier (Water line) | ||
Open-loop control of: Separation volume (VP) by manipulation of Qpo | VP = 900 m3 | |
Anaerobic digester (Sludge line) | ||
Regulation of Top using heating energy from biogas | Top = 35 °C |
Control Handle | Default Value | Variation | |
---|---|---|---|
Primary clarifier volume (VP-m3) | 900 m3 | 800 m3 | 1000 m3 |
Operation temperature of digester (Top-°C) | 35 °C | 32 °C | 37 °C |
DO set-point limits (DOsp-g/m3) | 1.0–2.5 g/m3 | 0.5–4.0 g/m3 | 0.95–2.05 g/m3 |
Internal recycle flow-ASP (Qa-m3/d) | 61,944 m3/d | 2 Qin0 | 4 Qin0 |
Wastage flow-ASP (Qw-m3/d) | Warm season: 450 m3/d Cold season: 300 m3/d | 300 m3/d full operation horizon | 450 m3/d full operation horizon |
Ammonium set-point (SNHSP-g/m3) | 1.0 g/m3 | - | 4 g/m3 |
Default | VP = 800 m3 | VP = 1000 m3 | Top = 32 °C | Top = 38 °C | |
---|---|---|---|---|---|
Qgas/Qin | 0.133 | 1.785 | −1.600 | 0 | 0 |
HE (kWh/m3) | 0.204 | −0.351 | 0.315 | 14.91 | −14.91 |
Energy net/Qin (Enet, Equation (13)) (kWh/m3) | 131.03 | −18.70 | 16.80 | 7.05 | −6.73 |
Electricity/Qin (kWh/m3) | 0.242 | −0.764 | 0.677 | 0 | 0 |
EQI/Qin (kg/m3) | 0.257 | 0.330 | −0.365 | 0 | 0 |
Ntot (g/m3) | 11.56 | 1.664 | −1.612 | 0 | 0 |
SNH (g/m3) | 0.817 | −1.902 | 1.774 | 0 | 0 |
Sludge (kg/m3) | 131.03 | 0 | 0 | 0 | 0 |
CH4/CO2 ratio | 0.69 | 0 | 0 | 0 | 0 |
Default | DOsp: 0.95–2.05 g/m3 | DOsp: 0.5–4.0 g/m3 | Qa = 2 Qin0 | Qa = 4 Qin0 | Qw = 300 m3/d | Qw = 450 m3/d | SNHSP = 4.0 g/m3 | |
---|---|---|---|---|---|---|---|---|
Qgas/Qin | 0.133 | 0 | 0 | 0 | 0 | 2.33 | −2.76 | 0 |
HE (kWh/m3) | 0.204 | 0 | 0 | 0 | 0 | 1.11 | −1.77 | 0 |
Energy net/Qin (Enet, Equation (13)) (kWh/m3) | 0.03 | 4.50 | −1.18 | 10.30 | −13.30 | −26.10 | 15.3 | 14.91 |
Electricity/Qin (kWh/m3) | 0.24 | 0.55 | −0.17 | 1.27 | −1.66 | −1.16 | −0.58 | 1.83 |
EQI/Qin (kg/m3) | 0.26 | 0.08 | −1.05 | −1.79 | 0.032 | 1.63 | −5.91 | 0.23 |
Ntot (g/m3) | 11.56 | 0.87 | 1.89 | −5.19 | 1.03 | 4.52 | −10.88 | 3.41 |
SNH (g/m3) | 0.82 | −4.81 | −28.8 | 8.14 | −6.26 | 14.92 | −41.91 | −20.15 |
Sludge (kg/m3) | 131.0 | 0 | 0.012 | 0 | 0 | 1.94 | −2.08 | 0 |
CH4/CO2 ratio | 0.69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Default | ||||||
---|---|---|---|---|---|---|
Bimester | 1 | 2 | 3 | 4 | 5 | 6 |
Electricity/Qin (kWh/ m3) | 0.258 | 0.257 | 0.221 | 0.247 | 0.238 | 0.237 |
EQI/Qin (kg/m3) | 0.220 | 0.242 | 0.278 | 0.277 | 0.266 | 0.256 |
Ntot (g/ m3) | 10.132 | 11.242 | 12.080 | 12.595 | 11.686 | 11.449 |
SNH (g/ m3) | 0.353 | 0.667 | 1.182 | 1.162 | 0.822 | 0.647 |
DOsp: 0.95–2.05 g/m3 | ||||||
Bimester | 1 | 2 | 3 | 4 | 5 | 6 |
Electricity/Qin (kWh/ m3) | 0.482 | 0.349 | 0.715 | 0.789 | 0.444 | 0.485 |
EQI/Qin (kg/m3) | 0.417 | 0.076 | −0.174 | 0.029 | 0.056 | 0.168 |
Ntot (g/ m3) | 1.438 | 0.812 | 0.600 | 0.740 | 0.762 | 1.023 |
SNH (g/ m3) | −6.996 | −5.241 | −5.037 | −3.607 | −4.372 | −5.469 |
DOsp: 0.5–4.0 g/m3 | ||||||
Bimester | 1 | 2 | 3 | 4 | 5 | 6 |
Electricity/Qin (kWh/ m3) | 2.350 | −0.435 | −1.627 | −1.413 | −0.510 | 0.634 |
EQI/Qin (kg/m3) | 0.957 | −1.782 | −1.408 | −1.402 | −1.357 | −0.847 |
Ntot (g/m3) | 8.896 | 1.800 | −0.886 | −0.924 | 0.736 | 3.730 |
SNH (g/m3) | −91.320 | −45.793 | −11.790 | −11.509 | −26.348 | −47.694 |
Qa = 2 Qin0 | ||||||
Bimester | 1 | 2 | 3 | 4 | 5 | 6 |
Electricity/Qin (kWh/ m3) | 1.089 | 1.236 | 1.490 | 1.700 | 1.179 | 0.964 |
EQI/Qin (kg/m3) | −2.634 | −2.046 | −1.364 | −0.833 | −1.893 | −2.238 |
Ntot (g/m3) | −6.878 | −5.891 | −4.162 | −2.964 | −5.507 | −6.230 |
SNH (g/m3) | 15.169 | 11.847 | 5.095 | 5.918 | 8.620 | 10.355 |
Qa = 4 Qin0 | ||||||
Bimester | 1 | 2 | 3 | 4 | 5 | 6 |
Electricity/Qin (kWh/m3) | −1.510 | −1.618 | −1.835 | −2.084 | −1.574 | −1.390 |
EQI/Qin (kg/m3) | 0.540 | 0.134 | −0.113 | −0.917 | 0.184 | 0.471 |
Ntot (g/m3) | 2.188 | 1.485 | 0.524 | −1.210 | 1.377 | 2.088 |
SNH (g/m3) | −13.071 | −9.288 | −3.714 | −3.972 | −6.613 | −8.501 |
SNHSP = 4.0 g/m3 | ||||||
Bimester | 1 | 2 | 3 | 4 | 5 | 6 |
Electricity/Qin (kWh/m3) | 0.16 | 1.22 | 3.36 | 3.81 | 1.80 | 0.65 |
EQI/Qin (kg/m3) | 0.12 | 0.64 | −1.20 | 0.49 | 0.14 | 0.22 |
Ntot (g/m3) | 0.37 | 2.52 | 5.01 | 6.91 | 3.32 | 1.25 |
SNH (g/m3) | −1.56 | −9.41 | −26.6 | −31.22 | −21.04 | −6.64 |
Bimesters | Solution 1 | Solution 2 |
---|---|---|
1st | DOsp: 0.5–4.0 g/m3, Qa: Default, SNHSP: Default | DOsp: 0.5–4.0 g/m3, Qa: Default, SNHSP: Default |
2nd | DOsp: Default, Qa: Default, SNHSP: 4.0 g/m3 | DOsp: 0.95–2.05 g/m3, Qa: Default, SNHSP: 4.0 g/m3 |
3rd | DOsp: Default, Qa: 2 Qin0, SNHSP: Default | DOsp: 0.95–2.05 g/m3, Qa: 2 Qin0, SNHSP: Default |
4th | DOsp: 0.95–2.05 g/m3, Qa: 2 Qin0, SNHSP: Default | DOsp: 0.95–2.05 g/m3, Qa: 2 Qin0, SNHSP: Default |
5th | DOsp: Default, Qa: Default, SNHSP: 4.0 g/m3 | DOsp: Default, Qa: Default, SNHSP: 4.0 g/m3 |
6th | DOsp: Default, Qa: Default, SNHSP: 4.0 g/m3 | DOsp: Default, Qa: 4 Qin0, SNHSP: 4.0 g/m3 |
Default | Solution 1 | Solution 2 | Solution 1 VP, Top | Solution 2 VP, Top | |
---|---|---|---|---|---|
EQ (kg/d) | 5318.0 | 5326.6 | 5309.0 | 5339.2 | 5324.7 |
OCI (BSM2) (Eur/ d) | 9016.2 | 8937.3 | 8953.4 | 8732.3 | 8748.9 |
Energy net (Enet, Equation (13)) (kWh/d) | 619.5 | 541.4 | 557.7 | 393.8 | 410.6 |
Excess Heating Energy (kWh/ d) | 2853.2 | 2853.5 | 2853.6 | 3678.2 | 3678.4 |
Total Electricity consumption (kWh/ d) | 5008.1 | 4930.1 | 4946.5 | 4896.2 | 4913.2 |
Aeration Energy (kWh/ d) | 3794.6 | 3743.9 | 3731.9 | 3710.0 | 3698.6 |
Pumping Energy (kWh/ d) | 445.5 | 418.2 | 446.6 | 418.2 | 446.6 |
Heating Energy (kWh/ d) | 4225.2 | 4225.2 | 4225.2 | 3583.8 | 3583.8 |
Energy/Pollution removed (kWh/kg) | 0.133 | 0.132 | 0.132 | 0.122 | 0.122 |
Energy net/Pollution removed (kWh/kg) | 0.009 | 0.008 | 0.008 | 0.006 | 0.006 |
Ntot Violations (%) | 0.47 | 0.77 | 0.53 | 0.84 | 0.57 |
Ntot Violations (occur) | 13.00 | 25.00 | 16.00 | 23.00 | 17.00 |
Ntot Violations (days) | 1.72 | 2.81 | 1.93 | 3.06 | 2.08 |
SNH Violations (%) | 1.69 | 1.97 | 2.10 | 1.76 | 1.92 |
SNH Violations (occur) | 55.00 | 66.00 | 70.00 | 60.00 | 65.00 |
SNH Violations (days) | 6.15 | 7.17 | 7.66 | 6.42 | 6.99 |
COD Violations (%) | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revollar, S.; Meneses, M.; Vilanova, R.; Vega, P.; Francisco, M. Eco-Efficiency Assessment of Control Actions in Wastewater Treatment Plants. Water 2021, 13, 612. https://doi.org/10.3390/w13050612
Revollar S, Meneses M, Vilanova R, Vega P, Francisco M. Eco-Efficiency Assessment of Control Actions in Wastewater Treatment Plants. Water. 2021; 13(5):612. https://doi.org/10.3390/w13050612
Chicago/Turabian StyleRevollar, Silvana, Montse Meneses, Ramón Vilanova, Pastora Vega, and Mario Francisco. 2021. "Eco-Efficiency Assessment of Control Actions in Wastewater Treatment Plants" Water 13, no. 5: 612. https://doi.org/10.3390/w13050612
APA StyleRevollar, S., Meneses, M., Vilanova, R., Vega, P., & Francisco, M. (2021). Eco-Efficiency Assessment of Control Actions in Wastewater Treatment Plants. Water, 13(5), 612. https://doi.org/10.3390/w13050612