Water Ecosystem Service Quality Evaluation and Value Assessment of Taihu Lake in China
Abstract
:1. Introduction
Study Area and Data Sources
2. Methods
2.1. Evaluation Method of Water Ecological Quality
2.1.1. Evaluation Indexes () of Water Ecological Quality
2.1.2. Water Ecological Quality Index (WQI)
2.2. Water Ecosystem Service Value Evaluation Index System
2.3. Service Value Evaluation Methods (Table S1 for Easy Understanding)
2.3.1. Provisioning Services
- (1)
- Water supply
- (2)
- Provide aquatic products
- (3)
- Shipping
2.3.2. Regulation Service
- (1)
- Regulate the atmospheric CO2/O2 production
- (2)
- Water purification
- (3)
- Surface water storage
2.3.3. Support Service
- (1)
- Protect biodiversity
- (2)
- Soil conservation
2.3.4. Cultural Service
- (1)
- Tourism and leisure
- (2)
- Research and education
2.4. Link Water Quality and Ecosystem Service Value
Pearson Correlation Coefficient
3. Results
3.1. Evaluation Results of Taihu Lake Water Ecological Quality
3.2. Evaluation Results of Water Ecosystem Service Value of Taihu Lake
3.2.1. Provisioning Service Value
- (1)
- Water supply
- (2)
- Provide aquatic product
- (3)
- Shipping
3.2.2. Regulation Service Value
- (1)
- Regulate the atmospheric CO2/O2 production
- (2)
- Water purification
- (3)
- Surface water storage
3.2.3. Support Service Value
- (1)
- Protect biodiversity
- (2)
- Soil conservation
3.2.4. Cultural Service Value
- (1)
- Tourism and leisure
- (2)
- Research and education
3.3. Correlation Between Water Quality and Service Value
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A Framework for Vulnerability Analysis in Sustainability Science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Ecosystems and human well-being: Health synthesis. In A Report of the Millennium Ecosystem Assessment; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Zan, X.; Zhang, Y.; Jia, X.; Xiong, G. Evaluation of water ecosystem service value in the upper reaches of Yongding River. J. Nat. Resour. 2020, 35, 1326–1337. [Google Scholar]
- Tomscha, S.A.; Sutherland, I.J.; Renard, D.; Gergel, S.E.; Rhemtulla, J.M.; Bennett, E.M.; Daniels, L.D.; Eddy, I.M.; Clark, E.E. A Guide to Historical Data Sets for Reconstructing Ecosystem Service Change over Time. Bioscience 2016, 66, 747–762. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Wu, Q.; Wang, J.; Ge, C.; Cao, D. Environmental indicator development in China: Debates and challenges ahead. Environ. Dev. 2013, 7, 125–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, D.; Niu, Z.; Xu, F. Valuation of Lake and Marsh Wetlands Ecosystem Services in China. Chin. Geogr. Sci. 2014, 24, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Krutilla, J.V.; Fisher, A.C. The Economics of Natural Environments: Studies in the Valuation of Commodity and Amenity Resources; Resources for the Future: Washington, DC, USA, 1985. [Google Scholar]
- Boland, J.J.; Freeman, A.M. The Benefits of Environmental Improvement: Theory and Practice; The Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- Halkos, G.; Matsiori, S. Determinants of willingness to pay for coastal zone quality improvement. J. Socioecon. 2012, 41, 391–399. [Google Scholar] [CrossRef]
- Lange, G.M.; Jiddawi, N. Economic value of marine ecosystem services in Zanzibar: Implications for marine conservation and sustainable development. Ocean Coast. Manag. 2009, 52, 521–532. [Google Scholar] [CrossRef]
- Mander, Ü.; Wiggering, H.; Helming, K. (Eds.) Multifunctional Land Use: Meeting Future Demands for Landscape Goods and Services; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Chen, S.; Jiang, H.; Chen, Y.; Cai, Z. Spatial-temporal patterns of net primary production in Anji (China) between 1984 and 2014. Ecol. Indic. 2020, 110. [Google Scholar] [CrossRef]
- Paudyal, K.; Samsudin, Y.B.; Baral, H.; Okarda, B.; Phuong, V.T.; Paudel, S.; Keenan, R.J. Spatial Assessment of Ecosystem Services from Planted Forests in Central Vietnam. Forests 2020, 11, 822. [Google Scholar] [CrossRef]
- Solomon, N.; Segnon, A.C.; Birhane, E. Ecosystem Service Values Changes in Response to Land-Use/Land-Cover Dynamics in Dry Afromontane Forest in Northern Ethiopia. Int. J. Environ. Res. Public Health 2019, 16, 4653. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Wen, Z.; Zhang, M. Identifying the supply and demand of forest ecosystem service—Based on the perspective of ecosystem service flow. For. Econ. 2014, 36, 3–7. [Google Scholar]
- Sawuti, R.; Manlik, A.; Hu, L.; Kasmu, N.; Fengling, Z.; Xuesen, L.; Abduklimu, R.; Kahal, Y. Evaluation of service value changes of mountain grassland ecosystem in Urumqi—Based on remote sensing and GIS. Acta Ecol. Sin. 2020, 40, 522–539. [Google Scholar]
- Zhao, M.; Zhao, H.; Li, R.; Zhang, L.; Zhao, F.; Liu, L.; Shen, R.; Xu, M. Evaluation of grassland ecosystem service function value in Qinghai Province from 1998 to 2012. J. Nat. Resour. 2017, 32, 418–433. [Google Scholar]
- Qi, A.; Murray, P.J.; Richter, G.M. Modelling productivity and resource use efficiency for grassland ecosystems in the UK. Eur. J. Agron. 2017, 89, 148–158. [Google Scholar] [CrossRef]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Xi, M.; Li, Y.; Kong, F.; Wang, S. Changes in ecosystem service value of coastal wetland in Jiaozhou Bay. Chin. J. Ecol. Sci. 2018, 38, 421–431. [Google Scholar]
- Mahlatini, P.; Hove, A.; Maguma, L.F.; Chemura, A. Using direct use values for economic valuation of wetland ecosystem services: A case of Songore wetland, Zimbabwe. GeoJournal 2020, 85, 41–51. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, P.; Wu, J.; Li, X.; Wu, Z.; Wu, Z. Evaluation of ecosystem service value of West Lake in Hangzhou. Prog. Water Sci. 2013, 24, 436–441. [Google Scholar]
- Zhou, W.; Shi, Y.; Pan, L.; Fu, T.; Zheng, L. Evaluation of the final service value of Wuhan East Lake Wetland Ecosystem in 2017. Wetl. Sci. 2019, 17, 318–323. [Google Scholar]
- Reynaud, A.; Lanzanova, D. A Global Meta-Analysis of the Value of Ecosystem Services Provided by Lakes. Ecol. Econ. J. Int. Soc. Ecol. Econ. 2017, 137, 184–194. [Google Scholar] [CrossRef]
- Jiang, S.; Cao, M.; Tang, C.; Ma, Q.; Cao, Y.; Xue, J. CVM-based non-use value evaluation of Dongtan wetland in Chongming. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2017, 41, 21–27. [Google Scholar]
- Zhao, Q.; Wen, Z.; Chen, S.; Ding, S.; Zhang, M. Quantifying Land Use/Land Cover and Landscape Pattern Changes and Impacts on Ecosystem Services. Int. J. Environ. Res. Public Health 2020, 17, 126. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Rasul, G.; Chettri, N. The economic value of wetland ecosystem services: Evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosyst. Serv. 2015, 12, 84–93. [Google Scholar] [CrossRef]
- Cong, J.; Pang, T.; Peng, H. Optimal Strategies for Capital Constained Low-Carbon Supply Chain under Yield Uncertainty. J. Clean. Prod. 2020, 256, 120339. [Google Scholar] [CrossRef]
- Cao, Y.; Mao, D.; Wu, H.; Zhang, H.; Zhang, J. The evolution characteristics of water environment quality in the mainstream of the Xiangjiang River and quantitative identification of key factors. Resour. Environ. Yangtze River Basin 2019, 28, 1235–1243. [Google Scholar]
- Ba, W.; Du, P.; Liu, T.; Bao, A.; Chen, X.; Liu, J.; Qin, C. Chengxin.Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China. J. Geogr. Sci. 2020, 30, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Sun, J.; Liu, J.; Yang, J. Surface water chemical characteristics and water environment quality evaluation in Shenfuyu mining area. Resour. Environ. Arid Areas 2018, 32, 190–195. [Google Scholar]
- Cui, W.; Liu, D.; Liang, S.; Zhang, P.; Kong, F. Comprehensive assessment of water ecological environment quality in Yongding River Basin. J. Water Ecol. 2020, 41, 23–28. [Google Scholar]
- Xiang, Y.; Liang, C.; Lin, Y. Improved grey clustering method and its application in water environment quality assessment. J. Sichuan Univ. (Eng. Sci. Ed.) 2014, 46, 7–12. [Google Scholar]
- An, G.; Lin, L.; Zou, S. Discussion on Urban River Water Environmental Quality Ranking Based on Comprehensive Index Method. China Environ. Monit. 2016, 32, 50–57. [Google Scholar]
- Qin, M.; Xu, H.; Zeng, J.; Zhao, D.; Yu, Z.; Wu, Q.L. Composition and assembly of bacterial communities in surface and deeper sediments from aquaculture-influenced sites in Eastern Taihu Lake, China. Aquat. Sci. 2020, 82, 80. [Google Scholar] [CrossRef]
- Yang, J.; Ji, X.; Deane, D.C.; Wu, L.; Chen, S. Spatiotemporal Distribution and Driving Factors of Forest Biomass Carbon Storage in China: 1977–2013. Forests 2017, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Jiang, H.; Xu, T.; Zhang, L. Environmental performance evaluation of water environment treatment project in Yixing City based on section water quality response. Hydropower Energy Sci. 2020, 38, 135–138. [Google Scholar]
- Kang, R.; Xie, W.; Zhao, W.; Pang, X.; Yu, G. Looking at the effectiveness of key river management in Wunan area of Changzhou City from the water quality change trend. China Environ. Sci. 2019, 39, 4186–4193. [Google Scholar]
- Tian, W.; Yang, Z.; Shao, K.; Pan, H.; Hu, Y.; Bai, C.; Jiang, X.; Gao, G.; Tang, X. The impact of urban lake water environment improvement on improving water quality: A case study of the water quality changes in Lihu Lake in the past 30 years. Environ. Sci. 2020, 41, 183–193. [Google Scholar]
- Deng, J.; Zhang, W.; Qin, B.Q.; Zhang, Y.; Salmaso, N.; Jeppesen, E. Winter Climate Shapes Spring Phytoplankton Development in Non-Ice-Covered Lakes: Subtropical Taihu Lake as an Example. Water Resour. Res. 2020, 56, e2019WR026680. [Google Scholar] [CrossRef]
- Xu, H.; Cai, Y.; Tang, X.; Shao, K.; Qin, B.; Gong, Z. Community structure of macrobenthos and biological evaluation of water environment in Taihu Lake. Lake Sci. 2015, 27, 840–852. [Google Scholar]
- Chang, W.; Sun, J.; Pang, Y.; Zhang, S.; Gong, L.; Lu, J.; Feng, B.; Xu, R. Effects of different habitats on the bacterial community composition in the water and sediments of Taihu Lake, China. Environ. Sci. Pollut. Res. 2020, 27, 44983–44994. [Google Scholar] [CrossRef]
- Taihu Lake Basin Administration. Taihu Lake Basin and Southeastern Rivers Water Resources Bulletin (2018); Taihu Lake Basin Administration: Shanghai, China, 2019. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, C.; Xiao, Y.; Lu, C. The value of China’s ecosystem services. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Suzhou Municipal Bureau of Statistics. Suzhou Statistical Yearbook; China Statistics Press: Suzhou, China, 2019.
- Jiangsu Provincial Bureau of Statistics; Jiangsu Survey Team of the National Bureau of Statistics. Jiangsu Provincial National Economic and Social Development Statistical Bulletin in 2019; China Publishing House: Beijing, China, 2020.
- Zhao, T.; Ouyang, Z.; Wang, X.; Miao, H.; Wei, Y. China’s terrestrial surface water ecosystem service function and its ecological economic value evaluation. J. Nat. Resour. 2003, 4, 443–452. [Google Scholar]
- Liu, J.; Lu, J.; Zhu, G.; Gao, M.; Wen, L.; Yao, M.; Nie, Q. The characteristics and influencing factors of Taihu Lake flooding from 2009 to 2017. Lake Sci. 2018, 30, 1196–1205. [Google Scholar]
- Taihu Lake Basin Administration Bureau, Ministry of Water Resources. 2018 Taihu Lake Health Status Report; Taihu Lake Basin Administration Bureau, Ministry of Water Resources: Shanghai, China, 2018.
- Fan, X. Research on the Calculation of Transboundary Ecological Compensation in the Taihu Lake Basin Based on the Cost of Pollutant Reduction. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2015. [Google Scholar]
- National Development and Reform Commission Price Department. National Agricultural Product Cost and Benefit Data Collection; China Statistics Press: Beijing, China, 2018.
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2018 Urban and Rural Construction Statistical Yearbook [EB/OL]. 10 May 2019. Available online: http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/ (accessed on 27 March 2020).
- Yan, R.; Gao, J.; Huang, Q.; Zhao, J.; Dong, C.; Chen, X.; Zhang, Z.; Huang, J. Service value of water ecosystem in the polder area of Taihu Lake Basin. J. Ecol. Sci. 2015, 35, 5197–5206. [Google Scholar]
- Chen, S.; Wen, Z. The service function of carbon fixation and oxygen release of plantation vegetation in Guangxi and its value evaluation. J. Agric. For. Econ. Manag. 2016, 15, 557–563. [Google Scholar]
- Zhang, Y.; Feng, S.; Ma, R.; Liu, M.; Qin, B. The spatial distribution of the true light layer depth and the estimation of phytoplankton primary productivity in Taihu Lake in autumn. Lake Sci. 2008, 3, 380–388. [Google Scholar]
- Xiang, C.; Yan, L.; Han, Y.; Wu, Z.; Yang, W. Evaluation of Ecosystem Service Value of Qiandao Lake. J. Appl. Ecol. 2019, 30, 3875–3884. [Google Scholar]
- Xu, Y.; Gao, J.; Huang, J. Evaluation of Service Function Value of Taihu Wetland Ecosystem. Resour. Environ. Yangtze River Basin 2010, 19, 646–652. [Google Scholar]
- Fu, W.; Jiang, H.; Fang, J.; Guan, Y.; Wu, T.; Zhao, H.; Wu, H. Evaluation of the comprehensive benefits of the ecological engineering of the lakeside buffer zone in Zhushan Bay: Taking Zhoutie Town, Yixing City, Jiangsu Province as an example. Bull. Soil Water Conserv. 2017, 37, 268–273. [Google Scholar]
- Kang, T.; Yang, S.; Bu, J.; Chen, J.; Gao, Y. Quantitative Assessment for the Dynamics of the Main Ecosystem Services and their Interactions in the Northwestern Arid Area, China. Sustainability 2020, 12, 803. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z. Statistical Principle; Peking University Press: Beijing, China, 2014. [Google Scholar]
- Zhang, J.; Ren, Z.; Zhang, J. Dynamic evaluation of carbon fixation and oxygen release in land ecosystems in the middle and lower reaches of Fenhe River. Agric. Res. Arid Areas 2018, 36, 242–249. [Google Scholar]
- Zhou, X.; Zhang, N.; Zhang, Y.; Niu, Z.; Liu, L.; Yu, H. A preliminary study on the relationship between the water quality of Taihu Lake and the health of aquatic organisms. Environ. Sci. 2014, 35, 271–278. [Google Scholar]
- Liu, G.; Bao, X.; Wu, T.; Han, S.; Xiao, M.; Yan, S.; Zhou, Q. Study on water environment restoration effect of water hyacinth ecological engineering measures on Zhushan Lake in Taihu Lake. J. Agric. Environ. Sci. 2015, 34, 352–360. [Google Scholar]
- Liu, G.; Han, S.; He, J.; Yan, S.; Zhou, Q. Effect of water hyacinth ecological purification project on benthic community structure change in Zhushan Lake. J. Ecol. Environ. 2014, 23, 1311–1319. [Google Scholar]
- Wang, L.; Tian, Z.; Li, Y.; Chen, J.; Li, L.; Wang, X.; Zhao, Y.; Zheng, B. Study on water environment evolution trend and influencing factors of Dongting Lake in recent 30 years. Environ. Sci. Res. 2020, 33, 1140–1149. [Google Scholar]
- Zhang, M.; Shi, X.; Yang, Z.; Chen, K. Analysis of water quality change trend and suggestions on cyanobacteria prevention and control in Chaohu Lake from 2012 to 2018. Lake Sci. 2020, 32, 11–20. [Google Scholar]
Category | Evaluation Parameters (≤mg/L) | Assignment | |||
---|---|---|---|---|---|
Hypermanganate Index | NH3–N | TP | TN | ||
I | 2 | 0.15 | 0.01 | 0.2 | 5 |
II | 3 | 0.5 | 0.025 | 0.5 | 4 |
III | 4 | 1 | 0.05 | 1 | 3 |
IV | 10 | 1.5 | 0.1 | 1.5 | 2 |
V | 15 | 2 | 0.2 | 2 | 1 |
Category | Phytoplankton Diversity Index | Zooplankton Diversity Index | Benthic Diversity Index | Assignment |
---|---|---|---|---|
I | > 2 | > 3.5 | > 2 | 5 |
II | 1.5 < ≤ 2 | 2.5 < ≤ 3.5 | 1.5 < ≤ 2 | 4 |
III | 1 < ≤ 1.5 | 1.5 < ≤ 2.5 | 1 < ≤ 1.5 | 3 |
IV | 0.5 < ≤ 1 | 0.5 < ≤ 1.5 | 0.5 < ≤ 1 | 2 |
V | ≤ 0.5 | ≤ 0.5 | ≤ 0.5 | 1 |
Category | WQI | Water Ecological Quality Status |
---|---|---|
I | 4 < WQI ≤ 5 | Good |
II | 3 < WQI ≤ 4 | Common |
III | 2 < WQI ≤ 3 | lightly polluted |
IV | 1 < WQI ≤ 2 | moderately polluted |
V | 0 < WQI ≤ 1 | heavily polluted |
Ecosystem Service Categories | Services | Indicators | Evaluation Method | Data Sources |
---|---|---|---|---|
Provisioning service | Water supply | Industrial water value | Market value method: regarding the ecosystem as a production factor, water resources, aquatic products, and shipping are all products and services provided by the ecosystem with market prices, so the respective market prices are used for accounting. | [44] |
Agricultural water value | ||||
Domestic water value | ||||
Provide aquatic products | Total fishery output value | [46] | ||
Shipping function | Cargo turnover value | [47,48] | ||
Passenger turnover value | ||||
Regulation service | Regulate the atmospheric CO2/O2 production | Carbon sequestration value | Afforestation cost method: the cost of afforestation per unit of carbon sequestration and the annual carbon sequestration of aquatic ecosystems in Taihu Lake are necessary. | [49,50] |
Oxygen release value | Alternative engineering method: industrial unit oxygen production cost is needed. | |||
Water purification | In and out of the lake hypermanganate index cut value | Alternative engineering method: the cost of plant treatment of pollutants and the amount of pollutants handled are the objects. | [44,51] | |
Value reduction of NH3–N in and out of the lake | ||||
TP cut value in and out of the lake | ||||
TN cut value in and out of the lake | ||||
Surface water storage | Surface water storage value | Shadow price method: need unit storage cost and storage capacity | ||
Support service | Soil conservation | Maintain soil value | Equivalence factor method: refer to Xie Gaodi’s research | [45] |
Protect biodiversity | Biodiversity conservation value | [52] | ||
Cultural service | Travel | Tourism and leisure value | Price substitution method: replace with operating profit of Taihu Lake tourist attraction | [53] |
Research and education | Research and education value | Outcome reference method: refer to Xie Gaodi and Costanza’s research | [1,45] |
Years | Assignment of Water Quality Chemical Indicators | Assignment of Aquatic Biological Indicators | WQI | Water Ecological Quality Status |
---|---|---|---|---|
2010 | 0 | 3 | 1.5 | Moderately polluted |
2014 | 1 | 3 | 2 | Moderately polluted |
2018 | 1 | 4 | 2.5 | Light pollution |
Water Type | Water Consumption (100 Million m3) | Water Price (Yuan/t) | ||
---|---|---|---|---|
2010 | 2014 | 2018 | ||
Industrial water | 212.5 | 206.6 | 212.6 | 4.1 |
Agricultural irrigation water | 76.6 | 67.8 | 62.8 | 0.6 |
Residential water | 29.2 | 30.9 | 32.5 | 2.8 |
Water supply value (100 million yuan) | 998.97 | 974.26 | 998.72 | — |
Series | 2010 | 2014 | 2018 | Administrative Area (km2) |
---|---|---|---|---|
Suzhou | 85.39 | 122.64 | 134.41 | 8488.42 |
Changzhou | 42.37 | 64.73 | 81.02 | 4372.15 |
Wuxi | 27.94 | 36.93 | 35.57 | 4627.46 |
Huzhou | 29.72 | 43.68 | 65.56 | 5820 |
Total fishery output value (100 million yuan) | 185.43 | 267.99 | 316.56 | —— |
Fishery output value per unit area (100 million yuan/km2) | 0.008 | 0.011 | 0.014 | |
Provide aquatic product service value (100 million yuan) | 18.60 | 26.88 | 31.76 |
Series | 2010 | 2014 | 2018 | Price [48] |
---|---|---|---|---|
Cargo turnover (100 million-ton kilometers) | 4095.7 | 4081.78 | 6122 | 0.06 Yuan/ton·km |
Passenger turnover (100 million person-kilometers) | 1.5 | 3.03 | 3.5 | 0.24 Yuan/person·km |
Shipping value in Jiangsu Province (100 million yuan) | 246.1 | 245.63 | 368.16 | — |
Shipping value of Taihu Lake (100 million yuan) | 61.53 | 61.41 | 92.04 |
Chlorophyll a Concentration (mg/m3) | pp (mg C/m2 d) | Adjust the Atmospheric Value (100 Million Yuan) | |
---|---|---|---|
2010 | 19.2 | 885.684 | 9.09 |
2014 | 28.75 | 1215.35 | 12.48 |
2018 | 31.5 | 1310.28 | 13.45 |
Unit: 10,000 tons | |||||||||
---|---|---|---|---|---|---|---|---|---|
Water Purification Value (100 Million Yuan) | 2010 | 2014 | 2018 | ||||||
10.66 | 8.56 | 6.69 | |||||||
Into the Lake | Out of the Lake | Reduction | Into the Lake | Out of the Lake | Reduction | Into the Lake | Out of the Lake | Reduction | |
hypermanganese acid index | 6.48 | 4.93 | 1.55 | 5.56 | 4.03 | 1.53 | 5.26 | 4.20 | 1.06 |
NH3–N | 1.83 | 0.2 | 1.63 | 1.19 | 0.1 | 1.09 | 0.75 | 0.14 | 0.61 |
TP | 0.28 | 0.07 | 0.21 | 0.17 | 0.06 | 0.12 | 0.19 | 0.06 | 0.13 |
TN | 5.64 | 2.54 | 3.1 | 4.2 | 1.38 | 2.82 | 3.96 | 1.61 | 2.35 |
Years | Series | Rice | Wheat | Rape |
---|---|---|---|---|
2010 | Planting area (thousand hectares) | 233.18 | 180.81 | 37.54 |
Net profit per unit area (yuan/mu) | 309.82 | 132.17 | 8.59 | |
Value (100 million yuan) | 6.22 | |||
2014 | Planting area (thousand hectares) | 208.62 | 176.31 | 26.67 |
Net profit per unit area (yuan/mu) | 204.83 | 87.83 | −161.74 | |
Value (100 million yuan) | 3.81 | |||
2018 | Planting area (thousand hectares) | 167.59 | 133.47 | 9.19 |
Net profit per unit area (yuan/mu) | 65.89 | −159.41 | −192.81 | |
Value (100 million yuan) | −1.13 |
Unit: 100 Million Yuan | |||
---|---|---|---|
Years | Operating Income | Operating Expenses | Tourism and Leisure Value |
2010 | 9.43 | 1.79 | 7.63 |
2014 | 13.61 | 7.68 | 5.92 |
2018 | 17.24 | 2.47 | 14.77 |
Unit: 100 Million Yuan | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ecosystem Service Category | Service | Years | ||||||||
2010 | 2014 | 2018 | ||||||||
Value | Proportion | Value | Value | Proportion | Value | Value | Proportion | Value | ||
Provision service | Water supply | 1079.1 | 93.52% | 998.97 | 1062.55 | 93.77% | 974.26 | 1122.52 | 93.57% | 998.72 |
Provide aquatic products | 18.6 | 26.88 | 31.76 | |||||||
Shipping function | 61.53 | 61.41 | 92.04 | |||||||
Regulation service | Regulate the atmospheric CO2/O2 production | 51.24 | 4.44% | 9.09 | 52.66 | 4.65% | 12.48 | 56.92 | 4.74% | 13.45 |
Water purification | 10.66 | 8.56 | 6.69 | |||||||
Surface water storage | 31.49 | 31.62 | 36.78 | |||||||
Support service | Soil conservation | 8.54 | 0.74% | 2.32 | 5.24 | 0.46% | 1.43 | −1.55 | −0.13% | −0.42 |
Protect biodiversity | 6.22 | 3.81 | −1.13 | |||||||
Cultural service | Tourism and leisure | 15.05 | 1.30% | 7.63 | 12.67 | 1.12% | 5.92 | 21.73 | 1.81% | 14.77 |
Research and education | 7.42 | 6.75 | 6.96 | |||||||
Function total value | 1153.93 | 1133.12 | 1199.6 |
Index | WQI | Water Supply | Provide Aquatic | Shipping Function | Regulate the Atmospheric CO2/O2 Production | Water Purification | Surface Water Storage | Soil Conservation | Protect Biodiversity | Tourism and Leisure | Research and Education |
---|---|---|---|---|---|---|---|---|---|---|---|
WQI | 1000 | −0.009 | 0.989 | 0.864 | 0.952 | −0.999 * | 0.877 | −0.980 | −0.981 | 0.760 | −0.671 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wang, Q. Water Ecosystem Service Quality Evaluation and Value Assessment of Taihu Lake in China. Water 2021, 13, 618. https://doi.org/10.3390/w13050618
Zhao Q, Wang Q. Water Ecosystem Service Quality Evaluation and Value Assessment of Taihu Lake in China. Water. 2021; 13(5):618. https://doi.org/10.3390/w13050618
Chicago/Turabian StyleZhao, Qingjian, and Qiuyan Wang. 2021. "Water Ecosystem Service Quality Evaluation and Value Assessment of Taihu Lake in China" Water 13, no. 5: 618. https://doi.org/10.3390/w13050618
APA StyleZhao, Q., & Wang, Q. (2021). Water Ecosystem Service Quality Evaluation and Value Assessment of Taihu Lake in China. Water, 13(5), 618. https://doi.org/10.3390/w13050618