Nature-Based Solutions and Real-Time Control: Challenges and Opportunities
Abstract
:1. Introduction
2. Opportunities of RTC in Different NBS
2.1. Green Roof
2.2. Bioretention
2.3. Detention Basin
3. Challenges to Applying RTC to NBS
3.1. Monitoring
3.2. Modeling, Forecast and RTC Strategies
4. Comparative Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, A.P. Field performance of bioretention: Hydrology impacts. J. Hydrol. Eng. 2008, 13, 90–95. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 9781107641655. [Google Scholar]
- Miguez, M.G.; Rezende, O.M.; Veról, A.P. City Growth and Urban Drainage Alternatives: Sustainability Challenge. J. Urban Plan. Dev. 2015, 141, 04014026. [Google Scholar] [CrossRef]
- Kwon, S.H.; Jung, D.; Kim, J.H. Development of a multiscenario planning approach for urban drainage systems. Appl. Sci. 2020, 10, 1834. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, G.; Gromaire, M.C.; Shorshani, M.F.; Chebbo, G. Nonpoint source pollution of urban stormwater runoff: A methodology for source analysis. Environ. Sci. Pollut. Res. 2014, 21, 10225–10242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Ma, M.; Song, T.; Song, R. Storm water management and flood control in sponge city construction of Beijing. Water 2018, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Mcclymont, K.; Gasparini, D.; Cunha, F.; Maidment, C.; Ashagre, B.; Floriano, A.; Batalini, M.; Macedo, D.; Nobrega do Santos, M.F.; Marcus, N.; et al. Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem. J. Environ. Manag. 2020, 275. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- van den Bosch, M.; Sang, O. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- De Macedo, M.B.; Ambrogi, C.; Rosa, A.; Mendiondo, M. Técnicas compensatórias de bioretenção para cidades resilientes: Integração com nexus—água, energia, alimento. Assoc. Bras. Recur. Hídricos 2017, 20, 1–8. [Google Scholar]
- Persaud, P.P.; Akin, A.A.; Kerkez, B.; McCarthy, D.T.; Hathaway, J.M. Real time control schemes for improving water quality from bioretention cells. Blue-Green Syst. 2019, 1, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Campisano, A.; Colas, H.; Schilling, W.; Vanrolleghem, P.A. Real time control of urban wastewater systems—Where do we stand today? J. Hydrol. 2004, 299, 335–348. [Google Scholar] [CrossRef]
- Borsányi, P.; Benedetti, L.; Dirckx, G.; De Keyser, W.; Muschalla, D.; Solvi, A.M.; Vandenberghe, V.; Weyand, M.; Vanrolleghem, P.A. Modelling real-time control options on virtual sewer systems. J. Environ. Eng. Sci. 2008, 7, 395–410. [Google Scholar] [CrossRef]
- García, L.; Barreiro-Gomez, J.; Escobar, E.; Téllez, D.; Quijano, N.; Ocampo-Martinez, C. Modeling and real-time control of urban drainage systems: A review. Adv. Water Resour. 2015, 85, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Beeneken, T.; Erbe, V.; Messmer, A.; Reder, C.; Rohlfing, R.; Scheer, M.; Schuetze, M.; Schumacher, B.; Weilandt, M.; Weyand, M. Real time control (RTC) of urban drainage systems—A discussion of the additional efforts compared to conventionally operated systems. Urban Water J. 2013, 10, 293–299. [Google Scholar] [CrossRef]
- Christofides, P.D.; Scattolini, R.; Muñoz de la Peña, D.; Liu, J. Distributed model predictive control: A tutorial review and future research directions. Comput. Chem. Eng. 2013, 51, 21–41. [Google Scholar] [CrossRef]
- Gaborit, E.; Muschalla, D.; Vallet, B.; Vanrolleghem, P.A.; Anctil, F. Improving the performance of stormwater detention basins by real-time control using rainfall forecasts. Urban Water J. 2013, 10, 230–246. [Google Scholar] [CrossRef]
- Altobelli, M.; Cipolla, S.S.; Maglionico, M. Combined Application of Real-Time Control and Green Technologies to Urban Drainage Systems. Water 2020, 12, 3432. [Google Scholar] [CrossRef]
- Principato, F.; Palermo, S.A.; Nigro, G.; Garofalo, G. Sustainable Strategies and RTC to mitigate CSO’s impact: Different scenarios in the highly urbanized catchment of Cosenza, Italy. In Proceedings of the 14th IWA/IAHR International Conference on Urban Drainage—ICUD2017, Prague, Czech Republic, 10–15 September 2017. [Google Scholar]
- Blöschl, G.; Bierkens, M.F.P.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.G.; Sivapalan, M.; et al. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davison, J.B. Green roofs; Building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Hardin, M.; Wanielista, M.; Chopra, M. A mass balance model for designing green roof systems that: Incorporate a cistern for re-use. Water 2012, 4, 914. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Application of green blue roof to mitigate heat island phenomena and resilient to climate change in urban areas: A case study from Seoul, Korea. J. Water L. Dev. 2017, 33, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Xu, W.D.; Burns, M.J.; Cherqui, F.; Fletcher, T.D. Enhancing stormwater control measures using real-time control technology: A review. Urban Water J. 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Duncan, H.P.; Hatt, B.E.; Ladson, A.R.; Walsh, C.J. The performance of rainwater tanks for stormwater retention and water supply at the household scale: An empirical study. Hydrol. Process. 2015, 29, 152–160. [Google Scholar] [CrossRef]
- Oberascher, M.; Zischg, J.; Palermo, S.A.; Kinzel, C.; Rauch, W.; Sitzenfrei, R. Smart Rain Barrels: Advanced LID Management Through Measurement and Control. In UDM 2018: New Trends in Urban Drainage Modelling; Springer International Publishing: Cham, Switzerland, 2019; Volume 2, pp. 777–782. [Google Scholar]
- Xu, W.D.; Fletcher, T.D.; Burns, M.J.; Cherqui, F. Real Time Control of Rainwater Harvesting Systems: The Benefits of Increasing Rainfall Forecast Window. Water Resour. Res. 2020, 56, 1–16. [Google Scholar] [CrossRef]
- Xu, W.D.; Fletcher, T.D.; Duncan, H.P.; Bergmann, D.J.; Breman, J.; Burns, M.J. Improving the multi-objective performance of rainwater harvesting systems using Real-Time Control technology. Water 2018, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Molineux, C.J.; Connop, S.P.; Gange, A.C. Manipulating soil microbial communities in extensive green roof substrates. Sci. Total Environ. 2014, 493, 632–638. [Google Scholar] [CrossRef]
- Xiao, M.; Lin, Y.; Han, J.; Zhang, G. A review of green roof research and development in China. Renew. Sustain. Energy Rev. 2014, 40, 633–648. [Google Scholar] [CrossRef]
- Schäffer, B.; Brink, M.; Schlatter, F.; Vienneau, D.; Wunderli, J.M. Residential green is associated with reduced annoyance to road traffic and railway noise but increased annoyance to aircraft noise exposure. Environ. Int. 2020, 143, 105885. [Google Scholar] [CrossRef]
- Piro, P.; Turco, M.; Palermo, S.A.; Principato, F.; Brunetti, G.A.; Principato, F.; Brunetti, G. A comprehensive approach to stormwater management problems in the next generation drainage networks. In The Internet of Things for Smart Urban Ecosystems; Springer: Cham, Switzerland, 2019; ISBN 9783319965505. [Google Scholar]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water. Air. Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Wolf, D.; Lundholm, J.T. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 2008, 33, 179–186. [Google Scholar] [CrossRef]
- Muerdter, C.P.; Wong, C.K.; Lefevre, G.H. Emerging investigator series: The role of vegetation in bioretention for stormwater treatment in the built environment: Pollutant removal, hydrologic function, and ancillary benefits. Environ. Sci. Water Res. Technol. 2018, 4, 592–612. [Google Scholar] [CrossRef]
- Batalini de Macedo, M.; Ambrogi Ferreira do Lago, C.; Mendiondo, E.M.; Giacomoni, M.H. Bioretention performance under different rainfall regimes in subtropical conditions: A case study in São Carlos, Brazil. J. Environ. Manag. 2019, 248, 109266. [Google Scholar] [CrossRef]
- Le Coustumer, S.; Fletcher, T.D.; Deletic, A.; Barraud, S.; Poelsma, P. The influence of design parameters on clogging of stormwater biofilters: A large-scale column study. Water Res. 2012, 46, 6743–6752. [Google Scholar] [CrossRef]
- Hunt, W.F.; Smith, J.T.; Jadlocki, S.J.; Hathaway, J.M.; Eubanks, P.R. Pollutant removal and peak flow mitigation by a bioretention cell in Urban Charlotte, N.C. J. Environ. Eng. 2008, 134, 403–408. [Google Scholar] [CrossRef]
- Laurenson, G.; Laurenson, S.; Bolan, N.; Beecham, S.; Clark, I. The Role of Bioretention Systems in the Treatment of Stormwater; Elsevier: Amsterdam, The Netherlands, 2013; Volume 120, ISBN 9780124076860. [Google Scholar]
- Hunt, W.F.; Davis, A.P.; Traver, R.G. Meeting hydrologic and water quality goals through targeted bioretention design. J. Environ. Eng. 2012, 138, 698–707. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Li, L.; Davis, A.P. Urban stormwater runoff nitrogen composition and fate in bioretention systems. Environ. Sci. Technol. 2014, 48, 3403–3410. [Google Scholar] [CrossRef]
- Blecken, G.T.; Zinger, Y.; Deletić, A.; Fletcher, T.D.; Viklander, M. Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters. Water Res. 2009, 43, 4590–4598. [Google Scholar] [CrossRef]
- Manka, B.N.; Hathaway, J.M.; Tirpak, R.A.; He, Q.; Hunt, W.F. Driving forces of effluent nutrient variability in field scale bioretention. Ecol. Eng. 2016, 94, 622–628. [Google Scholar] [CrossRef]
- De Macedo, M.B.; do Lago, C.A.F.; Mendiondo, E.M. Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment. Sci. Total Environ. 2019, 647, 923–931. [Google Scholar] [CrossRef]
- Chowdhury, R.K. Greywater reuse through a bioretention system prototype in the arid region. Water Sci. Technol. 2015, 72, 2201–2211. [Google Scholar] [CrossRef]
- Shen, P.; Deletic, A.; Bratieres, K.; McCarthy, D.T. Real time control of biofilters delivers stormwater suitable for harvesting and reuse. Water Res. 2020, 169, 115257. [Google Scholar] [CrossRef] [PubMed]
- Abawallo, S.S.; Brandimarte, L.; Maglionico, M. Analysis of the performance response of offline detention basins to inlet structure design. Irrig. Drain. 2013, 62, 449–457. [Google Scholar] [CrossRef]
- Park, M.; Chung, G.; Yoo, C.; Kim, J.H. Optimal design of stormwater detention basin using the genetic algorithm. KSCE J. Civ. Eng. 2012, 16, 660–666. [Google Scholar] [CrossRef]
- Akan, A.O. Design Aid for Water Quality Detention Basins. J. Hydrol. Eng. 2010, 15, 39–48. [Google Scholar] [CrossRef]
- Wissler, A.D.; Hunt, W.F.; McLaughlin, R.A. Hydrologic and water quality performance of two aging and unmaintained dry detention basins receiving highway stormwater runoff. J. Environ. Manag. 2020, 255, 109853. [Google Scholar] [CrossRef]
- Valdelfener, M.; Barraud, S.; Sibeud, E.; Bacot, L.; Perrin, Y.; Jourdain, F.; Marmonier, P. Do Sustainable Drainage Systems favour mosquito proliferation in cities compared to stormwater networks? Urban Water J. 2019, 16, 436–443. [Google Scholar] [CrossRef]
- Hunt, W.F.; Apperson, C.S.; Kennedy, S.G.; Harrison, B.A.; Lord, W.G. Occurrence and relative abundance of mosquitoes in stormwater retention facilities in North Carolina, USA. Water Sci. Technol. 2006, 54, 315–321. [Google Scholar] [CrossRef]
- Sharior, S.; McDonald, W.; Parolari, A.J. Improved reliability of stormwater detention basin performance through water quality data-informed real-time control. J. Hydrol. 2019, 573, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Sanders, B.F.; Pau, J.C.; Jaffe, D.A. Passive and active control of diversions to an off-line reservoir for flood stage reduction. Adv. Water Resour. 2006, 29, 861–871. [Google Scholar] [CrossRef]
- Jacopin, C.; Lucas, E.; Desbordes, M.; Bourgogne, P. Optimisation of operational management practices for the detention basins. Water Sci. Technol. 2001, 44, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.R.; Barrett, M.E.; Malina, J.F. Water quality performance of a batch type stormwater detention basin. Water Environ. Res. 2006, 6, 1–88. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, A.; Barrett, M. Interim Report on the Retrofit of an Existing Flood Control Facility to Improve Pollutant Removal in an Urban Watershed. In Proceedings of the World Environmental and Water Resources Congress 2014, Portland, OR, USA, 1–5 June 2014; Volume 303, pp. 65–74. [Google Scholar] [CrossRef] [Green Version]
- Mullapudi, A.; Bartos, M.; Wong, B.; Kerkez, B. Shaping streamflow using a real-time stormwater control network. Sensors 2018, 18, 2259. [Google Scholar] [CrossRef] [Green Version]
- Gaborit, E.; Anctil, F.; Pelletier, G.; Vanrolleghem, P.A. Exploring forecast-based management strategies for stormwater detention ponds. Urban Water J. 2016, 13, 841–851. [Google Scholar] [CrossRef]
- Bilodeau, K.; Pelletier, G.; Duchesne, S. Real-time control of stormwater detention basins as an adaptation measure in mid-size cities. Urban Water J. 2018, 15, 858–867. [Google Scholar] [CrossRef]
- Carpenter, J.F.; Vallet, B.; Pelletier, G.; Lessard, P.; Vanrolleghem, P.A. Pollutant removal efficiency of a retrofitted stormwater detention pond. Water Qual. Res. J. 2014, 49, 124–134. [Google Scholar] [CrossRef]
- Muschalla, D.; Vallet, B.; Anctil, F.; Lessard, P.; Pelletier, G.; Vanrolleghem, P.A. Ecohydraulic-driven real-time control of stormwater basins. J. Hydrol. 2014, 511, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Shishegar, S.; Duchesne, S.; Pelletier, G. An integrated optimization and rule-based approach for predictive real time control of urban stormwater management systems. J. Hydrol. 2019, 577, 124000. [Google Scholar] [CrossRef]
- Shishegar, S.; Duchesne, S.; Pelletier, G.; Ghorbani, R. A smart predictive framework for system-level stormwater management optimization. J. Environ. Manag. 2021, 278. [Google Scholar] [CrossRef] [PubMed]
- Pleau, M.; Pelletier, G.; Colas, H.; Lavallée, P.; Bonin, R. Global predictive real-time control of Quebec Urban community’s westerly sewer network. Water Sci. Technol. 2001, 43, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, E.E. Design of a Model Predictive Real-Time Control Strategy for Urban Drainage Systems. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, July 2014. [Google Scholar]
- Weyand, M. Real-time control in combined sewer systems in Germany—Some case studies. Urban Water 2002, 4, 347–354. [Google Scholar] [CrossRef]
- Maiolo, M.; Palermo, S.A.; Brusco, A.C.; Pirouz, B.; Turco, M.; Vinci, A.; Spezzano, G.; Piro, P. On the use of a real-time control approach for urban stormwater management. Water 2020, 12, 2842. [Google Scholar] [CrossRef]
- Credit Valley Conservation Stormwater Management and Low Impact Development Monitoring and Performance Assessment Guide. 2015, pp. 1–129. Available online: https://cvc.ca/wp-content/uploads/2016/06/Monitoring_Guide_Final.pdf (accessed on 1 February 2021).
- Forasteé, J.A.; Hirschman, D. Site-level LID Monitoring and Data Interpretation: New Guidance for International BMP Database Studies. In Proceedings of the 2010 International Low Impact Development Conference; Struck, S., Lichten, K., Eds.; American Society of Civil Engineers: San Francisco, CA, USA, 2010; p. 4. [Google Scholar]
- Campisano, A.; Cabot Ple, J.; Muschalla, D.; Pleau, M.; Vanrolleghem, P.A. Potential and limitations of modern equipment for real time control of urban wastewater systems. Urban Water J. 2013, 10, 300–311. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build. Environ. 2012, 48, 57–65. [Google Scholar] [CrossRef]
- Cascone, S. Green roof design: State of the art on technology and materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.; Sulman, B.N.; Dukes, J.S. Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress. Soil Biol. Biochem. 2018, 116, 237–244. [Google Scholar] [CrossRef]
- Angle, J.S.; Baker, A.J.M.; Whiting, S.N.; Chaney, R.L. Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant Soil 2003, 256, 325–332. [Google Scholar] [CrossRef]
- Glasgow, H.B.; Burkholder, J.A.M.; Reed, R.E.; Lewitus, A.J.; Kleinman, J.E. Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. J. Exp. Mar. Biol. Ecol. 2004, 300, 409–448. [Google Scholar] [CrossRef]
- Ocampo-Martínez, C. Real-Time Monitoring and Operational Control of Drinking-Water Systems; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-50750-7. [Google Scholar]
- Ramya, R. The Real Time Monitoring of Water Quality in IoT Environment. In Proceedings of the IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2016, Nagercoil, India, 18–19 March 2016. [Google Scholar]
- Nascimento, N.O.; Ellis, J.B.; Baptista, M.B.; Deutsch, J.C. Using detention basins: Operational experience and lessons. Urban Water 1999, 1, 113–124. [Google Scholar] [CrossRef]
- Fenner, R.A.; Komvuschara, K. A New Kinetic Model for Ultraviolet Disinfection of Greywater. J. Environ. Eng. 2005, 131, 850–864. [Google Scholar] [CrossRef]
- Papa, F.; Adams, B.J.; Guo, Y. Detention time selection for stormwater quality control ponds. Can. J. Civ. Eng. 1999, 26, 72–82. [Google Scholar] [CrossRef]
- CEPED-UFSC. Relatório de Danos Materiais e Prejuízos Decorrentes de Desastres Naturais no Brasil; CEPED-UFSC: Florianópolis, Brazilia, 2015. [Google Scholar]
- Mendiondo, E.M. Flood Risk Management of Urban Waters in Humid Tropics: Early Warning, Protection and Rehabilitation. In Proceedings of the Workshop on Integrated Urban Water Managmt in Humid Tropics, Foz de Iguaçu, Brazil, 2–3 April 2005; pp. 2–3. [Google Scholar]
- Ariza, S.L.J.; Martínez, J.A.; Muñoz, A.F.; Quijano, J.P.; Rodríguez, J.P.; Camacho, L.A.; Díaz-Granados, M. A multicriteria planning framework to locate and select sustainable urban drainage systems (SUDS) in consolidated urban areas. Sustainability 2019, 11, 2312. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.; Geisendorf, S. Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses. Ecol. Econ. 2019, 158, 194–205. [Google Scholar] [CrossRef]
- Shishegar, S.; Duchesne, S.; Pelletier, G. Optimization methods applied to stormwater management problems: A review. Urban Water J. 2018, 15, 276–286. [Google Scholar] [CrossRef]
- Fu, G.; Butler, D.; Khu, S.T. Multiple objective optimal control of integrated urban wastewater systems. Environ. Model. Softw. 2008, 23, 225–234. [Google Scholar] [CrossRef]
- Rathnayake, U. Enhanced water quality modelling for optimal control of drainage systems under SWMM constraint handling approach. Asian J. Water, Environ. Pollut. 2015, 12, 81–85. [Google Scholar]
- Al Ali, S.; Rodriguez, F.; Bonhomme, C.; Chebbo, G. Accounting for the spatio-temporal variability of pollutant processes in stormwater tss modeling based on stochastic approaches. Water 2018, 10, 1773. [Google Scholar] [CrossRef] [Green Version]
- Fry, T.J.; Maxwell, R.M. Using a distributed hydrologic model to improve the green infrastructure parameterization used in a lumped model. Water 2018, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Kollet, S.J.; Maxwell, R.M. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour. 2006, 29, 945–958. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, R.M.; Putti, M.; Meyerhoff, S.; Delfs, J.-O.; Ferguson, I.M.; Ivanov, V.; Kim, J.; Kolditz, O.; Kollet, S.J.; Kumar, M.; et al. Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 2014, 50, 1531–1549. [Google Scholar] [CrossRef] [Green Version]
- Piro, P.; Carbone, M. A modelling approach to assessing variations of total suspended solids (tss) mass fluxes during storm events. Hydrol. Process. 2014, 28, 2419–2426. [Google Scholar] [CrossRef]
- Johnson, B.E.; Gerald, T.K. Development of nutrient submodules for use in the gridded surface subsurface hydrologic analysis (GSSHA) distributed watershed model. J. Am. Water Resour. Assoc. 2006, 42, 1503–1525. [Google Scholar] [CrossRef]
- Di Modugno, M.; Gioia, A.; Gorgoglione, A.; Iacobellis, V.; la Forgia, G.; Piccinni, A.F.; Ranieri, E. Build-up/wash-off monitoring and assessment for sustainable management of first flush in an urban area. Sustainability 2015, 7, 5050–5070. [Google Scholar] [CrossRef] [Green Version]
- Egodawatta, P.; Thomas, E.; Goonetilleke, A. Understanding the physical processes of pollutant build-up and wash-off on roof surfaces. Sci. Total Environ. 2009, 407, 1834–1841. [Google Scholar] [CrossRef] [Green Version]
- Lago, C.A.F. Climate Changes Impacts on Subtropical Urban Drainage with Low Impact Developments. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2018. [Google Scholar]
- Rossman, L.A.; Huber, W.C. Storm Water Management Model Reference Manual Volume 3—Water Quality (Revised); (EPA/600/R-15/162A); U.S. Environmental Protection Agency: Washington, DC, USA, 2016; p. 231. [Google Scholar]
- Wong, B.P.; Kerkez, B. Real-Time Control of Urban Headwater Catchments Through Linear Feedback: Performance, Analysis, and Site Selection. Water Resour. Res. 2018, 54, 7309–7330. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407–418. [Google Scholar] [CrossRef]
- Uhlenbrook, S.; Seibert, J.; Leibundgut, C.; Rodhe, A. Prediction uncertainty of conceptual rainfall- runoff models caused by problems in identifying model parameters and structure. Hydrol. Sci. J. 1999, 44, 779–797. [Google Scholar] [CrossRef]
- Vezzaro, L.; Grum, M. A generalised Dynamic Overflow Risk Assessment (DORA) for Real Time Control of urban drainage systems. J. Hydrol. 2014, 515, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Paternain, S.; Morari, M.; Ribeiro, A. Real-Time Model Predictive Control Based on Prediction-Correction Algorithms. In Proceedings of the IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019; pp. 5285–5291. [Google Scholar]
- Galelli, S.; Goedbloed, A.; Schwanenberg, D.; van Overloop, P.-J. Optimal Real-Time Operation of Multipurpose Urban Reservoirs: Case Study in Singapore. J. Water Resour. Plan. Manag. 2014, 140, 511–523. [Google Scholar] [CrossRef]
- Labadie, J.W. Optimal operation of multireservoir systems: State-of-the-art review. J. Water Resour. Plan. Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
NBS | Precipitation | Inflow | Outflow | Soil Moisture | Infiltration | Et | Reservoir Level | Nutrients | Metals | TS |
---|---|---|---|---|---|---|---|---|---|---|
GR | High | Low | High | High | Low | Low | Low-Medium | High | High | High |
BT | High | High | High | High | Medium | Low | Low-Medium | High | High | High |
DB | High | High | High | - | - | Medium | High | Low | Low | High |
NBS | Literature on RTC | Distributed RTC Possibilities | Centralized RTC Possibilities | Implementation Costs 1 |
---|---|---|---|---|
Green roof | − | + | −+ | ++ |
Bioretention | + | ++ | + | −+ |
Detention basin | + | + | ++ | − |
Authors | NBS | Analysis | Approach | Performance Criteria | Rainfall Forecasts |
---|---|---|---|---|---|
[58] | DB | Water quality and hydraulic performance | EXP | Hydraulic interception rate, pollution removal rate and maximum storage capacity | - |
[59] | DB | Water quality | EXP | Cu, Pb Zn (total and dissolved), COD, TN, NO3−, NO2−, TKN, P (total and dissolved) and TSS | - |
[18] | DB | Water quality and hydraulic performance | MD | TSS removal, time at several Q thresholds, overflows and time excess | Perfect forecast and error-containing forecast |
[65] | DB | Water quality | MD | TSS removal | - |
[64] | DB | Water quality | MD | Zn, Mn, TSS and NH3-N removal | Error-containing forecast |
[60] | DB | Water quality | EXP | E. coli, NO3−-N, NO2−-N, TKN, P (total and dissolved) and TSS | - |
[62] | DB | Water quality and hydraulic performance | MD | TSS removal, time at several Q thresholds, overflows and time excess | Several forecast sources and perfect forecasts |
[61] | DB | Hydraulic performance | EXP | Change in flow due successive valve activations | - |
[63] | DB | Water quality and hydraulic performance | MD | Water depth, peak flows, detention time and percentage of cross-section area filled by water in the collector pipe | Perfect forecast |
[12] | BR | Water quality | EXP | Cu, Zn, Mn, NH4+-N, NO2−-N, NO3−-N and TSS removal. | Error-containing forecast |
[49] | BR | Water quality and hydraulic performance | EXP | Stormwater: volume harvested, discharged to environment, evapotranspired, load removal (TSS, TN, TP), load harvested and load discharged to environment. | - |
[56] | DB | Water quality and hydraulic performance | MD | Duration curves, water level and TSS | - |
[66] | DB | Water quality and hydraulic performance | MD | Peak discharge, quality improvement, overflow prevention, improved flow attenuation and outflow variation minimization | Perfect forecast |
[67] | DB | Water quality, hydraulic performance and erosion | MD | Peak discharge, quality control, overflow control, mean flow variation and flow velocity | Perfect forecast and error-containing forecast |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brasil, J.; Macedo, M.; Lago, C.; Oliveira, T.; Júnior, M.; Oliveira, T.; Mendiondo, E. Nature-Based Solutions and Real-Time Control: Challenges and Opportunities. Water 2021, 13, 651. https://doi.org/10.3390/w13050651
Brasil J, Macedo M, Lago C, Oliveira T, Júnior M, Oliveira T, Mendiondo E. Nature-Based Solutions and Real-Time Control: Challenges and Opportunities. Water. 2021; 13(5):651. https://doi.org/10.3390/w13050651
Chicago/Turabian StyleBrasil, José, Marina Macedo, César Lago, Thalita Oliveira, Marcus Júnior, Tassiana Oliveira, and Eduardo Mendiondo. 2021. "Nature-Based Solutions and Real-Time Control: Challenges and Opportunities" Water 13, no. 5: 651. https://doi.org/10.3390/w13050651
APA StyleBrasil, J., Macedo, M., Lago, C., Oliveira, T., Júnior, M., Oliveira, T., & Mendiondo, E. (2021). Nature-Based Solutions and Real-Time Control: Challenges and Opportunities. Water, 13(5), 651. https://doi.org/10.3390/w13050651