Research on Inversion Mechanism of Chlorophyll—A Concentration in Water Bodies Using a Convolutional Neural Network Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Plan Design
2.3. Spectral Collection and Chl-a Concentration Determination
2.4. Spectra Pretreatment
2.4.1. Spectral Denoising and Resampling
2.4.2. Baseline Correction
2.4.3. Envelope Removal
2.5. Inversion Factor Selection
2.6. Convolutional Neural Network Model
2.7. Model Evaluation Criteria
3. Results
3.1. Descriptive Statistics of Chl-a Concentration
3.2. Spectral Curve Characteristics and Characteristic Band Recognition
3.3. Robustness Analysis of Chl-a Concentration CNN Model
3.4. Accuracy Analysis of Chl-a Concentration Inversion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, F.; Liu, J.; Sun, Y. Annual variation characteristics of eutrophication in Dongting Lake, China. Proc. Inst. Civ. Eng. Water Manag. 2020, 173, 208–216. [Google Scholar] [CrossRef]
- Dong, S.R.; Jiang, J.; Wang, Y.J.; Li, C.L.; Shi, Y.; Yang, Y.; Yang, Y.; Li, L.H.; Cai, B.; You, J.B.; et al. Impact of water body environments on the microbial community of Oncomelania hupensis snails in marshlands around the eastern Dongting Lake. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi = Chin. J. Schistosomiasis Control 2020, 32, 132–139. [Google Scholar]
- Huang, Z.; Shang, X.H.; Li, Z.M.; Yin, X.C.; Hu, Y.M. Investigation on the content of persistent organic pollutants in fish from Dongting Lake in China. Zhonghua Yu Fang Yi Xue Za Zhi [Chin. J. Prev. Med.] 2019, 53, 1236–1241. [Google Scholar]
- Xue, J.; Xia, S.; Zhang, L.; Abe, E.M.; Zhou, J.; Li, Y.; Hao, Y.; Wang, Q.; Xu, J.; Li, S.; et al. High-resolution remote sensing-based spatial modeling for the prediction of potential risk areas of schistosomiasis in the Dongting Lake area, China. Acta Trop. 2019, 199, 105077. [Google Scholar] [CrossRef]
- Gai, Y.; Yu, D.; Zhou, Y.; Yang, L.; Chen, C.; Chen, J. An Improved Model for Chlorophyll-a Concentration Retrieval in Coastal Waters Based on UAV-Borne Hyperspectral Imagery: A Case Study in Qingdao, China. Water 2020, 12, 2769. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Y.; Deng, X.; Zheng, Y.; Yue, Z. Temporal and Spatial Variations of Chlorophyll a Concentration and Eutrophication Assessment (1987–2018) of Donghu Lake in Wuhan Using Landsat Images. Water 2020, 12, 2192. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, T.; Hong, S.; Lee, S.; Lee, E.; Hong, S.; Lee, C.; Kim, T.; Park, M.S.; Park, J.; et al. Prediction of Chlorophyll-aConcentrations in the Nakdong River Using Machine Learning Methods. Water 2020, 12, 1822. [Google Scholar] [CrossRef]
- Kim, K.B.; Jung, M.; Tsang, Y.F.; Kwon, H. Stochastic modeling of chlorophyll-a for probabilistic assessment and monitoring of algae blooms in the Lower Nakdong River, South Korea. J. Hazard. Mater. 2020, 400, 123066. [Google Scholar] [CrossRef] [PubMed]
- Papenfus, M.; Schaeffer, B.; Pollard, A.I.; Loftin, K. Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs. Environ. Monit. Assess. 2020, 192, 1–22. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, S.; Qin, W.; Lu, T.; Li, J.; Cao, Y. A Semi-Empirical Chlorophyll-a Retrieval Algorithm Considering the Effects of Sun Glint, Bottom Reflectance, and Non-Algal Particles in the Optically Shallow Water Zones of Sanya Bay Using SPOT6 Data. Remote Sens. 2020, 12, 2765. [Google Scholar] [CrossRef]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S. Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Xie, T.; Chen, Y.; Lu, W. Retrieval of Chlorophyll-a in Lower Reaches of the Minjiang River Via Three-Band Bio-Optical Model. Laser Optoelectron. Prog. 2020, 57, 071701. [Google Scholar] [CrossRef]
- Lu, X.; Situ, C.; Ma, W.; Dai, X.; He, C.; Li, L.; Zhou, L. Comparative analysis of four semi-analytical models for estimating chlorophyll-a concentration in case-2 waters using field hyperspectral reflectance. Int. J. Remote Sens. 2020, 41, 584–594. [Google Scholar] [CrossRef]
- Xu, M.; Liu, H.; Beck, R.; Lekki, J.; Yang, B.; Shu, S.; Kang, E.L.; Anderson, R.; Johansen, R.; Emery, E.; et al. A spectral space partition guided ensemble method for retrieving chlorophyll-a concentration in inland waters from Sentinel-2A satellite imagery. J. Great Lakes Res. 2019, 45, 454–465. [Google Scholar] [CrossRef]
- Cheng, C.; Wei, Y.; Lv, G.; Xu, N. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Environ. Monit. Assess. 2019, 191, 84. [Google Scholar] [CrossRef] [PubMed]
- Menon, H.B.; Adhikari, A. Remote Sensing of Chlorophyll-A in Case II Waters: A Novel Approach With Improved Accuracy Over Widely Implemented Turbid Water Indices. J. Geophys. Res. Oceans 2018, 123, 8138–8158. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Baek, S.H.; Lim, Y.K.; Pyo, J.; Ligaray, M.; Park, Y.; Cho, K.H. Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models. Water 2018, 10, 1020. [Google Scholar] [CrossRef] [Green Version]
- Malahlela, O.E.; Oliphant, T.; Tsoeleng, L.T.; Mhangara, P. Mapping chlorophyll-a concentrations in a cyanobacteria- and algae-impacted Vaal Dam using Landsat 8 OLI data. S. Afr. J. Sci. 2018, 114, 64–72. [Google Scholar] [CrossRef]
- Gao, B.; Li, R. Improving Water Leaving Reflectance Retrievals from ABI and AHI Data Acquired Over Case 2 Waters from Present Geostationary Weather Satellite Platforms. Remote Sens. 2020, 12, 3257. [Google Scholar] [CrossRef]
- Renosh, P.R.; Doxaran, D.; De Keukelaere, L.; Ignacio Gossn, J. Evaluation of Atmospheric Correction Algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in Highly Turbid Estuarine Waters. Remote Sens. 2020, 12, 1285. [Google Scholar] [CrossRef] [Green Version]
- Xue, K.; Boss, E.; Ma, R.; Shen, M. Algorithm to derive inherent optics properties from remote sensing reflectance in turbid and eutrophic lakes. Appl. Opt. 2019, 58, 8549–8564. [Google Scholar] [CrossRef] [PubMed]
- Ignacio Gossn, J.; Ruddick, K.G.; Ines Dogliotti, A. Atmospheric Correction of OLCI Imagery over Extremely Turbid Waters Based on the Red, NIR and 1016 nm Bands and a New Baseline Residual Technique. Remote Sens. 2019, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wang, G.; Cheng, C.; Zhang, J.; Sun, X. Baseline Correction of Spectrum for the Inversion of Chlorophyll-a Concentration in the Turbidity Water. Spectrosc. Spect. Anal. 2012, 32, 2546–2550. [Google Scholar]
- Rodriguez-Lopez, L.; Duran-Llacer, I.; Gonzalez-Rodriguez, L.; Abarca-del-Rio, R.; Cardenas, R.; Parra, O.; Martinez-Retureta, R.; Urrutia, R. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Pirasteh, S.; Mollaee, S.; Fatholahi, S.N.; Li, J. Estimation of Phytoplankton Chlorophyll-a Concentrations in the Western Basin of Lake Erie Using Sentinel-2 and Sentinel-3 Data. Can. J. Remote Sens. 2020, 46, 585–602. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, L.; Xia, Z.; Gao, Y.; Gong, Z. Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs). Spectrochim. Acta Part A 2021, 246, 118973. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Dai, H. CT Image Segmentation of Liver Tumor with Deep Convolutional Neural Network. J. Med. Imag. Health 2021, 11, 337–344. [Google Scholar] [CrossRef]
- Chen, T.; Sun, Y.; Li, T. A semi-parametric estimation method for the quantile spectrum with an application to earthquake classification using convolutional neural network. Comput. Stat. Data Anal. 2021, 154, 107069. [Google Scholar] [CrossRef]
- Lv, Z.; Ding, H.; Wang, L.; Zou, Q. A Convolutional Neural Network Using Dinucleotide One-hot Encoder for identifying DNA N6-Methyladenine Sites in the Rice Genome. Neurocomputing 2021, 422, 214–221. [Google Scholar] [CrossRef]
- Yu, B.; Xu, L.; Peng, J.; Hu, Z.; Wong, A. Global chlorophyll-a concentration estimation from moderate resolution imaging spectroradiometer using convolutional neural networks. J. Appl. Remote Sens. 2020, 14, 034520. [Google Scholar] [CrossRef]
- Han, Z.; He, Y.; Liu, G.; Perrie, W. Application of DINCAE to Reconstruct the Gaps in Chlorophyll-a Satellite Observations in the South China Sea and West Philippine Sea. Remote Sens. 2020, 12, 480. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Z.; Wang, W.; Wang, J. Chlorophyll content for millet leaf using hyperspectral imaging and an attention-convolutional neural network. Cienc. Rural 2020, 50, e20190731. [Google Scholar] [CrossRef]
- Syariz, M.A.; Lin, C.; Nguyen, M.V.; Jaelani, L.M.; Blanco, A.C. WaterNet: A Convolutional Neural Network for Chlorophyll-a Concentration Retrieval. Remote Sens. 2020, 12, 1966. [Google Scholar] [CrossRef]
- Xing, Q.; Lou, M.; Chen, C.; Shi, P. Using in situ and Satellite Hyperspectral Data to Estimate the Surface Suspended Sediments Concentrations in the Pearl River Estuary. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 731–738. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.; Shen, Q.; Zhang, B.; Wu, C.; Wu, Y.; Wang, G.; Wang, S.; Lu, Z. Algorithms and Schemes for Chlorophyll a Estimation by Remote Sensing and Optical Classification for Turbid Lake Taihu, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 350–364. [Google Scholar] [CrossRef]
- Sun, X.; Ma, R.; Chen, Y.; Zhen, H.; Ma, C. Experimental Study on Determination of Trisodium Phosphate Concentration in Water Based on Spectral Technique. Spectrosc. Spect. Anal. 2020, 40, 3205–3210. [Google Scholar]
- Cheddad, A. On Box-Cox Transformation for Image Normality and Pattern Classification. IEEE Access 2020, 8, 154975–154983. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Ji, R.; Wang, M.; Zheng, L. Comparison of Soil Total Nitrogen Content Prediction Models Based on Vis-NIR Spectroscopy. Sensors 2020, 20, 7078. [Google Scholar]
- Caroppo, A.; Leone, A.; Siciliano, P. Comparison Between Deep Learning Models and Traditional Machine Learning Approaches for Facial Expression Recognition in Ageing Adults. J. Comput. Sci. Technol. 2020, 35, 1127–1146. [Google Scholar] [CrossRef]
- Annala, L.; Ayramo, S.; Polonen, I. Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion. Appl. Sci. 2020, 10, 7097. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Wu, W.; Zhan, L.; Wei, J. Mapping Rice Paddy Based on Machine Learning with Sentinel-2 Multi-Temporal Data: Model Comparison and Transferability. Remote Sens. 2020, 12, 1620. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, X.; Wang, J. Use of Remote Multispectral Imaging to Monitor Chlorophyll-a in Taihu Lake: A Comparison of Four Machine Learning Models. J. Hydroecol. 2019, 40, 48–57. [Google Scholar]
- Wang, C.; Wu, X.; Li, L.; Wang, Y.; Li, Z. Convolutional Neural Network Application in Prediction of Soil Moisture Content. Spectrosc. Spect. Anal. 2018, 38, 36–41. [Google Scholar]
- Moghadas, D. One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network. Geophys. J. Int. 2020, 222, 247–259. [Google Scholar] [CrossRef]
- Benhaddi, M.; Ouarzazi, J. Multivariate Time Series Forecasting with Dilated Residual Convolutional Neural Networks for Urban Air Quality Prediction. Arab. J. Sci. Eng. 2021. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Wang, R.; Wang, H. Combination of Convolutional Neural Networks and Recurrent Neural Networks for predicting soil properties using Vis-NIR spectroscopy. Geoderma 2020, 380, 114616. [Google Scholar] [CrossRef]
Minimum | Maximum | Average Value | Standard Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|
1.86 | 124.25 | 31.35 | 30.00 | 0.87 | 2.82 |
Pretreatment Method | Inversion Factor | Alias | RT2 | RMSET | RP2 | RMSEP | RPD | RE |
---|---|---|---|---|---|---|---|---|
Original | SC | Original_SC | 0.81 | 0.63 | 0.80 | 0.59 | 1.15 | 0.17 |
PC | Original_PC | 0.65 | 0.85 | 0.78 | 0.62 | 1.33 | 0.20 | |
Baseline 500–750 nm | SC | Baseline1_SC | 0.78 | 0.68 | 0.90 | 0.45 | 1.19 | 0.17 |
PC | Baseline1_PC | 0.81 | 0.65 | 0.85 | 0.56 | 1.20 | 0.17 | |
Baseline 750 nm | SC | Baseline2_SC | 0.79 | 0.67 | 0.88 | 0.48 | 1.26 | 0.18 |
PC | Baseline2_PC | 0.78 | 0.68 | 0.87 | 0.48 | 1.26 | 0.18 | |
Envelope removed | SC | Envelope _SC | 0.78 | 0.68 | 0.88 | 0.49 | 1.23 | 0.18 |
PC | Envelope _PC | 0.80 | 0.65 | 0.88 | 0.47 | 1.18 | 0.17 |
Pretreatment Method | RT2 | RMSET | RP2 | RMSEP | RPD | RE |
---|---|---|---|---|---|---|
Original | 0.73 | 0.74 | 0.79 | 0.61 | 1.24 | 0.19 |
Baseline 1 | 0.80 | 0.67 | 0.88 | 0.51 | 1.20 | 0.17 |
Baseline 2 | 0.79 | 0.68 | 0.88 | 0.48 | 1.26 | 0.18 |
Envelope | 0.79 | 0.67 | 0.88 | 0.48 | 1.21 | 0.18 |
All models | 0.78 | 0.69 | 0.86 | 0.52 | 1.23 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Zhu, L.; Zou, B.; Wen, Y.-m.; Long, Y.-h.; Zhou, S.-l. Research on Inversion Mechanism of Chlorophyll—A Concentration in Water Bodies Using a Convolutional Neural Network Model. Water 2021, 13, 664. https://doi.org/10.3390/w13050664
Xue Y, Zhu L, Zou B, Wen Y-m, Long Y-h, Zhou S-l. Research on Inversion Mechanism of Chlorophyll—A Concentration in Water Bodies Using a Convolutional Neural Network Model. Water. 2021; 13(5):664. https://doi.org/10.3390/w13050664
Chicago/Turabian StyleXue, Yun, Lei Zhu, Bin Zou, Yi-min Wen, Yue-hong Long, and Song-lin Zhou. 2021. "Research on Inversion Mechanism of Chlorophyll—A Concentration in Water Bodies Using a Convolutional Neural Network Model" Water 13, no. 5: 664. https://doi.org/10.3390/w13050664
APA StyleXue, Y., Zhu, L., Zou, B., Wen, Y.-m., Long, Y.-h., & Zhou, S.-l. (2021). Research on Inversion Mechanism of Chlorophyll—A Concentration in Water Bodies Using a Convolutional Neural Network Model. Water, 13(5), 664. https://doi.org/10.3390/w13050664