An Assessment of Heavy Metal Contamination in the Nakdong River Around the Weir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Method
2.3. Physical and Chemical Characteristics of the Study Area
2.4. Aqua Regia Extraction
2.5. Sequential Extraction
2.6. Risk Assessment Code
3. Results
3.1. Environmental Characteristics of the Study Area
3.2. Aqua Regia Extraction
3.3. Sequential Extraction
3.4. Risk Assessment Code
3.5. Assessment of the Sediment Quality
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machado, C.S.; Alves, R.I.S.; Fregonesi, B.M.; Tonani, K.A.A.; Martinis, B.S.; Sierra, J.; Nadal, M.; Domingo, J.L.; Segura-Munoz, S. Chemical contamination of water and sediments in the Pardo River, Sao Paulo, Brazil. Procedia Eng. 2016, 162, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Atieh, M.A.; Ji, Y.; Kochkodan, V. Metals in the environment: Toxic metals removal. Bioinorg. Chem. Appl. 2017, 2017, 1–2. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Lee, E.; Noh, H.; Seo, Y.; Lim, H.H.; Shin, H.S.; Lee, I.; Jung, H.; Na, T.; et al. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers. Ecotox. Environ. Saf. 2019, 183, 1–10. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Do, D.D.; Nguyen, T.X.; Nguyen, V.N.; Nguyen, D.T.P.; Nguyen, M.H.; Troung, H.T.T.; Dong, H.P.; Le, A.H.; Bach, Q.-V. Seasonal, spatial variation, and pollution sources of heavy metals in the sediment of the Saigon River, Vietnam. Enviorn. Pollut. 2020, 256, 1–12. [Google Scholar] [CrossRef]
- Xie, Q.; Qian, L.; Liu, S.; Wang, Y.; Zhang, Y.; Wang, D. Assessment of Long-term effects from cage culture practices on heavy metal accumulation in sediment and fish. Ecotox. Environ. Saf. 2020, 194, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.K.; Choi, I.Y.; Park, J.H.; Choi, J.H. Investigation of the effect of weirs construction in the Han River on the characteristics of sediments. J. Korean Soc. Environ. Eng. 2012, 34, 597–603. [Google Scholar] [CrossRef]
- Yang, Y.M.; Shim, M.J.; Oh, D.Y.; Khan, J.B.; Lee, J.B.; Lee, S.H.; Park, S.J. Spatial distribution of heavy metals in Geum River after weirs construction. Korean J. Environ. Agric. 2015, 34, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Moon, G.; Park, H.; Yoo, K.; Jha, M.K.; Kim, J.Y. The Determination of chemical forms of heavy metals in shooting area contaminated soil using Sequential Extraction Method. J. Soil Groundw. Environ. 2015, 20, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Jang, M.J. A study on sequential extraction of heavy metals from marine dredged sediment at Busan New Port. J. Korean Soc. Environ. Eng. 2011, 33, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Rosado, D.; Usero, J.; Morillo, J. Ability of 3 extraction method (BCR, Tessier and protease K) to estimate bioavailable metals in sediments from Huelva estuary (Southwestern Spain). Mar. Pollut. Bull. 2016, 102, 65–71. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Scheckel Kirk, G.; Impellitteri, C.A.; Ryan, J.A.; McEvoy, T. Assessment of a Sequential Extraction Procedure for Perturbed Lead-Contaminated samples with and without Phosphorus Amendments. Environ. Sci. Technol. 2003, 37, 1892–1898. [Google Scholar] [CrossRef]
- Pandey, L.K.; Park, J.; Son, D.H.; Kim, W.; Islam, M.S.; Choi, S.; Lee, H.; Han, T. Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Sci. Total Environ. 2019, 651, 323–333. [Google Scholar] [CrossRef]
- Kim, S.; Ahn, J.; Jung, K.; Lee, K.; Kwon, H.; Shin, D.; Yang, D. Contamination Assessment of Heavy Metals in River Sediments (For the Surface Sediments from Nakdong River). J. Korean Soc. Water Environ. 2017, 33, 460–473. [Google Scholar]
- Kayembe, J.M.; Sivalingam, P.; Salgado, C.D.; Maliani, J.; Ngelinkto, P.; Otamonga, J.P.; Mulaji, C.K.; Mubedi, J.I.; Pote, J. Assessment of water quality and time accumulation of heavy metals in the sediments of tropical urban rivers: Case of Bumbu River and Kokolo Canal, Kinshasa City, Democratic Republic of the Congo. J. Afr. Earth Sci. 2018, 147, 536–543. [Google Scholar] [CrossRef]
- National Institute of Environmental Research. Baseline Concentrations of Heavy Metals in River Sediments in Korea; Ministry of Environment: Sejong, Korea, 2011.
- Canadian Council of Ministers of the Environmental Protection. Protocol for the Derivation of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; Report CCME; EPA-98E; Canadian Council of Ministers of the Environmental Protection: Winnipeg, MB, Canada, 1995.
- United States Environmental Protection Agency. Protocol for Developing Sediment TMDLs; EPA 841-B-99-004; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- Korea Water Resources Corporation. Available online: https://www.water.or.kr/realtime/sub01/sub01/mult.do?s_mid=1326&seq=1408&p_group_seq=1407&menu_mode=3 (accessed on 8 February 2021).
- Zhao, Z.; Liu, G.; Liu, Q.; Huang, C.; Li, H. Studies on the spatiotemporal variability of river water quality and its relationships with soil and precipitation: A case study of the Mun River Basin in Thailand. Int. J. Environ. Res. Public Health 2018, 15, 2466. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Jung, H.J.; Kim, S.H.; An, S.U.; Choi, J.H.; Lee, H.J.; Huh, I.A.; Hur, J. Potential linkage between sediment oxygen demand and pore water chemistry in weir-impounded rivers. Sci. Total Environ. 2018, 619–620, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Algul, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef] [PubMed]
- Vasiliu, D.; Bucse, A.; Lupascu, N. Assessment of the metal pollution in surface sediments of coastal Tasaul Lake (Romania). Envrion. Monit. Assess. 2020, 192, 749. [Google Scholar] [CrossRef] [PubMed]
- Folk, R.L.; Ward, W.C. Brazos River Bar: A Study in the Significance of Grain Size Parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Cheong, D.; Jung, H.M. Change of sedimentary facies of the Soyang Lake sediments and its effects on the environmental sedimentology since the construction of the Soyang River Dam. J. Geol. Soc. Korea 2006, 42, 199–234. [Google Scholar]
- International Standard Organization. ISO 11466 Soil Quality-Extraction of Trace Elements Soluble in Aqua Regia; International Standard Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Scancar, J.; Milacic, R.; Horvat, M. Comparison of various digestion and Extraction procedures in analysis of heavy metals in sediment. Water Air Soil Pollut. 2000, 118, 87–99. [Google Scholar] [CrossRef]
- Yap, C.K.; Ismail, A.; Tan, S.G.; Omar, H. Concentrations of Cu and Pb in the offshore and Intertidal sediments of the west coast of Peninsular Malaysia. Environ. Int. 2002, 28, 467–479. [Google Scholar] [CrossRef]
- Yong, R.N.; Yaacob, W.Z.W.; Bentley, S.P.; Harris, C.; Tan, B.K. Partitioning of heavy metals on soil samples from column tests. Eng. Geol. 2001, 60, 307–322. [Google Scholar] [CrossRef]
- Hwang, S.S.; Lee, N.S.; Namkoong, W. The Extraction Characteristics of Metal-contaminated Soil by Soil Washing. J. Korean Soc. Environ. Eng. 2005, 27, 1072–1080. [Google Scholar]
- Li, X.; Coles, B.J.; Ramsey, M.H.; Thornton, I. Sequential Extraction of Soils for Multielement Analysis by ICP-AES. Chem. Geol. 1995, 124, 109–123. [Google Scholar] [CrossRef]
- Hwang, K.Y.; Park, S.Y.; Baek, W.S.; Jung, J.H.; Kim, Y.H.; Shin, W.S.; Lee, N.J.; Hwang, I. Speciation and Leaching Potential of Heavy Metals in Sediments of Nakdong River. J. Korean Soc. Water Wastewater 2007, 21, 113–122. [Google Scholar]
- Bolan, N.; Naidu, R.; Parkn, J.; Choppala, G. Solute Interactions in Soils in Relation to Heavy Metal Bioavailability and Remediation of the Environment. Korean J. Soil. Sci. Fert. 2009, 10, 216–222. [Google Scholar]
- Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, T.; Shao, Y.; Tian, C.; Cattle, S.R.; Zhu, Y.; Song, J. Fractionation, Bioaccessibility, and Risk Assessment of Heavy Metals in the Soil of an Urban Recreational Area Amended with Composted Sewage Sludge. Int. J. Environ. Res. Public Health 2018, 15, 613. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Yang, D.S.; Kim, S.Y. Distribution of metal contamination and grain size in the sediments of Nakdong River, Korea. Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Park, H.K.; Cheon, S.U. Effects of Weir Construction on Phytoplankton Assemblages and Water Quality in a Large River System. Int. J. Environ. Res. Public Health 2018, 15, 2348. [Google Scholar] [CrossRef] [Green Version]
- Ri, C.S. Analysis of water quality and heavy metals for surface water and sediments of upstream and midstream in Nakdong River. J. Korean Chem. Soc. 2000, 44, 547–555. [Google Scholar]
- Hwang, S.C.; Jeong, S.U.; Park, W.W.; Kim, W.S.; Lee, B.H.; Park, H.J. A study on the relation between riverbed structure and pollutant concentration in downstream of Nakdong River. J. Environ. Sci. Intern. 1997, 6, 513–520. [Google Scholar]
- Ramos, T.B.; Gonçalves, M.C.; Branco, M.A.; Brito, D.; Rodrigues, S.; Sánchez-Pérez, J.; Sauvage, S.; Prazeres, A.; Martins, J.C.; Fernandes, M.L.; et al. Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. CATENA 2015, 127, 177–190. [Google Scholar] [CrossRef]
- Coquery, M.; Welbourn, P.M. The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare. Water Res. 1995, 29, 2094–2102. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Kostka, A.; Leśniak, A. Multiparameter assessment of select metal distribution in lacustrine sediments. J. Soils Sediments 2021, 21, 512–529. [Google Scholar] [CrossRef]
- Ahn, J.M.; Im, T.H.; Kim, S.; Lee, S.; Kim, S.; Lee, K.C.; Kim, Y.S.; Yang, D.S. Evaluating sediment heavy metal pollution level and monitoring network representativeness at the upstream points of the Ganajeong-Goryeong Weir in the Nakdong River. J. Environ. Sci. Intern. 2018, 27, 477–488. [Google Scholar] [CrossRef]
- Li, J.L.; He, M.; Han, W.; Gu, Y.F. Availability and mobility of heavy metal fractions related to the characteristics of the coastal soils developed from alluvial deposits. Environ. Monit. Assess. 2009, 158, 459–469. [Google Scholar] [CrossRef]
- Bibby, R.L.; Webster-Brown, J.G. Trace metal adsorption onto urban stream suspended particulate matter (Auckland region, New Zealand). Appl. Geochem. 2006, 21, 1135–1151. [Google Scholar] [CrossRef]
- Yu, K.C.; Tsai, L.J.; Chen, S.H.; Ho, S.T. Correlation analyses on binding behavior of heavy metals with sediment matrices. Water Res. 2001, 35, 2417–2428. [Google Scholar] [CrossRef]
- Kang, S.H.; Ahn, J.Y.; Hwang, K.Y.; Seo, J.Y.; Kim, J.G.; Song, H.C.; Yim, S.B.; Hwang, I.S. Stabilization of heavy metal-contaminated mine tailings using phosphate fertilizers and red mud. J. Soil Groundw. Environ. 2011, 16, 31–41. [Google Scholar] [CrossRef]
- Na, E.H.; Park, S.; Kim, J.; Im, S.; Kim, K. A Study on Spatial and Temporal Patterns of Water Quality in the Middle Area of the Nakdong River, Korea. J. Korean Soc. Water Environ. 2015, 31, 723–731. [Google Scholar] [CrossRef] [Green Version]
Class | Risk Assessment Code (%) | Degree of Risk |
---|---|---|
I | RAC ≤ 1 | No risk |
II | 1 < RAC ≤ 10 | Light risk |
III | 10 < RAC ≤ 30 | Medium risk |
IV | 30 < RAC ≤ 50 | High risk |
Ⅴ | RAC > 50 | Very high risk |
Point | Month | Depth(m) | Sand(%) | Silt(%) | Clay(%) | TOC(%) |
---|---|---|---|---|---|---|
ND1 | July | 4.0 | 92.40 | 6.12 | 1.48 | 2.80 |
August | 6.0 | 68.21 | 26.76 | 5.03 | 0.23 | |
September | 5.1 | 17.86 | 63.67 | 18.47 | 3.57 | |
ND2 | July | 6.8 | 94.09 | 4.69 | 1.22 | 0.11 |
August | 6.7 | 95.79 | 3.72 | 0.49 | 0.19 | |
September | 6.8 | 92.58 | 6 | 1.42 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, H.W.; Shim, S.H.; Oh, H.; Choi, J.H. An Assessment of Heavy Metal Contamination in the Nakdong River Around the Weir. Water 2021, 13, 684. https://doi.org/10.3390/w13050684
Son HW, Shim SH, Oh H, Choi JH. An Assessment of Heavy Metal Contamination in the Nakdong River Around the Weir. Water. 2021; 13(5):684. https://doi.org/10.3390/w13050684
Chicago/Turabian StyleSon, Hee Won, Sun Hee Shim, Haeseong Oh, and Jung Hyun Choi. 2021. "An Assessment of Heavy Metal Contamination in the Nakdong River Around the Weir" Water 13, no. 5: 684. https://doi.org/10.3390/w13050684
APA StyleSon, H. W., Shim, S. H., Oh, H., & Choi, J. H. (2021). An Assessment of Heavy Metal Contamination in the Nakdong River Around the Weir. Water, 13(5), 684. https://doi.org/10.3390/w13050684