The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines
Abstract
:1. Introduction
2. Beach Cleaning Methods and Equipment
3. Methods and Equipment for Water Treatment
4. Innovative Concept for Cleaning the Shoreline Area from Algae in Particular
5. Coupling of the Speed Control of a Land Unit and a Water Unit
6. Discusion
7. Conclusions
8. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fadare, O.O.; Okoffo, E.D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737. [Google Scholar] [CrossRef]
- Herrera, A.; Raymond, E.; Martínez, I.; Álvarez, S.; Canning-Clode, J.; Gestoso, I.; Pham, C.K.; Rios, N.; Rodriguez, Y.; Gómez, M. First evaluation of neustonic microplastics in the Macaronesian region, NE Atlantic. Mar. Pollut. Bull. 2020, 153. [Google Scholar] [CrossRef] [PubMed]
- Pytka, A.; Jóźwiakowski, K.; Marzec, M.; Gizińska, M.; Sosnowska, B. Impact assessment of anthropogenic pollution on water quality of bochotniczanka river (original title in Polish: Ocena wpływu zanieczyszczeń antropogenicznych na jakość wód rzeki Bochotniczanki). Infrastrukt. I Ekol. Teren. Wiej. 2013, 3, 15–29. [Google Scholar]
- Abbott, I.A.; Hollenberg, G.J. Marine Algae of California; Stanford University Press: Stanford, CA, USA, 1992. [Google Scholar]
- Yan, H.; Wu, L.; Yu, J. The environmental impact analysis of hazardous materials and the development of green technology in the shipbreaking process. Ocean Eng. 2018, 161, 187–194. [Google Scholar] [CrossRef]
- Reddy, N.; Manoharan, N. Ship recycling: An important mile stone for India. Indian J. Sci. Technol. 2014, 7, 15–21. [Google Scholar] [CrossRef]
- Neşer, G.; Kontas, A.; Ünsalan, D.; Uluturhan, E.; Altay, O.; Darılmaz, E.; Küçüksezgin, F.; Yercan, F. Heavy metals contamination levels at the Coast of Aliağa (Turkey) ship recycling zone. Mar. Pollut. Bull. 2012, 64, 882–887. [Google Scholar] [CrossRef]
- Patel, V.; Munot, H.; Shah, V.; Shouche, Y.S.; Madamwar, D. Taxonomic profiling of bacterial community structure from coastal sediment of Alang–Sosiya shipbreaking yard near Bhavnagar, India. Mar. Pollut. Bull. 2015, 101, 736–745. [Google Scholar] [CrossRef]
- Patel, V.; Patel, J.; Madamwar, D. Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard. Mar. Pollut. Bull. 2013, 74, 199–207. [Google Scholar] [CrossRef]
- Mikelis, N.E. A statistical overview of ship recycling. WMU J. Marit. Aff. 2008, 7, 227–239. [Google Scholar] [CrossRef]
- Deshpande, P.C.; Tilwankar, A.K.; Asolekar, S.R. A novel approach to estimating potential maximum heavy metal exposure to ship recycling yard workers in Alang, India. Sci. Total Environ. 2012, 438, 304–311. [Google Scholar] [CrossRef]
- Hiremath, A.M.; Tilwankar, A.K.; Asolekar, S.R. Significant steps in ship recycling vis-a-vis wastes generated in a cluster of yards in Alang: A case study. J. Clean. Prod. 2015, 87, 520–532. [Google Scholar] [CrossRef]
- Wang, X.; Melchers, R.E. Long-term under-deposit pitting corrosion of carbon steel pipes. Ocean. Eng. 2017, 133, 231–243. [Google Scholar] [CrossRef]
- Lamine, S.; Xiong, D. Guinean environmental impact potential risks assessment of oil spills simulation. Ocean. Eng. 2013, 66, 44–57. [Google Scholar] [CrossRef]
- Wang, S.D.; Shen, Y.M.; Zheng, Y.H. Two-dimensional numerical simulation for transport and fate of oil spills in seas. Ocean. Eng. 2005, 32, 1556–1571. [Google Scholar] [CrossRef]
- Bucelli, M.; Paltrinieri, N.; Landucci, G. Integrated risk assessment for oil and gas installations in sensitive areas. Ocean. Eng. 2018, 150, 377–390. [Google Scholar] [CrossRef]
- Afenyo, M.; Veitch, B.; Khan, F. A state-of-the-art review of fate and transport of oil spills in open and ice-covered water. Ocean. Eng. 2016, 119, 233–248. [Google Scholar] [CrossRef]
- Schindler, D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Ding, Z.; Wei, G.; Zhao, H.; Huang, T. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. J. Environ. Manag. 2009, 90, 1168–1177. [Google Scholar] [CrossRef]
- Singh, K.P.; Mohan, D.; Sinha, S.; Dalwani, R. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 2004, 55, 227–255. [Google Scholar] [CrossRef]
- Coll, M.; Libralato, S.; Tudela, S.; Palomera, I.; Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 2008, 3. [Google Scholar] [CrossRef] [Green Version]
- Blottière, L.; Rossi, M.; Madricardo, F.; Hulot, F.D. Modeling the role of wind and warming on Microcystis aeruginosa blooms in shallow lakes with different trophic status. Theor. Ecol. 2014, 7, 35–52. [Google Scholar] [CrossRef]
- Cao, H.S.; Kong, F.X.; Luo, L.C.; Shi, X.L.; Yang, Z.; Zhang, X.F.; Tao, Y. Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. J. Freshw. Ecol. 2006, 21, 231–238. [Google Scholar] [CrossRef]
- Ishikawa, K.; Kumagai, M.; Vincent, W.F.; Tsujimura, S.; Nakahara, H. Transport and accumulation of bloom-forming cyanobacteria in a large, mid-latitude lake: The gyre-Microcystis hypothesis. Limnology 2002, 3, 87–96. [Google Scholar] [CrossRef]
- Moreno-Ostos, E.; Cruz-Pizarro, L.; Basanta, A.; George, D.G. The influence of wind-induced mixing on the vertical distribution of buoyant and sinking phytoplankton species. Aquat. Ecol. 2009, 43, 271–284. [Google Scholar] [CrossRef]
- Kromkamp, J.; Walsby, A.E. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 1990, 12, 161–183. [Google Scholar] [CrossRef]
- Walsby, A.E. Mechanisms of Buoyancy Regulation by Planktonic Cyanobacteria with Gas Vesicles; Fay, P., Van Baalen, C., Eds.; The cyanobacteria; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Ma, J.; Brookes, J.D.; Qin, B.; Paerl, H.W.; Gao, G.; Wu, P.; Zhang, W.; Dang, J.; Zhu, G.; Zhang, Y.; et al. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 2014, 31, 136–142. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y.; Gardner, W.S. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gaoa, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Casas-Beltrán, D.A.; Gallaher, C.M.; Hernandez Yac, E.; Febles Moreno, K.; Voglesonger, K.; Leal-Bautista, R.M.; Lenczewski, M. Seaweed Invasion! Temporal Changes in Beach Conditions Lead to Increasing Cenote Usage and Contamination in the Riviera Maya. Sustainability 2020, 12, 2474. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, K.B. The Native Tourist: Mass Tourism within Developing Countries; Routledge: London, UK, 2013. [Google Scholar]
- Proença, S.; Soukiazis, E. Tourism as an economic growth factor: A case study for Southern European countries. Tour. Econ. 2008, 14, 791–806. [Google Scholar] [CrossRef]
- Akama, J.S.; Kieti, D. Tourism and socio-economic development in developing countries: A case study of Mombasa Resort in Kenya. J. Sustain. Tour. 2007, 15, 735–748. [Google Scholar] [CrossRef]
- Tudor, D.T.; Williams, A.T. Public perception and opinion of visible beach aesthetic pollution: The utilisation of photography. J. Coast. Res. 2003, 19, 1104–1115. [Google Scholar]
- Tudor, D.T.; Williams, A.T. Important aspects of beach pollution to managers: Wales and the Bristol Channel, UK. J. Coast. Res. 2008, 24, 735–745. [Google Scholar] [CrossRef]
- Leatherman, S.P. Beach rating: A methodological approach. J. Coast. Res. 1997, 13, 253–258. [Google Scholar]
- Ruvinov, E.; Cohen, S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv. Drug Deliv. Rev. 2016, 96, 54–76. [Google Scholar] [CrossRef] [PubMed]
- Nurjanah, N.M.; Anwar, E.; Luthfiyana, N.; Hidayat, T. Identification of bioactive compounds of seaweed Sargassum sp. and Eucheuma cottonii doty as a raw sunscreen cream. Proc. Pak. Acad. Sci. B Life Environ. Sci. 2017, 54, 311–318. [Google Scholar]
- Quah, C.C.; Kim, K.H.; Lau, M.S.; Kim, W.R.; Cheah, S.H.; Gundamaraju, R. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Burke, R.; This, H.; Kelly, A. Molecular gastronomy: An introduction. Ref. Modul. Food Sci. 2016, 1. [Google Scholar] [CrossRef]
- Carvalho, L.G.; Pereira, L. Review of marine algae as source of bioactive metabolites: A marine biotechnology approach. In Marine Algae: Biodiversity, Taxonomy, Environmental Assessment, and Biotecnology; Leonel, P., João, M.N., Eds.; CrC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kirkman, H.; Kendrick, G.A. Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: A review. J. Appl. Phycol. 1997, 9, 311–326. [Google Scholar] [CrossRef]
- Chang, H.N.; Kim, N.J.; Kang, J.; Jeong, C.M. Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioprocess. Eng. 2010, 15, 1–10. [Google Scholar] [CrossRef]
- Elegbede, I.; Guerrero, C. Algae biofuel in the Nigerian energy context. Environ. Clim. Technol. 2016, 17, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, M.F. Biofuels from algae for sustainable development. Appl. Energy 2011, 88, 3473–3480. [Google Scholar] [CrossRef]
- Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S. Biofuels from algae: Challenges and potential. Biofuels 2010, 1, 763–784. [Google Scholar] [CrossRef]
- López, I.; Aragonés, L.; Villacampa, Y. Analysis and modelling of cross-shore profile of gravel beaches in the province of Alicante. Ocean. Eng. 2016, 118, 173–186. [Google Scholar] [CrossRef]
- Teixeira, A.S. Beach Cleaner Apparatus. U.S. Patent US4014390A, 29 March 1977. [Google Scholar]
- Sato, Y.; Masudo, T.; Hashimoto, Y.; Asao, K. Beach Cleaner. U.S. Patent US8720594B2, 22 February 2014. [Google Scholar]
- Pilseong, L. Beach Cleaner. KR100698807B1, 23 March 2007. [Google Scholar]
- Ito, S.; Masuda, T.; Hashimoto, T. Machine de Nettoyage des Plages. WO2012077167A1, 14 June 2012. [Google Scholar]
- Abe, K.; Masuda, T.; Saito, S.; Hashimoto, T. Drum Type Garbage Separator for Beach Cleaner. J.P. Patent JP6033565B2, 30 November 2016. [Google Scholar]
- Thompson, R. Turtle Friendly Beach Cleaning Device. U.S. Patent US20150144362A1, 28 May 2015. [Google Scholar]
- Ahrens, R. Strandreinigungsvorrichtung, Land- und Bau Kommunalgerate GmbH. EP1707680A1, 4 October 2006. [Google Scholar]
- Kim, S. A Costal Cleaning Vehicle. KR101137508B1, 20 April 2012. [Google Scholar]
- Wendt, R.F.; Acker, J.R.; Braton, N.R. Cryogenic Beach Cleaner. U.S. Patent US4157016A, 5 June 1979. [Google Scholar]
- Machinery Qingzhou Keda Environment Protection Machinery Co., Ltd. Available online: https://kedagoldmining.en.made-in-china.com/product/BXvJSsdxiKcF/China-High-Quality-Aquatic-Weed-Harvester-Algae-Harvester-Reed-Water-Hyacinth-Cutting-Ship-Dredgers-for-Sale.html (accessed on 7 February 2021).
- Wei, G.; Jie, N.; Fengliang, D.; Peisong, W.; Zhiping, G. Front Cabin Collection Device of River Channel Cleaning Boat. CN201473939U, 19 May 2010. [Google Scholar]
- Seung-Gyo, O.; Jong-Kook, K. Movable and Continuous Algae Removal Plant. KR101780582B1, 21 September 2017. [Google Scholar]
- Chaplin, M.P. Method and Apparatus for Cleaning Areas Overlain by a Water Body. U.S. Patent US3412862A, 26 November 1968. [Google Scholar]
- Milyutkin, V.A.; Strebkov, N.F.; Borodulin, I.V.; Kotov, D.N. Device for cleaning water bodies from blue-green algae, LIMITED LIABILITY COMPANY “ECOVOLGA” (RU). RU2551172C1, 20 May 2006. [Google Scholar]
- Cloutier, C.C. Controlled Flooding and Skimming Apparatus for Beach Cleaning. US4366052A, 28 December 1982. [Google Scholar]
- Cloutier, C.C. Beach Cleaning Method. U.S. Patent US4302339A, 28 July 1981. [Google Scholar]
- Szewczyk, J.W.; Warguła, Ł. A Device for Cleaning the Coast and Coastal Areas, in Particular from Algae (Original Text in Polish: Urządzenie do Oczyszczania Pasa Brzegowego i Przybrzeżnego w Szczególności z Alg); Application Number: P.429660; Poznan University of Technology: Poznań, Poland, 2019. [Google Scholar]
- Smetacek, V.; Zingone, A. Green and golden seaweed tides on the rise. Nature 2013, 504, 84–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, T.L. Transcending the Adaptation/Mitigation Climate Change Science Policy Debate: Unmasking Assumptions about Adaptation and Resilience. Weather Clim. Soc. 2011, 3, 238–248. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Jordán-Dahlgren, E. Afluencia masiva de sargazo pelágico a la costa del Caribe Mexicano (2014–2015). In Florecimientos Algales Nocivos en México; García-Mendoza, E., Quijano-Scheggia, S.I., Olivos-Ortiz, A., Núñez-Vázquez, S.J.Y., Eds.; CICESE: Ensenada, Mexico, 2016; pp. 352–365. [Google Scholar]
- Hinds, C.; Oxenford, H.; Cumberbatch, J.; Fardin, F.; Doyle, E.; Cashman, A. Golden Tides: Management Best Practices for Influxes of Sargassum in the Carribbean with a Focus on Clean-up; Center for Resource Management and Environmental Studies (CERMES), The University of the West Indies, Cave Hill Campus: Cave Hill, Barbados, 2016; p. 17. [Google Scholar]
- Zielinski, S.; Botero, C.M.; Yanes, A. To clean or not to clean? A critical review of beach cleaning methods and impacts. Mar. Pollut. Bull. 2019, 139, 390–401. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Wieczorek, B.; Kukla, M.; Krawiec, P.; Szewczyk, J.W. The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines. Water 2021, 13, 736. https://doi.org/10.3390/w13050736
Warguła Ł, Wieczorek B, Kukla M, Krawiec P, Szewczyk JW. The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines. Water. 2021; 13(5):736. https://doi.org/10.3390/w13050736
Chicago/Turabian StyleWarguła, Łukasz, Bartosz Wieczorek, Mateusz Kukla, Piotr Krawiec, and Jakub Wojciech Szewczyk. 2021. "The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines" Water 13, no. 5: 736. https://doi.org/10.3390/w13050736
APA StyleWarguła, Ł., Wieczorek, B., Kukla, M., Krawiec, P., & Szewczyk, J. W. (2021). The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines. Water, 13(5), 736. https://doi.org/10.3390/w13050736