Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Multi-Regional Input-Output Model
2.3. Spillover Risk Analysis of Interprovincial Virtual Water Trade
2.4. Data Sources
3. Results
3.1. Water Use Coefficient of Sectors in the Yellow River Economic Belt
3.2. Virtual Water Trade of Sectors in the Yellow River Economic Belt
3.3. Virtual Water Trade Pattern among Provinces in the Yellow River Economic Belt
3.4. Virtual Water Trade Pattern within the Yellow River Economic Belt
3.5. Spillover Risk Analysis of Interprovincial Virtual Water Trade
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, G.; Han, X.; Zhang, C.; Li, J.; Liu, J. Virtual Water Flows Embodied in International and Interprovincial Trade of Yellow River Basin: A Multiregional Input-Output Analysis. Sustainability 2020, 12, 1251. [Google Scholar] [CrossRef] [Green Version]
- Mubako, S.; Lahiri, S.; Lant, C. Input–output analysis of virtual water transfers: Case study of California and Illinois. Ecol. Econ. 2013, 93, 230–238. [Google Scholar] [CrossRef]
- Chouchane, H.; Krol, M.S.; Hoekstra, A.Y. Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia. Sci. Total Environ. 2017, 613–614, 287–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, H. Lifting the veil: Unpacking the discourse of water scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Ma, X.; Ma, Y. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China. Sci. Total Environ. 2017, 586, 1150. [Google Scholar] [CrossRef]
- Edwards, G.A.S. Shifting constructions of scarcity and the neoliberalization of Australian water governance. Environ. Plan. A 2013, 45, 1873–1890. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Wang, S.; Feng, X.; Liu, Y. Yellow River water rebalanced by human regulation. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Munir, A.; Hanjra, M.; Qureshi, E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Chang. 2011, 104, 599–627. [Google Scholar] [CrossRef]
- Mehta, L. Whose scarcity? Whose property? The case of water in western India. Land Use Policy 2007, 24, 654–663. [Google Scholar] [CrossRef]
- Van Eeden, A.; Mehta, L.; Van Koppen, B. Whose waters? Large-scale agricultural development and water grabbing in the Wami-Ruvu River Basin, Tanzania. Water Altern. 2016, 9, 608–626. [Google Scholar]
- Karandish, F.; Hogeboom, R.J.; Hoekstra, A.Y. Physical versus virtual water transfers to overcome local water shortages: A comparative analysis of impacts. Adv. Water Resour. 2021, 147. [Google Scholar] [CrossRef]
- Silva, V.D.; Oliveira, S.D.; Hoekstra, A.Y.; Neto, J.D.; Holanda, R.D. Water Footprint and Virtual Water Trade of Brazil. Water 2016, 8, 517. [Google Scholar] [CrossRef] [Green Version]
- Abubaker, O.; Ma, Z.; Zheng, Z.; Farhan, S. Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Sci. Total Environ. 2020, 704. [Google Scholar] [CrossRef]
- Zeitoun, M.; Allan, J.A.; Mohieldeen, Y. Virtual water ‘flows’ of the Nile Basin, 1998–2004: A first approximation and implications for water security. Glob. Environ. Chang. 2010, 20, 229–242. [Google Scholar] [CrossRef]
- Allan, J.A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. In Priorities for Water Resources Allocation and Management; Overeas Development Administration: London, UK, 1993. [Google Scholar]
- Zhao, X.; Yang, H.; Yang, Z.; Chen, B.; Qin, Y. Applying the Input-Output Method to Account for Water Footprint and Virtual Water Trade in the Haihe River Basin in China. Environ. Sci. Technol. 2010, 44, 9150. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Suweis, S. Water for food: The global virtual water trade network. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Anadon, L.D. A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Antonelli, M.; Greco, F. The Water We Eat: Combining Virtual Water and Water Footprints; Springer: Berlin, Germany, 2015. [Google Scholar]
- Zhang, Z.; Yang, H.; Shi, M. Analyses of water footprint of Beijing in an interregional input–output framework. Ecol. Econ. 2011, 70, 2494–2502. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, K.; Yang, S.; Yu, Y.J. An input–output approach to evaluate the water footprint and virtual water trade of Beijing, China. J. Clean. Prod. 2013, 42, 172–179. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.H.; Tian, Q.; Liu, Z.; Zhang, H. Virtual water trade of agricultural products: A new perspective to explore the Belt and Road. Sci. Total Environ. 2017, 622–623, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Qasemipour, E.; Abbasi, A. Virtual Water Flow and Water Footprint Assessment of an Arid Region: A Case Study of South Khorasan Province, Iran. Water 2019, 11, 1755. [Google Scholar] [CrossRef] [Green Version]
- Lamastra, L.; Miglietta, P.P.; Toma, P.; Leo, F.D.; Massari, M. Virtual water trade of agri-food products: Evidence from italian-chinese relations. Sci. Total Environ. 2017, 599–600, 474–482. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B. Linkage analysis for the water–energy nexus of city. Appl. Energy 2017, 189, 770–779. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Huang, M. Water Footprint and Virtual Water Accounting for China Using a Multi-Regional Input-Output Model. Water 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, B. Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses. Appl. Energy 2020, 268, 114974. [Google Scholar] [CrossRef]
- Dong, H.; Geng, Y.; Hao, D.; Yu, Y.; Chen, Y. Virtual water flow feature of water-rich province and the enlightenments: Case of Yunnan in China. J. Clean. Prod. 2019, 235, 328–336. [Google Scholar] [CrossRef]
- Chen, W.; Wu, S.; Lei, Y.; Li, S. Virtual water export and import in China’s foreign trade: A quantification using input-output tables of China from 2000 to 2012. Resour. Conserv. Recycl. 2017, 132, 278–290. [Google Scholar] [CrossRef]
- Dong, H.; Geng, Y.; Fujita, T.; Jacques, D.A. Three accounts for regional carbon emissions from both fossil energy consumption and industrial process. Energy 2014, 67, 276–283. [Google Scholar] [CrossRef]
- Nawab, A.; Liu, G.; Meng, F.; Hao, Y.; Zhang, Y.; Hu, Y.; Casazza, M. Exploring Urban Energy-Water Nexus Embodied in Domestic and International Trade: A Case of Shanghai. J. Clean. Prod. 2019, 223, 522–535. [Google Scholar] [CrossRef]
- Wang, S.; Chen, B. Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region. Appl. Energy 2016, 178, 773–783. [Google Scholar] [CrossRef]
- Lin, L.; Chen, Y.D.; Hua, D.; Liu, Y.; Yan, M. Provincial virtual energy-water use and its flows within China: A multi-regional input-output approach. Resour. Conserv. Recycl. 2019, 151. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, K.; Yu, Y.; Hu, J. Inter-Regional Agricultural Virtual Water Flow in China Based on Volumetric and Impact-Oriented Multi-Regional Input-Output (MRIO) Approach. Water 2020, 12, 251. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Long, A.; Yu, J.; Xu, H.; Zhao, X. Assessment of Inter-Sectoral Virtual Water Reallocation and Linkages in the Northern Tianshan Mountains, China. Water 2020, 12, 2363. [Google Scholar] [CrossRef]
- Qasemipour, E.; Tarahomi, F.; Pahlow, M.; Sadati, M.; Abbasi, A. Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis. Sustainability 2020, 12, 7424. [Google Scholar] [CrossRef]
- Meng, B.; Xue, J.; Feng, K.; Guan, D. China’s inter-regional spillover of carbon emissions and domestic supply chains. IDE Discuss. Pap. 2012, 61, 1305–1321. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Chen, B.; Hubacek, K.; Ni, R.; Chen, L.; Feng, K.; Lin, J. Clean air for some: Unintended spillover effects of regional air pollution policies. Sci. Adv. 2019, 5, eaav4707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, S.; Liang, S.; Konar, M.; Zhu, Z.; Chiu, A.S.F.; Jia, X.; Xu, M. Virtual Water Scarcity Risk to the Global Trade System. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Gou, T.; Lu, W. Study on the Development Quality Evaluation and Spatial Differentiation of the Yellow River Eco-Economic Belt. J. Qinghai Norm. Univ. (Philosophy and Social Sciences Edition) 2019, 41, 7–15. [Google Scholar]
- Sediqi, M.N.; Shiru, M.S.; Nashwan, M.S.; Ali, R.; Abubaker, R.; Wang, X.; Ahmed, K.; Shahid, S.; Asaduzzaman, M.; Manawi, S.M.A. Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan. Sustainability 2019, 11, 5836. [Google Scholar] [CrossRef] [Green Version]
- Lisowski, S.; Berger, M.; Caspers, J.; Mayr-Rauch, K.; Bauml, G.; Finkbeiner, M. Criteria-Based Approach to Select Relevant Environmental SDG Indicators for the Automobile Industry. Sustainability 2020, 12, 8811. [Google Scholar] [CrossRef]
- Wassily, W.L. Quantitative input and output relations in the economic system of the United States. Rev. Econ. Stat. 1936, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Li, F.; Ye, Z.; Tang, Z.; Xie, W.; Bai, Y.; Yang, S. Inter-regional spillover of carbon emissions and employment in China: Is it positive or negative? Sustainability 2019, 11, 3622. [Google Scholar] [CrossRef] [Green Version]
- White, D.J.; Feng, K.; Sun, L.; Hubacek, K. A hydro-economic MRIO analysis of the Haihe River Basin’s water footprint and water stress. Ecol. Model. 2015, 318, 157–167. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Xing, F.; Liu, Y.; Wang, S.; Chen, B. Spillover risk analysis of virtual water trade based on multi-regional input-output model—A case study. J. Environ. Manag. 2020, 275. [Google Scholar] [CrossRef]
- Guan, D.; Hubacek, K. Assessment of regional trade and virtual water flows in China. Ecol. Econ. 2007, 61, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dong, S.; Li, Z. Comprehensive Evaluation of China’s Water Resources Carrying Capacity. J. Nat. Resour. 2011, 26, 258–269. [Google Scholar]
Province | Total Water Consumption (100 million m3) | Total Water Resources (100 million m3) | GDP (100 million RMB) | GDP/Water Consumption (RMB/m3) | Population/Water Consumption (person/10000 m3) |
---|---|---|---|---|---|
Shandong | 221.80 | 274.30 | 45,429.99 | 204.82 | 43.67 |
Henan | 238.60 | 265.50 | 27,598.98 | 115.67 | 39.42 |
Shanxi | 73.40 | 106.20 | 11,235.10 | 153.07 | 49.20 |
Shaanxi | 88.00 | 390.50 | 12,266.76 | 139.40 | 42.65 |
Inner Mongolia | 184.40 | 510.30 | 11,517.81 | 62.46 | 13.50 |
Gansu | 123.10 | 267.00 | 5090.82 | 41.36 | 20.94 |
Qinghai | 27.40 | 895.20 | 1636.59 | 59.73 | 20.91 |
Ningxia | 69.40 | 10.80 | 2085.40 | 30.05 | 9.32 |
Xinjiang | 590.10 | 900.60 | 6519.07 | 11.05 | 3.78 |
The Yellow River Economic Belt | 1616.20 | 3620.40 | 123,380.52 | 76.34 | 21.64 |
China | 6131.20 | 29,528.80 | 518,942.10 | 84.64 | 22.08 |
Item | Intermediate Use | Final Demand | Export | Gross Output | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Shandong | … | Xinjiang | Other Regions | Shandong…Xinjiang | Other Regions | |||||
Sector1…Sector30 | Sector1…Sector30 | Sector1…Sector30 | ||||||||
Intermediate input | Shandong | Sector1 | … | … | … | … | ||||
… | … | … | … | … | … | … | … | … | ||
Sector30 | … | … | … | … | ||||||
… | … | … | … | … | … | … | … | … | … | |
Xinjiang | Sector1 | … | … | … | … | |||||
… | … | … | … | … | … | … | … | … | ||
Sector30 | … | … | … | … | ||||||
Sector1 | … | … | … | … | … | |||||
other regions | … | … | … | … | … | … | … | … | … | |
Sector30 | … | … | … | … | … | |||||
Import | … | … | … | … | ||||||
Gross input | … | … | … | … |
Shandong | Henan | Shanxi | Shaanxi | Inner Mongolia | Gansu | Qinghai | Ningxia | Xinjiang | Outflow | |
---|---|---|---|---|---|---|---|---|---|---|
Shandong | / | 65.06 | 17.13 | 44.35 | 52.37 | 10.83 | 4.11 | 1.91 | 22.86 | 218.62 |
Henan | 22.96 | / | 8.22 | 24.38 | 21.93 | 5.05 | 1.52 | 1.12 | 8.69 | 93.87 |
Shanxi | 41.69 | 42.78 | / | 27.05 | 33.07 | 5.98 | 2.49 | 1.19 | 13.15 | 167.40 |
Shaanxi | 46.46 | 55.65 | 12.99 | / | 38.01 | 8.12 | 3.01 | 1.41 | 15.63 | 181.28 |
Inner Mongolia | 58.28 | 63.41 | 18.66 | 38.48 | / | 9.71 | 3.9 | 2.31 | 20.61 | 215.36 |
Gansu | 29.46 | 27.56 | 6.5 | 22.69 | 25.96 | / | 2.7 | 0.94 | 9.64 | 125.45 |
Qinghai | 43.02 | 49.56 | 12.42 | 50.21 | 51.1 | 21.97 | / | 1.52 | 19.08 | 248.88 |
Ningxia | 29.8 | 44.78 | 15.25 | 35.47 | 41.11 | 9.71 | 2.5 | / | 14.86 | 193.48 |
Xinjiang | 197.47 | 143.46 | 34.78 | 108.17 | 140.17 | 32.6 | 12.14 | 5.19 | / | 673.98 |
Inflow | 469.14 | 492.26 | 125.95 | 350.80 | 403.72 | 103.97 | 32.27 | 15.59 | 124.52 | / |
Net inflow | 250.52 | 398.39 | −41.45 | 169.52 | 188.36 | −21.48 | −216.61 | −177.89 | −549.46 | / |
Province | WSI | Province | WSI |
---|---|---|---|
Shandong | 1.00 | Gansu | 0.89 |
Henan | 0.61 | Qinghai | 0.67 |
Shanxi | 1.00 | Ningxia | 0.99 |
Shaanxi | 0.69 | Xinjiang | 0.96 |
Inner Mongolia | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Tian, Q.; Yu, Y.; Xu, Y.; Li, C. Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output Model. Water 2021, 13, 748. https://doi.org/10.3390/w13060748
Li M, Tian Q, Yu Y, Xu Y, Li C. Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output Model. Water. 2021; 13(6):748. https://doi.org/10.3390/w13060748
Chicago/Turabian StyleLi, Ming, Qingsong Tian, Yan Yu, Yueyan Xu, and Chongguang Li. 2021. "Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output Model" Water 13, no. 6: 748. https://doi.org/10.3390/w13060748
APA StyleLi, M., Tian, Q., Yu, Y., Xu, Y., & Li, C. (2021). Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output Model. Water, 13(6), 748. https://doi.org/10.3390/w13060748