Integration of the Analytical Hierarchy Process and GIS Spatial Distribution Model to Determine the Possibility of Runoff Water Harvesting in Dry Regions: Wadi Watir in Sinai as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geological Conditions
2.3. Surface Runoff Calculations
2.4. Analytical Hierarchy Process (AHP) Technique
2.5. Watershed Modeling
3. Results and Discussion
3.1. Parameters of Multi-Parametric Decision Spatial Model (MPDSM)
3.1.1. Overland Flow Distance
3.1.2. Volume of Annual Flood
3.1.3. Watershed Slope
3.1.4. Infiltration Number
3.1.5. Drainage Density
3.1.6. Watershed Length
3.1.7. Watershed Area
3.1.8. Maximum Flow Distance
3.2. Multi-Parametric Decision Spatial Model
3.2.1. Multi-Parametric Decision Spatial Model Scenario I
3.2.2. Multi-Parametric Decision Spatial Model Scenario II (Weights Assigned by the AHP Technique)
3.3. Model Validation and Justification
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foody, G.M.; Ghoneim, E.M.; Arnell, N.W. Predicting locations sensitive to flash flooding in an arid environment. J. Hydrol. 2004, 292, 48–58. [Google Scholar] [CrossRef]
- Hardy, J.; Gourley, J.J.; Kirstetter, P.E.; Hong, Y.; Kong, F.; Flamig, Z.L. A method for probabilistic flash flood forecasting. J. Hydrol. 2016, 541, 480–494. [Google Scholar] [CrossRef] [Green Version]
- Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 2016, 43, 4382–4390. [Google Scholar] [CrossRef] [Green Version]
- Kousky, C.; Michel-Kerjan, E. Examining flood insurance claims in the United States: Six key findings. J. Risk Insur. 2017, 84, 819–850. [Google Scholar] [CrossRef]
- Elewa, H.H.; Qaddah, A.A.; El-Feel, A.A. Determining potential sites for runoff water harvesting using remote sensing and geographic information systems-Based Modeling in Sinai. Am. J. Environ. Sci. 2012, 8, 42–55. [Google Scholar]
- Pallard, B.; Castellarin, A.; Montanar, A.A. Look at the links between drainage density and flood statistics. Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [Google Scholar] [CrossRef] [Green Version]
- Asadi, A. The comparison of lumped and distributed models for estimating flood hydrograph (Study Area: Kabkian Basin). J. Electron. Comm. Eng. Res. 2013, 1, 7–13. [Google Scholar]
- Refsgaard, J.C.; Knudsen, J. Operational validation and Intercomparison of different types of hydrological models. Water Resour. Res. 1997, 32, 2189–2202. [Google Scholar] [CrossRef]
- Smith, M.B.; Seo, J.; Koren, V.; Reed, M.; Zhang, Z.; Duan, Y.; Moreda, F.; Cong, S. The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol. 2004, 298, 4–26. [Google Scholar] [CrossRef]
- Vieux, B.E.; Cui, Z.; Gaur, A. Evaluation of a Physics-based distributed hydrologic model for flood forecasting. J. Hydrol. 2004, 298, 155–177. [Google Scholar] [CrossRef]
- Bicknell, B.; Imhoff, J.; Kittle, J.; Donigian, A.; Johanson, R. Hydrological Simulation Program-FORTRAN, User’s Manual for Version 11; Environmental Protection Agency (EPA): Washington, DC, USA, 1997; p. 770. [Google Scholar]
- Bobba, A.G.; Singh, V.P.; Bengtsson, L. Application of environmental models to different hydrological systems. Ecol. Model. 2000, 125, 15–49. [Google Scholar] [CrossRef]
- Vazquez, R.F.; Feyen, L.; Feyen, J.; Refsgaard, J.C. Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrol. Process. 2002, 16, 4–18. [Google Scholar] [CrossRef]
- Murari, P.; Nelson, E.J.; Downer, W. Assessing the capability of a distributed and a lumped hydrologic model on analyzing the effects of land use change. J. Hydroinform. 2010, 18, 65–80. [Google Scholar]
- Lin, K.; Chen, H.; Xu, C.; Yan, P.; Lan, T.; Liu, Z.; Dong, C. Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. J. Hydrol. 2020, 584, 124696. [Google Scholar] [CrossRef]
- Elewa, H.H.; Ramadan, E.M.; Nosair, A.M. Water/Land Use planning of Wadi El-Arish watershed, Central Sinai, Egypt using RS, GIS and WMS techniques. Int. J. Sci. Eng. Res. 2014, 5, 341–349. [Google Scholar]
- Elewa, H.H.; Ramadan, E.M.; Nosair, A.M. Spatial-based hydro-morphometric watershed modeling for the assessment of flooding potentialities. Environ. Earth Sci. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- AbuZied, S.; Yuan, M.; Ibrahim, S.; Kaiser, M.; Saleem, T. Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J. Arid Environ. 2016, 133, 54–72. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S.; Singh, V.P. Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield. Water Resour. Manag. 2007, 21, 1899–1913. [Google Scholar] [CrossRef]
- ESRI ArcGIS 10.1 Software and User Manual; Environmental Systems Research Institute: Redlands, CA, USA, 2007; Available online: http://www.esri.com (accessed on 20 August 2009).
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Ho, W. Integrated analytic hierarchy process and its applications–A literature review. Eur. J. Oper. Res. 2008, 186, 211–228. [Google Scholar] [CrossRef]
- Jothiprakash, V.; Sathe, M.V. Evaluation of rainwater harvesting methods and structures using analytical hierarchy process for a large scale industrial area. J. Water Res. Prot. 2009, 1, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J.; Moreno-Sanchez, R.; Bojo’rquez-Tapia, L.A.; Ongay-Delhumeau, E. Multicriteria group decisionmaking model for environmental conflict analysis in the Cape Region, Mexico. J. Environ. Plann. Manag. 1997, 40, 349–374. [Google Scholar] [CrossRef]
- Jiang, X.; Lei, M.; Li, Y.; Dai, J. National-scale risk assessment of sinkhole hazard in China. In Proceedings of the 10th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, San Antonio, TX, USA, 24–28 September 2005. [Google Scholar]
- Taheri, K.; Gutiérrez, F.; Mohseni, H.; Raeisi, E.; Taheri, M. Sinkhole susceptibility mapping using the analytical hierarchy process (AHP) and magnitude–frequency relationships: A case study in Hamadan province, Iran. Geomorphology 2015, 234, 64–79. [Google Scholar] [CrossRef]
- Nekhay, O.; Arriaza, M.; Guzman-Alvarez, J.R. Spatial analysis of the suitability of olive plantations for wildlife habitat restoration. Comput. Electron. Agric. 2009, 65, 49–64. [Google Scholar] [CrossRef]
- AQUAVEO, Water Modeling Solutions. Support Forum for Subwatershed Modeling System Software (WMS). 2008. Available online: www.aquaveo.com (accessed on 20 August 2009).
- USDA-SCS-CN (United States Department of Agriculture-Soil Conservation Service-Curve Number). Estimating Runoff and Peak Discharges. Chapter 2: In Engineering Field Handbook. 1989. Available online: http://www.info.usda.gov/CED/ftp/CED/EFH-Ch02.pdf (accessed on 20 August 2009).
- Finkel, H.H. Water resources in arid zone settlement. In A Case Study in Arid Zone Settlement, the Israeli Experience; Golany, G., Ed.; Pergamon Press: New York, NY, USA, 1979; p. 567. [Google Scholar]
- Cools, J.; Vanderkimpen, P.; El Afandi, G.; Abdelkhalek, A.; Fockedey, S.; El Sammany, M.; Huygens, M. An early warning system for flash floods in hyper-arid Egypt. Nat. Hazards Earth Syst. Sci. 2012, 12, 443–457. [Google Scholar] [CrossRef]
- Geriesh, M.H. Artificial recharge as an effective tool for augmenting the natural groundwater resources in Saint Katherine area, South Sinai, Egypt. In Proceedings 5th Conference Geology Sinai Development; Suez Canal University: Ismailia, Egypt, 1998; pp. 47–64. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modeling. A review of hydrological, geomorphological and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Milewski, A.; Sultan, M.; Yan, E.; Becker, R.; Abdeldayem, A.; Soliman, F.; Gelili, K. A remote sensing solution for estimating runoff recharge in arid environments. J. Hydrol. 2009, 373, 1–14. [Google Scholar] [CrossRef]
- Masoud, A.A. Runoff modeling of the wadi systems for estimating flashflood and groundwater recharge potential in Southern Sinai, Egypt. Arab J. Geosci. 2011, 4, 785–801. [Google Scholar] [CrossRef]
- CONOCO Inc. CONOCO (Continental Oil Company) Geological Map of Egypt (Scale 1: 500,000). In Collaboration with Freie; Universitat Berlin: Berlin, Germany, 1987; ISBN 3-927541-09-5. [Google Scholar]
- Leica Geosystems GIS & Mapping L.L.C. ERDAS Field Guide, 1. Norcross, GA; Leica Geosystems Geospatial Imaging, L.L.C.: Norcross, GA, USA, 2008; p. 116. [Google Scholar]
- Eissa, M.A.; Thoma, M.J.; Hershey, R.L.; Dawoud, M.I.; Pohll, G.; Dahab, K.A.; Gomaa, M.A.; Shabana, A.R. Geochemical and isotopic evolution of groundwater in the Wadi Watir watershed, Sinai Peninsula, Egypt. Environ. Earth Sci. 2014, 71, 1855–1869. [Google Scholar] [CrossRef] [Green Version]
- El Shazly, E.M.; Abddel-Hady, M.A.; El-Ghawaby, M.A.; El-Kassas, I.A.; El-Shazly, M.M. Geology of Sinai Peninsula from ERTS-1 Satellite Images; Remote Sensing research Project, Academy of Scientific Research and Technology: Cairo, Egypt, 1974; p. 20. [Google Scholar]
- Eyal, M.; Eyal, Y.; Bartov, Y.; Steinitz, G. The tectonic development of the western margin of Gulf of Elat (Aqaba) rift. Tectonophysics 1981, 80, 39–66. [Google Scholar] [CrossRef]
- El Kiki, M.F.; Eweida, E.A.; El Refeai, A.A. Hydrogeology of the Aqaba rift border province. In Proceeding of the 3rd Conference on Geology Sinai Development, Ismailia, Egypt, 18–20 September 1992; pp. 91–100. [Google Scholar]
- Elewa, H.H.; Qaddah, A.A. Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS watershed- based modeling. Hydrogeol. J. 2011, 19, 613–628. [Google Scholar] [CrossRef] [Green Version]
- NSG. North Sinai Governorate. Environmental Assessment of North Sinai, Cooperation Project between Egypt and Danish Governments; unpublished report; 2006; p. 322. [Google Scholar]
- Abbot, J.; Marohasy, J. Skilful rainfall forecasts from artificial neural networks with long duration series and single-month optimization. Atmos. Res. 2017, 197, 289–299. [Google Scholar]
- Hossain, I.; Esha, R.; Imteaz, A.M. An attempt to use non-linear regression modelling technique in long-term seasonal rainfall forecasting for Australian Capital Territory. Geosciences 2018, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Hossain, I.; Rasel, H.M.; Imteaz, M.A.; Mekanik, F. Long-term seasonal rainfall forecasting using linear and non-linear modelling approaches: A case study for Western Australia. Meteorol. Atmos. Phys. 2020, 132, 131–141. [Google Scholar] [CrossRef]
- Elewa, H.H.; Ramadan, E.M.; El Feel, A.A.; Abu El Ella, E.A.; Nosair, A.M. Runoff water harvesting optimization by using RS, GIS and watershed modelling in Wadi El-Arish, Sinai. Int. J. Eng. Res. Technol. 2013, 2, 1635–1648. [Google Scholar]
- El-Behiry, M.G.; Shedid, A.; Abu-Khadra, A.; El-Huseiny, M. Integrated GIS and remote sensing for runoff hazard analysis in Ain Sukhna industrial area, Egypt. Earth Sci. 2006, 17, 19–42. [Google Scholar] [CrossRef]
- Wagener, T.; Wheater, H. Rainfall-Runoff Modeling in Gauged and Ungauged Catchments; Imperial College Press: London, UK, 2004; p. 305. [Google Scholar]
- Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology; Kluwer: Dordrecht, The Netherlands, 2003; pp. 2–4. [Google Scholar]
- Young, G.H.H. Hydrology and sediment transport simulation using time-area method. Ph.D. Thesis, Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2011; p. 658. [Google Scholar]
- Hawkins, R.H.; Ward, T.J.; Woodward, D.E.; Van Mullem, J.A. Curve Number Hydrology, State of the Practice; American Society of Civil Engineers: Reston, VA, USA, 2009; p. 106. [Google Scholar]
- Schumm, S.A. Evolution of drainage system and slope in badlands of Perth Amboy, New Jersey. Geol. Soc. Am. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative geomorphology of drainage basin and channel network. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw Hill: New York, NY, USA, 1964. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of stream and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Faniran, A. The index of drainage intensity–A provisional new drainage factor. J. Aust. Sci. 1968, 31, 328–330. [Google Scholar]
- Horton, R.E. Drainage basin characteristics. Trans. Am. Geophys. Union 1932, 13, 350–360. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structure. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Jankowski, P.; Blaschke, T. A GIS based spatially explicate sensitivity analysis approach for multi-criteria decision analysis. Comput. Geosci. 2014, 64, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Feizizadeh, B.; Blaschke, T. Land suitability analysis for Tabriz County, Iran: A multi-criteria evaluation approach using GIs. J. Environ. Plann. Manag. 2013, 56, 1–3. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Munier, N. A Strategy for Using Multicriteria Analysis in Decision-Making; a Guide for Simple and Complex Environmental Projects; Springer Science: New York, NY, USA, 2011; p. 290. [Google Scholar]
- Donevska, K.R.; Gorsevski, P.V.; Jovanovski, M.; Pesevski, I. Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environ. Earth Sci. 2012, 67, 121–131. [Google Scholar] [CrossRef]
- Tiwari, D.N.; Loof, R.; Paudyal, G.N. Environmental-economic decision- making in low land irrigated agriculture using multi-criteria analysis techniques. Agric. Syst. 1999, 60, 99–112. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Youssef, A.; Pradhan, B.; Hassan, A. Flash flood risk estimation along the St Katherine road southern Sinai Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 2011, 62, 611–623. [Google Scholar] [CrossRef]
- El Maghraby, M.; Masoud, M.; Niyazi, B. Assessment of surface runoff in arid, data scarce regions; an approach applied in Wadi Al Hamd, Al Madinah Al Munawarah, Saudi Arabia. Life Sci. J. 2014, 11, 271–289. [Google Scholar]
- Montgomery, D.R.; Dietrich, W.E. Source areas, drainage density, and channel initiation. Water Res. Resour. 1989, 34, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Subba Rao, N. Groundwater potential index in a crystalline terrain using remote sensing data. Environ. Geol. 2006, 50, 1067–1076. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications, 1st ed.; U.S. Government Printing Office: Washington, DC, USA, 1953; Volume 252, p. 57. [Google Scholar]
- Costache, R.; Hong, H.; Bao Pham, Q. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci. Total Environ. 2019, 7111, 134514. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Ahmed, S.A. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto Int. 2014, 29, 878–894. [Google Scholar] [CrossRef]
- Patton, P.C. Drainage basin morphometry and floods. In Flood Geomorphology; Baker, V.R., Kochel, R.C., Patton, P.C., Eds.; Wiley: New York, NY, USA, 1988; pp. 51–65. [Google Scholar]
- Palla, A.; Gnecco, I.; Lanza, L.G.; La Barbera, P. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 2012, 62, 71–80. [Google Scholar] [CrossRef]
- Nag, S.K. Morphometric analysis using remote sensing techniques in the Chaka Sub-basin, Purulia district, West Bengal. J. Indian Soc. Remote Sens. 1998, 26, 69–76. [Google Scholar] [CrossRef]
- Ali, S.A.; Khan, N. Evaluation of morphometric analysis—A remote sensing & GIS based approach. Open J. Modern Hydrol. 2013, 3, 20–27. [Google Scholar]
- Faniran, A.; Ojo, O. Man’s Physical Environment; Heinemann Educational Books: London, UK, 1980; p. 404. [Google Scholar]
- Pitlick, J. Relations between peak flows, precipitation and physiography for five mountainous regions in Western U.S.A. J. Hydrol. 1994, 158, 219–240. [Google Scholar] [CrossRef]
- Jain, V.; Sinha, R. Evaluation of geomorphic control on flood hazard through geomorphic instantaneous unit hydrograph. Current Sci. 2003, 85, 26–32. [Google Scholar]
- Pallant, J.; Manual, S.S. A step by step guide to data analysis using SPSS for windows. In SPSS Survival Manual; SPSS Inc.: Chicago, IL, USA, 2007. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: Son Fransisco, CA, USA, 1976; p. 588. [Google Scholar]
- Xu, J. Mathematical Method in Contemporary Geography; Higher Education Press: Beijing, China, 2002; pp. 84–93. [Google Scholar]
- Park, S.; Jeon, S.; Kim, S.; Choi, C. Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in south Korea. Landsc. Urb. Plann. 2011, 99, 104–114. [Google Scholar] [CrossRef]
- Beven, K.; Kirkby, M. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.; Peckham, S. Land-surface parameters and objects in hydrology. In Geomorphometry: Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 171–194. [Google Scholar]
- Blišťanová, M.; Zeleňáková, M.; Blišťan, P.; Ferencz, V. Assessment of flood vulnerability in Bodva river basin, Slovakia. Acta Montan. Slovaca 2016, 21, 19–28. [Google Scholar]
- Grabs, T.; Seibert, J.; Bishop, K.; Laudon, H. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. J. Hydrol. 2009, 373, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Hluštík, P.; Abd-Elhamid, H.F.; Markovič, G.; Hudáková, G.; Tometz, L. Comprehensive study of the percolation of water from surface runoff with an emphasis on the retention capacity and intensity of precipitation. Water Sci. Technol. 2019, 79, 2407–2416. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Repel, A.; Vranayová, Z.; Káposztásová, D.; Abd-Elhamid, H.F. Impact of land use changes on surface runoff in urban areas–Case study of Myslavsky Creek Basin in Slovakia. Acta Montan. Slovaca 2019, 24, 129–139. [Google Scholar]
Lithologic Group | Soil Hydrologic Group | Infiltration Rate mm/h | Groundwater Potentiality |
---|---|---|---|
Sand dunes, Nile silt, undifferentiated Quaternary deposits, wadi deposits, G. El-Ahmar Fm., stabilized sandstone, Naqus Fm. | A | >7.62 (High) | High to very high |
Risan Aneisa Fm., Safa, Cairo-Suez Hgul Fm., Abu Aggag Fm., Lake Nasser, Duwi Fm., lower to middle Miocene deposits, Hammamat clastics, and Ranga Fm., Umm Mahara, calc-alkaline granitic rocks-tectonized | B | 3.81–7.62 (Moderate) | Moderate |
Matulla Fm., Pliocene deposits, undifferentiated Plio- Pleistocene deposits, Gharandal Group, metasediments, Qiseib Fm., Abou Durba Fm. | C | 1.27–3.81 (Low) | Low |
Sabkhas deposits, undifferentiated Thebes Group, medium-to-high-grade metamorphic rocks, Samalut Fm., Mokattam Group, Egma Fm., Sudr Fm., Esna Fm., Masajid Fm., Tertiary alkali olivine basalts, older granite or grey granite, Katherina volcanics, intrusive metagabbro to metadiorite, mostly leucocratic medium-to-high grade metamorphic rocks, ring complexes, Ras Malaab Group, intermediate to acid metavolcanics and metapyroclastics, gabbroic rocks, gneiss and magmatic gneiss, Quseir Fm., pink granite, Trachyte plugs and sheets. | D | <1.27 (Very low) | Very low |
Importance | Degree of Preference | Explanation |
---|---|---|
1 | Equal | Two activities contribute equally to the goal |
3 | Moderate | Experience and judgment slightly or moderately favor one activity over another |
5 | Strong | Experience and judgment strongly or fundamentally favor one activity over another |
7 | Very strong | One activity is strongly favored over another and its dominance appears in practice |
9 | Extreme | Evidence of a preference for one activity over another is the most assured possible |
2,4,6,8 | Intermediate values | Used to represent compromises between preferences in weights 1, 3, 5, 7, and 9 |
Reciprocal | Opposites | Used for inverse comparison |
Sub-Watershed | Volume of Annual Flood (VAF) (m3) Finkel Method | Volume of Annual Flood (m3) SCS-CN Method | Overland Flow Distance (OFD) (km) | Max. Flow Distance (MFD) (km) | Watershed Infiltration Number (IN) | Drainage Density (DD) (km−1) | Watershed Area (A) (km2) | Watershed Slope (BS)(m/m) | Watershed Length (BL) (km) |
---|---|---|---|---|---|---|---|---|---|
El-Ear | 3,203,020 | 13,258,477.9 | 0.380 | 87.88 | 0.83 | 0.76 | 1282.16 | 0.150 | 63.7 |
Sawana | 1,207,680 | 3,962,709.9 | 0.390 | 42.78 | 0.80 | 0.78 | 299.01 | 0.180 | 31.02 |
Abyad Batnah | 513,160 | 991,064.7 | 0.358 | 24.84 | 0.69 | 0.72 | 83.65 | 0.153 | 16.06 |
Kadriah | 918,300 | 2,058,670.8 | 0.383 | 38.77 | 0.76 | 0.77 | 198.96 | 0.128 | 25.13 |
El-Batm | 1,527,650 | 3,544,434.9 | 0.392 | 50.01 | 0.82 | 0.78 | 424.64 | 0.082 | 28.22 |
El-Hesay | 1,556,920 | 2,592,202.9 | 0.432 | 44.43 | 0.92 | 0.87 | 436.85 | 0.078 | 32.02 |
El-Shaflh | 428,160 | 601,010.1 | 0.345 | 20.91 | 0.78 | 0.68 | 63.61 | 0.159 | 13.70 |
Watir Trunk Channel | 1,504,030 | 4,274,581.05 | 0.774 | 68.35 | 0.71 | 0.72 | 414.88 | 0.216 | 43.81 |
Samghy | 686,980 | 1,393,763.4 | 0.398 | 28.30 | 0.80 | 0.80 | 128.82 | 0.179 | 23.21 |
Ghazalah | 866,680 | 1,844,572.5 | 0.394 | 31.08 | 0.77 | 0.78 | 182.43 | 0.214 | 25.46 |
Watershed RWH Parameter | Very High | High | Moderate | Low | Very Low |
---|---|---|---|---|---|
VAF (m3) (Finkel Method) | >2,840,800 | 2,027,301–2,840,800 | 1,414,301–2,027,300 | 1,025,201–1,414,300 | <1,025,201 |
VAF (m3) (SCS-CN Method) | >13,493,937.28 | 9,449,250.89–13,493,937.28 | 5,343,281.36–944,9250.88 | 2,646,823.77–534,3281.357 | <2,646,823.77 |
OFD (km) | >0.5111 | 0.4692–0.5111 | 0.4482–0.4691 | 0.4304–0.4481 | <0.4304 |
MFD (km) | >77.17 | 65.22–77.17 | 52.85–65.21 | 43.71–52.84 | <43.71 |
IF | >0.846 | 0.811–0.846 | 0.786–0.810 | 0.751–0.785 | <0.751 |
DD (km−1) | >0.81 | 0.776–0.81 | 0.757–0.775 | 0.733–0.756 | <0.733 |
A (km2) | >1149.1 | 850.13–1149.1 | 540.85–850.12 | 303.73–540.84 | <303.73 |
BS (m/m) | >0.19150 | 0.16152–0.19150 | 0.129116–0.16151 | 0.094321–0.129115 | <0.094321 |
BL (km) | >57.37 | 44.85–57.37 | 34.2–44.84 | 26.06–34.19 | <26.06 |
Thematic Layers (Parameter) | Probability Category for RWH | Class Rank (%) | Average Rate (Rank) (CR) % | Weight % (CW) | Degree of Effectiveness (DE) |
---|---|---|---|---|---|
Average overland flow distance (OFD) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Volume of annual flood (VAF) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Infiltration number (IF) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Maximum Flow distance (MFD) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Drainage density (DD) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Watershed area (A) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Watershed length (BL) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Watershed slope (BS) | I (Very high) II (High) III (Moderate) IV (Low) V (Very low) | 100–80 80–60 60–40 40–20 20–0 | 0.9 0.7 0.5 0.3 0.1 | 12.5 | 11.25 8.75 6.25 3.75 1.25 |
Areas with Categories of RWH Potential; VAF Calculated Using the Finkel Method [30] | |||||
RWH Potentiality Class | Very Low | Low | Moderate | High | Very High |
Area (km2) | 301.17 | 1298.35 | 932.13 | 501.03 | 480.35 |
Area (% of total watershed area) Total watershed area 3513 Km2 | 8.57 | 36.95 | 26.53 | 14.26 | 13.67 |
Areas with Categories of RWH Potential; VAF Calculated Using the SCS-CN Method [29] | |||||
RWH Potentiality Class | Very Low | Low | Moderate | High | Very High |
Area (km2) | 845.19 | 855.54 | 736.98 | 534.27 | 541.07 |
Area (% of total watershed area) Total watershed area 3513 Km2 | 24.05 | 24.35 | 20.97 | 15.2 | 15.4 |
Parameter | VAF (Finkel Method) | VAF (SCS-CN Method) | OFD | MFD | IF | DD | A | BS | BL |
---|---|---|---|---|---|---|---|---|---|
VAF (Finkel method) | 1 | ||||||||
VAF (SCS-CN method) | 0.960 ** | 1 | |||||||
OFD | 0.167 | 0.091 | 1 | ||||||
MFD | 0.943 ** | 0.908 ** | 0.451 | 1 | |||||
IF | 0.427 | 0.259 | −0.290 | 0.201 | 1 | ||||
DD | 0.241 | 0.048 | −0.130 | 0.088 | 0.762 * | 1 | |||
A | 0.990 ** | 0.980 ** | 0.097 | 0.917 ** | 0.389 | 0.164 | 1 | ||
BS | −0.198 | −0.025 | 0.392 | −0.033 | −0.616 | −0.457 | −0.169 | 1 | |
BL | 0.956 ** | 0.942 ** | 0.375 | 0.974 ** | 0.261 | 0.161 | 0.942 ** | 0.055 | 1 |
Parameter | VAF | OFD | MFD | IF | Dd | A | BS | BL |
---|---|---|---|---|---|---|---|---|
VAF | 1 | 9 | 5 | 3 | 5 | 1 | 1 | 7 |
OFD | 1/9 | 1 | 1/3 | 1/3 | 1/3 | 1/9 | 1/9 | 1/3 |
MFD | 1/5 | 3 | 1 | 3 | 3 | 1/3 | 1/3 | 1 |
IF | 1/3 | 3 | 1/3 | 1 | 1 | 1/3 | 1/5 | 3 |
Dd | 1/5 | 3 | 1/3 | 1 | 1 | 1/9 | 1/7 | 1/3 |
BA | 1 | 9 | 3 | 3 | 9 | 1 | 1 | 5 |
BS | 1 | 9 | 3 | 5 | 7 | 1 | 1 | 7 |
BL | 1/7 | 3 | 1 | 1/3 | 3 | 1/5 | 1/7 | 1 |
SUM | 3.98 | 40.06 | 14 | 16.66 | 29.33 | 4.08 | 3.93 | 24.66 |
Parameter | VAF | OFD | MFD | IF | DD | A | BS | BL | Eigen-Values (Weights) | Weight% | Consistency |
---|---|---|---|---|---|---|---|---|---|---|---|
VAF | 0.251 | 0.225 | 0.357 | 0.180 | 0.170 | 0.245 | 0.254 | 0.284 | 0.246 | 24.574 | 8.690 |
OFD | 0.028 | 0.025 | 0.024 | 0.020 | 0.011 | 0.027 | 0.028 | 0.014 | 0.022 | 2.208 | 8.380 |
MFD | 0.050 | 0.075 | 0.071 | 0.180 | 0.102 | 0.082 | 0.085 | 0.041 | 0.086 | 8.571 | 8.592 |
IF | 0.084 | 0.076 | 0.024 | 0.060 | 0.034 | 0.082 | 0.051 | 0.122 | 0.066 | 6.640 | 8.641 |
DD | 0.050 | 0.076 | 0.024 | 0.060 | 0.034 | 0.027 | 0.036 | 0.014 | 0.040 | 4.009 | 8.257 |
A | 0.251 | 0.225 | 0.214 | 0.180 | 0.307 | 0.245 | 0.254 | 0.203 | 0.235 | 23.479 | 8.589 |
BS | 0.251 | 0.225 | 0.214 | 0.300 | 0.239 | 0.245 | 0.254 | 0.284 | 0.251 | 25.141 | 8.659 |
BL | 0.036 | 0.075 | 0.071 | 0.020 | 0.102 | 0.049 | 0.036 | 0.041 | 0.054 | 5.378 | 8.667 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | λ max = 8.69 | ||
CI = (0.099) | |||||||||||
RI = 1.41 | |||||||||||
CR = 0.069 |
Areas with Categories of RWH Potential; VAF Calculated Using the Finkel Method [30] | |||||
RWH Potentiality Class | Very Low | Low | Moderate | High | Very High |
Area (km2) | 1161.1 | 320.59 | 616.77 | 1110.72 | 303.83 |
Area (% of total watershed area) Total watershed area 3513.01 km2 | 33.05 | 9.12 | 17.55 | 31.61 | 8.64 |
Areas with Categories of RWH Potential; VAF Calculated Using the SCS-CN Method [29] | |||||
RWH Potentiality Class | Very Low | Low | Moderate | High | Very High |
Area (km2) | 801.48 | 936.08 | 607.85 | 555.27 | 612.33 |
Area (% of total watershed area) Total watershed area 3513.01 km2 | 22.81 | 26.65 | 17.30 | 15.81 | 17.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elewa, H.H.; Zelenakova, M.; Nosair, A.M. Integration of the Analytical Hierarchy Process and GIS Spatial Distribution Model to Determine the Possibility of Runoff Water Harvesting in Dry Regions: Wadi Watir in Sinai as a Case Study. Water 2021, 13, 804. https://doi.org/10.3390/w13060804
Elewa HH, Zelenakova M, Nosair AM. Integration of the Analytical Hierarchy Process and GIS Spatial Distribution Model to Determine the Possibility of Runoff Water Harvesting in Dry Regions: Wadi Watir in Sinai as a Case Study. Water. 2021; 13(6):804. https://doi.org/10.3390/w13060804
Chicago/Turabian StyleElewa, Hossam H., Martina Zelenakova, and Ahmed M. Nosair. 2021. "Integration of the Analytical Hierarchy Process and GIS Spatial Distribution Model to Determine the Possibility of Runoff Water Harvesting in Dry Regions: Wadi Watir in Sinai as a Case Study" Water 13, no. 6: 804. https://doi.org/10.3390/w13060804
APA StyleElewa, H. H., Zelenakova, M., & Nosair, A. M. (2021). Integration of the Analytical Hierarchy Process and GIS Spatial Distribution Model to Determine the Possibility of Runoff Water Harvesting in Dry Regions: Wadi Watir in Sinai as a Case Study. Water, 13(6), 804. https://doi.org/10.3390/w13060804