Driving Forces of Food Consumption Water Footprint in North China
Abstract
:1. Introduction
2. Methodology and Data Sources
2.1. WF Accounting
2.2. Decomposition of per Capita WF of Food Consumption
2.3. Study Area
2.4. Data and Materials
3. Results and Discussions
3.1. Changes of per Capita WF of Food Consumption in 2005–2017
3.2. Decomposition Results from Three Periods
3.2.1. Driving Forces of per Capita WF Change in 2005–2009
3.2.2. Driving Forces of per Capita WF Change in 2010–2013
3.2.3. Driving Forces of per Capita WF Change in 2014–2017
3.3. Effects of Driving Factors on WF Changes
3.3.1. Water Footprint Intensity Effect
3.3.2. Consumption Structure Effect
3.3.3. Food Consumption per Capita Effect
3.3.4. Proportion of Population Effect
4. Conclusions
- Beijing’s per capita WF of food consumption was the highest in 2014 and then began to decline. Tianjin and Inner Mongolia showed an increasing trend, whereas other regions vary slightly. In terms of the food consumption structure changes, the grain WF of the six provinces in North China has shown a downward trend, whereas the meat WF has shown an upward trend.
- For Beijing and Tianjin, the urban effect played a major role, and the main driving force was the per capita food consumption effect from 2005 to 2017, indicating the increasing consumption levels of these two regions. For Hebei, Shandong, Shanxi, and Inner Mongolia, the rural effect was stronger than the urban effect in 2005–2009 mainly due to the decreasing rural population proportion and food consumption per capita. However, the urban effect played a major role in 2010–2017. In general, the main driving forces of per capita WF increase were the increase in the proportion of the urban population and per capita food consumption. Furthermore, the urban effect was positive, but the rural effect was negative for all regions.
- The WF efficiency increased in each province, in which the effect in urban was stronger due to the higher water use efficiency. Except in Tianjin and Shandong, the consumption structure effect was positive due to the increasing proportion of meat. Food consumption per capita effect was the major driving force in Beijing and Tianjin but exerted less in the other four provinces. Naturally, the rural population proportion effect was negative, whereas the urban population proportion effect was positive. Beijing and Tianjin have less population proportion effect because of their strict population control measures.
5. Policy Implications
5.1. Improving Water Use Efficiency in Food Production
5.2. Advocating Healthy and Sustainable Food Consumption Structure
5.3. Increasing Food Consumption but Reducing Food Waste
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A.
Period | Region | Rural | Urban | ||||||
---|---|---|---|---|---|---|---|---|---|
∆WFu(I) | ∆WFu(S) | ∆WFU(V) | ∆WFu(U) | WFr(I) | ∆WFr(S) | ∆WFr(V) | ∆WFr(U′) | ||
2005–2009 | Beijing | −2.13 | 0.58 | −3.39 | −5.86 | −10.25 | −5.24 | 103.49 | 4.92 |
Tianjin | −2.92 | 10.41 | −0.27 | −11.18 | −4.45 | 5.34 | 106.57 | 9.60 | |
Hebei | −18.97 | −0.50 | −14.39 | −19.27 | −4.76 | 1.50 | −19.80 | 23.84 | |
Shandong | −7.25 | −8.28 | 1.68 | −10.45 | −3.21 | −11.42 | 10.13 | 15.05 | |
Shanxi | 7.29 | −1.12 | −18.84 | −18.54 | −1.31 | −2.79 | −13.99 | 16.35 | |
Inner Mong | 0.47 | 19.01 | −21.16 | −40.51 | 0.50 | 5.61 | 1.22 | 28.17 | |
2009–2013 | Beijing | −1.43 | 2.61 | 3.80 | −5.39 | −10.97 | 0.02 | 91.86 | 5.93 |
Tianjin | −1.90 | −7.04 | 4.07 | −16.02 | −7.14 | −74.72 | 146.86 | 18.58 | |
Hebei | −13.36 | −5.16 | 25.76 | −13.31 | −8.17 | −6.64 | 21.45 | 16.83 | |
Shandong | −3.33 | 15.85 | 1.86 | −15.68 | −1.94 | −16.85 | 7.75 | 23.90 | |
Shanxi | −55.56 | 9.46 | −7.01 | −27.61 | −30.11 | 34.37 | 3.11 | 26.42 | |
Inner Mong | −26.71 | −6.13 | 22.88 | −33.34 | -17.73 | 48.58 | 30.72 | 26.99 | |
2013–2017 | Beijing | −0.34 | −3.41 | −4.60 | -0.69 | −2.74 | 24.12 | −89.19 | 0.82 |
Tianjin | −1.69 | −2.37 | 13.54 | -3.91 | −5.52 | 24.84 | 22.78 | 4.69 | |
Hebei | −4.71 | 5.36 | −7.88 | -21.28 | −5.10 | 11.74 | 1.33 | 28.37 | |
Shandong | −1.74 | 16.63 | 4.20 | -22.92 | −1.27 | 6.90 | 0.08 | 31.26 | |
Shanxi | −3.43 | 8.67 | −0.59 | -18.60 | −6.36 | 3.13 | 6.34 | 19.93 | |
Inner Mong | 0.89 | 48.63 | -25.31 | -21.68 | 0.51 | 1.80 | 61.99 | 22.52 |
Factors | Region | Rural | Urban | ||||||
---|---|---|---|---|---|---|---|---|---|
∆(2005–2009) | ∆(2009–2013) | ∆(2013–2017) | Total | ∆(2005–2009) | ∆(2009–2013) | ∆(2013–2017) | Total | ||
Water Footprint Intensity | Beijing | −2.13 | −1.43 | −0.34 | −3.90 | −10.25 | −10.97 | −2.74 | −23.96 |
Tianjin | −2.92 | −1.90 | −1.69 | −6.51 | −4.45 | −7.14 | −5.52 | −17.11 | |
Hebei | −18.97 | −13.36 | −4.71 | −37.04 | −4.76 | −8.17 | −5.10 | −18.03 | |
Shandong | −7.25 | −3.33 | −1.74 | −12.33 | −3.21 | −1.94 | −1.27 | −6.42 | |
Shanxi | 7.29 | −55.56 | −3.43 | −51.69 | −1.31 | −30.11 | −6.36 | −37.78 | |
Inner Mong | 0.47 | −26.71 | 0.89 | −25.34 | 0.50 | −17.73 | 0.51 | −16.72 | |
Consumption Structure | Beijing | 0.58 | 2.61 | −3.41 | −0.22 | −5.24 | 0.02 | 24.12 | 18.90 |
Tianjin | 10.41 | −7.04 | −2.37 | 1.00 | 5.34 | −74.72 | 24.84 | −44.55 | |
Hebei | −0.50 | −5.16 | 5.36 | −0.30 | 1.50 | −6.64 | 11.74 | 6.61 | |
Shandong | −8.28 | 15.85 | 16.63 | 24.20 | −11.42 | −16.85 | 6.90 | −21.37 | |
Shanxi | −1.12 | 9.46 | 8.67 | 17.01 | −2.79 | 34.37 | 3.13 | 34.71 | |
Inner Mong | 19.01 | −6.13 | 48.63 | 61.50 | 5.61 | 48.58 | 1.80 | 56.00 | |
Food Consumption Per Capita | Beijing | −3.39 | 3.80 | −4.60 | −4.19 | 103.49 | 91.86 | −89.19 | 106.15 |
Tianjin | −0.27 | 4.07 | 13.54 | 17.35 | 106.57 | 146.86 | 22.78 | 276.21 | |
Hebei | −14.39 | 25.76 | −7.88 | 3.48 | −19.80 | 21.45 | 1.33 | 2.98 | |
Shandong | 1.68 | 1.86 | 4.20 | 7.74 | 10.13 | 7.75 | 0.08 | 17.96 | |
Shanxi | −18.84 | −7.01 | −0.59 | −26.45 | −13.99 | 3.11 | 6.34 | −4.54 | |
Inner Mong | −21.16 | 22.88 | −25.31 | −23.59 | 1.22 | 30.72 | 61.99 | 93.93 | |
Proportion of Population | Beijing | −5.86 | −5.39 | −0.69 | −11.95 | 4.92 | 5.93 | 0.82 | 11.67 |
Tianjin | −11.18 | −16.02 | −3.91 | −31.11 | 9.60 | 18.58 | 4.69 | 32.88 | |
Hebei | −19.27 | −13.31 | −21.28 | −53.86 | 23.84 | 16.83 | 28.37 | 69.03 | |
Shandong | −10.45 | −15.68 | −22.92 | −49.04 | 15.05 | 23.90 | 31.26 | 70.21 | |
Shanxi | −18.54 | −27.61 | −18.60 | −64.75 | 16.35 | 26.42 | 19.93 | 62.69 | |
Inner Mong | −40.51 | −33.34 | −21.68 | −95.54 | 28.17 | 26.99 | 22.52 | 77.67 |
References
- Guan, D.; Hubacek, K. Assessment of regional trade and virtual water flows in China. Ecol. Econ. 2007, 61, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, W. Water Sustainability for China and Beyond. Science 2012, 337, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 2017, 140, 753–765. [Google Scholar] [CrossRef]
- Song, G.B.; Li, M.J.; Semakula, H.M.; Zhang, S.S. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Sci. Total Environ. 2015, 529, 191–197. [Google Scholar] [CrossRef]
- Ministry of Water Resources the people’s Republic of China. China Water Resource Bulletin; Ministry of Water Resources the people’s Republic of China: Beijing, China, 2019.
- Cai, B.M.; Liu, B.B.; Zhang, B. Evolution of Chinese urban household’s water footprint. J. Clean. Prod. 2019, 208, 1–10. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M.; Allen, R.G.; Pereira, L.S.; Martin, S. Crop Evapotranspiration-Guidelines For Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.; Martinez-Aldaya, M.; Mekonnen, M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Feng, K.; Chapagain, A.; Suh, S.; Pfister, S.; Hubacek, K. Comaparasion of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Sys. Res. 2011, 23, 371–385. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, B.; Yang, Z.F. National water footprint in an input-output framework-A case study of China 2002. Ecol. Model. 2009, 220, 245–253. [Google Scholar] [CrossRef]
- Cai, B.M.; Zhang, W.; Hubacek, K.; Feng, K.S.; Li, Z.L.; Liu, Y.W.; Liu, Y. Drivers of virtual water flows on regional water scarcity in China. J. Clean. Prod. 2019, 207, 1112–1122. [Google Scholar] [CrossRef]
- Deng, G.Y.; Xu, Y.; Yu, Z.Y. Accounting and change trend analysis of food production water footprint in China. Water Policy 2018, 20, 758–776. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y. Assessing water footprint at river basin level: A case study for the Heihe River Basin in northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2771–2781. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.; Hung, P.Q. Virtual water trade. In Value of Water Research Report Series No. 11; IHE: Delft, The Netherlands, 2002. [Google Scholar]
- Feng, K.; Hubacek, K.; Pfister, S.; Yu, Y.; Sun, L. Virtual Scarce Water in China. Environ. Sci. Technol. 2014, 48, 7704–7713. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. The driving force of water footprint under the rapid urbanization process: A structural decomposition analysis for Zhangye city in China. J. Clean. Prod. 2017, 163, S322–S328. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Huang, H.C.; Mu, A.R. Properties and linkages of some index decomposition analysis methods. Energy Policy 2009, 37, 4624–4632. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Akbostancı, E.; Tunç, G.İ.; Türüt-Aşık, S. CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Appl. Energy 2011, 88, 2273–2278. [Google Scholar] [CrossRef]
- Rong, Y.; Rodrigues, J.F.D.; Behrens, P. Driving forces of household carbon emissions in China: A spatial decomposition analysis. J. Clean. Prod. 2019, 233, 932–945. [Google Scholar] [CrossRef]
- Shi, L.; Jing, S.; Lin, J.; Yang, Z. Factor decomposition of carbon emissions in Chinese megacities. J. Environ. Sci. 2019, 75, 212–218. [Google Scholar] [CrossRef]
- Qian, Y.; Cao, H.; Huang, S. Decoupling and decomposition analysis of industrial sulfur dioxide emissions from the industrial economy in 30 Chinese provinces. J. Environ. Manag. 2020, 260, 110142. [Google Scholar] [CrossRef]
- Huang, W.; Gao, B.; Lin, J.Y.; Cui, S.H.; Zhong, Q.M.; Huang, C.L. Driving forces of nitrogen input into city-level food systems: Comparing a food-source with a food-sink prefecture-level city in China. Resour. Conserv. Recycl. 2020, 160, 104850. [Google Scholar] [CrossRef]
- Yang, C.; Cui, X.F. Global Changes and Drivers of the Water Footprint of Food Consumption: A Historical Analysis. Water 2014, 6, 1435–1452. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Tian, X.; Geng, Y.; Zhong, S.; Cui, X.; Zhang, X.; Moss, D.A.; Bleischwitz, R. Driving Factors of Agricultural Virtual Water Trade between China and the Belt and Road Countries. Environ. Sci. Technol. 2019, 53, 5877–5886. [Google Scholar] [CrossRef]
- Tamea, S.; Carr, J.A.; Laio, F.; Ridolfi, L. Drivers of the virtual water trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef]
- Wan, L.; Cai, W.; Jiang, Y.; Wang, C. Impacts on quality-induced water scarcity: Drivers of nitrogen-related water pollution transfer under globalization from 1995 to 2009. Environ. Res. Lett. 2016, 11, 074017. [Google Scholar] [CrossRef]
- Gerveni, M.; Avelino, A.F.T.; Dall’erba, S. Drivers of Water Use in the Agricultural Sector of the European Union 27. Environ. Sci. Technol. 2020, 54, 9191–9199. [Google Scholar] [CrossRef]
- Zhao, C.F.; Chen, B. Driving Force Analysis of the Agricultural Water Footprint in China Based on the LMDI Method. Environ. Sci. Technol. 2014, 48, 12723–12731. [Google Scholar] [CrossRef]
- Vanham, D.; del Pozo, S.; Pekcan, A.G.; Keinan-Boker, L.; Trichopoulou, A.; Gawlik, B.M. Water consumption related to different diets in Mediterranean cities. Sci. Total Environ. 2016, 573, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Sun, S. Water footprints in Beijing, Tianjin and Hebei: A perspective from comparisons between urban and rural consumptions in different regions. Sci. Total Environ. 2019, 647, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Lin, J.; Zhao, X.; Zhao, S.; Kou, L. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City. Sustainability 2017, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Du, T.; Wang, S.; Mei, X.; Gong, D.; Chen, Y.; Kang, S. Current Situation and Future Security of Agricultural Water Resources in North China. Eng. Sci. 2019, 21, 28–37. [Google Scholar] [CrossRef]
- Yan, W.U.; Xiaoke, W.; Fei, L.U. Ecological Footprint and Water Footprint of Food Consumption in Beijing. Res. Sci. 2011, 33, 1145–1152. (In Chinese) [Google Scholar]
- Sinton, J.E.; Levine, M.D. Changing energy intensity in Chinese industry: The relatively importance of structural shift and intensity change. Energy Policy 1994, 22, 239–255. [Google Scholar] [CrossRef]
- Fan, J.L.; Wang, J.D.; Zhang, X.; Kong, L.S.; Song, Q.Y. Exploring the changes and driving forces of water footprints in China from 2002 to 2012: A perspective of final demand. Sci. Total Environ. 2019, 650, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.W.; Liu, H.L.; Yang, T.T.; Xu, X.Y. A path-based structural decomposition analysis of Beijing’s water footprint evolution. Environ. Earth Sci. 2015, 74, 2729–2742. [Google Scholar] [CrossRef]
- Yang, Z.W.; Liu, H.L.; Xu, X.Y.; Yang, T.T. Applying the Water Footprint and dynamic Structural Decomposition Analysis on the growing water use in China lduring 1997–2007. Ecol. Indic. 2016, 60, 634–643. [Google Scholar] [CrossRef]
- Liu, H. Household registration, basic public goods supply and urbanization—Empirical analysis based on urban characteristics and migration population monitoring data. Econ. Theory Bus. Manag. 2019, 8, 60–74. (In Chinese) [Google Scholar]
- Vanham, D.; Gawlik, B.M.; Bidoglio, G. Food consumption and related water resources in Nordic cities. Ecol. Indic. 2017, 74, 119–129. [Google Scholar] [CrossRef]
- IFMeD. Website of the International Foundation of Mediterranean Diet. Available online: http://www.ifmed.org (accessed on 2 March 2021).
- Fan, Y.B.; Wang, C.G.; Nan, Z.B. Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China. Agric. Water Manag. 2014, 146, 335–345. [Google Scholar] [CrossRef]
- Yang, L.; Qu, W.; Liu, C. Reseach on the groundwater resource-function decline and sustainable exploitation. J. Arid Land Res. Environ. 2013, 27, 8–16. (In Chinese) [Google Scholar]
- Huang, F.; Liu, Z.; Ridoutt, B.G.; Huang, J.; Li, B. China’s water for food under growing water scarcity. Food Secur. 2015, 7, 933–949. [Google Scholar] [CrossRef]
- Antonelli, M.; Sartori, M. Unfolding the potential of the virtual water concept. What is still under debate? Environ. Sci. Policy 2015, 50, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 2590. [Google Scholar] [CrossRef]
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lin, J.; Li, H.; Huang, R.; Han, H. Driving Forces of Food Consumption Water Footprint in North China. Water 2021, 13, 810. https://doi.org/10.3390/w13060810
Liu Y, Lin J, Li H, Huang R, Han H. Driving Forces of Food Consumption Water Footprint in North China. Water. 2021; 13(6):810. https://doi.org/10.3390/w13060810
Chicago/Turabian StyleLiu, Yang, Jianyi Lin, Huimei Li, Ruogu Huang, and Hui Han. 2021. "Driving Forces of Food Consumption Water Footprint in North China" Water 13, no. 6: 810. https://doi.org/10.3390/w13060810
APA StyleLiu, Y., Lin, J., Li, H., Huang, R., & Han, H. (2021). Driving Forces of Food Consumption Water Footprint in North China. Water, 13(6), 810. https://doi.org/10.3390/w13060810