Quantitative Ascription of Sediment Discharge Changes of Two Highly Sediment-Loaded Tributaries of the Yellow River in China: The Importance of Selecting Rainfall Index and Timescale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Detection of Change-Points
2.3.2. Characteristic Indexes of Rainfall and Sediment Discharge
2.3.3. Meng’s Test for Correlation Coefficient
2.3.4. Attribution of Sediment Discharge Change to Natural and Anthropogenic Factors
3. Results and Discussion
3.1. Rainfall Characteristic Values from 1956 to 2016
3.2. Changes of Sediment Discharge
3.3. Significance Analysis of Correlation Coefficient
3.4. Attribution of Sediment Discharge Variations
3.4.1. Attribution Analysis on Yearly Scale
3.4.2. Attribution Analysis on Monthly Scale
3.4.3. Partition of Effects of Streamflow and C-Q Relationship Changes on Sediment Discharge Variations
3.4.4. Impact of Human Activity on the Sediment Discharge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Ni, J.; Chang, F.; Yue, Y.; Frolova, N.; Magritsky, D.; Borthwick, A.G.; Ciais, P.; Wang, Y.; Zheng, C.; et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 2020, 65, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Naik, P.K.; Jay, D.A. Distinguishing human and climate influences on the Columbia River: Changes in mean flow and sediment transport. J. Hydrol. 2011, 404, 259–277. [Google Scholar] [CrossRef]
- Gupta, H.; Kao, S.-J.; Dai, M. The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. J. Hydrol. 2012, 464–465, 447–458. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, C.; Yu, W.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 60–608, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Yu, X.; Lu, X.X. Factors controlling sediment yield in China’s Loess Plateau. Earth Surf. Process. Landf. 2010, 36, 816–826. [Google Scholar] [CrossRef]
- Nearing, M.A.; Yin, S.-Q.; Borrelli, P.; Polyakov, V.O. Rainfall erosivity: An historical review. Catena 2017, 157, 357–362. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; United States Department of Agriculture: Washington, DC, USA, 1978.
- Angulo-Martínez, M.; Beguería, S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). J. Hydrol. 2009, 379, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.; Ni, J.; Borthwick, A.G.L. Recent changes of water discharge and sediment load in the Yellow River basin, China. Prog. Phys. Geogr. Earth Environ. 2010, 34, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, C.; Zhang, Y.; Ning, T.; Sun, P.; Liu, X.; Ma, X.; Liu, W.; Collins, A.L. Using the Budyko hypothesis for detecting and attributing changes in runoff to climate and vegetation change in the soft sandstone area of the middle Yellow River basin, China. Sci. Total Environ. 2020, 703, 135588. [Google Scholar] [CrossRef]
- Hadour, A.; Mahé, G.; Meddi, M. Climatic and anthropogenic impacts on the decrease of sediment discharge to the Mediterranean coast from the largest river of Maghreb. Int. J. Sediment Res. 2021, 36, 268–278. [Google Scholar] [CrossRef]
- Sharafati, A.; Pezeshki, E.; Shahid, S.; Motta, D. Quantification and uncertainty of the impact of climate change on river discharge and sediment yield in the Dehbar river basin in Iran. J. Soils Sediments 2020, 20, 2977–2996. [Google Scholar] [CrossRef]
- Miao, C.; Ni, J.; Borthwick, A.G.L.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Chang. 2011, 76, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; He, X.; Bao, Y.; Zhang, X.; Guo, F.; Zhu, H. Determining the relative contributions of climate change and multiple human activities to variations of sediment regime in the Minjiang River, China. Hydrol. Process. 2012, 27, 3547–3559. [Google Scholar] [CrossRef]
- Wu, C.; Yang, S.; Lei, Y.-P. Quantifying the anthropogenic and climatic impacts on water discharge and sediment load in the Pearl River (Zhujiang), China (1954–2009). J. Hydrol. 2012, 452–453, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.L.; Xu, K.H.; Milliman, J.D.; Yang, H.F.; Wu, C.S. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci. Rep. 2015, 5, 12581. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Zhao, G.; Kondolf, G.M.; Mu, X.; Han, M.; He, Z.; Rubin, Z.; Wang, F.; Gao, P.; Sun, W. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 2017, 148, 126–137. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Ouyang, W.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 2018, 613–614, 798–809. [Google Scholar] [CrossRef]
- Pandey, A.; Himanshu, S.K.; Mishra, S.; Singh, V.P. Physically based soil erosion and sediment yield models revisited. Catena 2016, 147, 595–620. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, G.; Fu, B.; Zhang, L. Explanation of climate and human impacts on sediment discharge change in Darwinian hydrology: Derivation of a differential equation. J. Hydrol. 2018, 559, 827–834. [Google Scholar] [CrossRef]
- Shi, H.; Shao, M. Soil and water loss from the Loess Plateau in China. J. Arid. Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Hou, J.; Huang, M.; Li, Z.; Xu, K.; Zhang, D.; Bai, G.; Wang, C. Impact of soil and water conservation measures and precipitation on streamflow in the middle and lower reaches of the Hulu River basin, China. Catena 2020, 195, 104792. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Liu, Y.; Shi, Z.-H.; López-Vicente, M.; Wu, G.-L. Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. Catena 2020, 195, 104787. [Google Scholar] [CrossRef]
- Yang, K.; Lu, C. Evaluation of land-use change effects on runoff and soil erosion of a hilly basin—the Yanhe River in the Chinese Loess Plateau. Land Degrad. Dev. 2018, 29, 1211–1221. [Google Scholar] [CrossRef]
- Gao, P.; Deng, J.; Chai, X.; Mu, X.; Zhao, G.; Shao, H.; Sun, W. Dynamic sediment discharge in the Hekou–Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Tang, K. Soil and Water Conservation in China; Science China Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Ma, W.; Zhang, X. Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau. J. Arid. Land 2016, 8, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Ziadat, F.M.; Taimeh, A.Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev. 2013, 24, 582–590. [Google Scholar] [CrossRef]
- Li, X.; Yue, G.; Su, R.; Yu, J. Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method. J. Groundw. Sci. Eng. 2016, 4, 103–109. (In Chinese) [Google Scholar]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Li, G.; Li, P. Impacts of precipitation and land use change on runoff and sediment in Luoyugou watershed. J. Soil Water Cons. 2018, 32, 29–34, 40. (In Chinese) [Google Scholar]
- Wan, L.; Zhang, X.P.; Ma, Q.; Zhang, J.J.; Ma, T.Y.; Sun, Y.P. Spatiotemporal characteristics of precipitation and extreme events on the Loess Plateau of China between 1957 and 2009. Hydrol. Process. 2013, 28, 4971–4983. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Y.; Yan, M.; Zhao, X. Quantitative estimation of the impact of precipitation and human activities on runoff change of the Huangfuchuan River basin. J. Geogr. Sci. 2012, 22, 906–918. [Google Scholar] [CrossRef]
- Fan, L. Consideration and countermeasure on water interception of Kuye River—The first level branch in middle reaches of the Yellow River. Groundwater 2004, 26, 236–241. (In Chinese) [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126. [Google Scholar] [CrossRef]
- Martínez, M.D.; Serra, C.; Burgueño, A.; Lana, X. Time trends of daily maximum and minimum temperatures in Catalonia (ne Spain) for the period 1975–2004. Int. J. Clim. 2009, 30, 267–290. [Google Scholar] [CrossRef] [Green Version]
- Zuo, D.; Xu, Z.; Wu, W.; Zhao, J.; Zhao, F. Identification of streamflow response to climate change and human activities in the Wei River basin, China. Water Resour. Manag. 2014, 28, 833–851. [Google Scholar] [CrossRef]
- Arnoldus, H.M.J. Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. Nature 1977, 414, 405–416. [Google Scholar]
- Ma, X.Q.; Zheng, M.G. Statistical evaluation of proxies for the R factor of the Universal Soil Loss Equation. Resour. Sci. 2018, 40, 1622–1633. (In Chinese) [Google Scholar]
- Meng, X.L.; Rosenthal, R.; Rubin, D.B. Comparing correlated correlation-coefficients. Psychol. Bull. 1992, 111, 172–175. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, X. Statistical determination of rainfall-runoff erosivity indices for single storms in the Chinese Loess Plateau. PLoS ONE 2015, 10, e0117989. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Shi, C.; Zhou, Y.; Fan, X.; Shao, W. A study on the annual runoff change and its relationship with water and soil conservation practices and climate change in the middle Yellow River basin. Catena 2013, 100, 31–41. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Fan, W.; Jia, Y.Y.; Xing, G. Analysis of water and sediment reduction by soil and water conservation measures in Huangfuchuan watershed. Yellow River 2003, 9, 26–27. (In Chinese) [Google Scholar]
- Guo, Q.; Yang, Y.; Xiong, X. Using hydrologic simulation to identify contributions of climate change and human activity to runoff changes in the Kuye River basin, China. Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Gao, P.; Li, P.; Zhao, B.; Xu, R.; Zhao, G.; Sun, W.; Mu, X. Use of double mass curves in hydrologic benefit evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- Jiang, X.H.; Gu, X.W.; He, H.M. The influence of coal mining on water resources in the Kuye River basin. J. Nat. Resour. 2010, 25, 300–307. (In Chinese) [Google Scholar]
- Zhao, Y.; Hu, C.; Zhang, X.M.; Wang, Y.S.; Cheng, C.; Yin, X.L.; Xie, M. Analysis on runoff and sediment regimes and its causes of the Yellow River in recent 70 years. Trans. Chin. Soc. Agric. Eng. 2018, 34, 112–119. (In Chinese) [Google Scholar]
- Li, H.; Shi, C.; Ma, X.; Liu, W. Quantification of the influencing factors of runoff and sediment discharge changes of the Kuye River catchment in the middle reaches of the Yellow River. Resour. Sci. 2020, 42, 499–507. [Google Scholar] [CrossRef]
- Li, E.H. Response of Runoff and Sediment to Climate and Human Activities in the Huangfuchuan Watershed of the Middle Reaches of the Yellow River. Doctoral Dissertation, Northwest A&F University, Xianyang, China, 2015. [Google Scholar]
Index | Formula |
---|---|
R, rainfall erosivity | |
MFI, modified Fournier index | |
Cvp/Cvs, variation coefficients of precipitation/sediment | |
PCI/SCI, precipitation/sediment concentration index | |
PCD/SCD, precipitation/sediment concentration degree |
Huangfu | Kuye | |||||||
---|---|---|---|---|---|---|---|---|
CVP | PCI | MFI | PCD | CVP | PCI | MFI | PCD | |
1956–1965 | 1.19 | 20.53 | 89.0 | 0.24 | 1.13 | 19.35 | 83.9 | 0.24 |
1966–1975 | 1.20 | 20.73 | 83.7 | 0.22 | 1.20 | 20.56 | 82.9 | 0.24 |
1976–1985 | 1.21 | 21.14 | 86.4 | 0.23 | 1.18 | 20.29 | 79.2 | 0.24 |
1986–1995 | 1.20 | 20.90 | 80.4 | 0.23 | 1.18 | 20.30 | 78.1 | 0.22 |
1996–2005 | 1.12 | 18.91 | 69.2 | 0.20 | 1.12 | 18.95 | 67.3 | 0.20 |
2006–2016 | 1.07 | 18.04 | 72.9 | 0.18 | 1.04 | 17.45 | 69.2 | 0.16 |
Huangfu | Kuye | |||||
---|---|---|---|---|---|---|
Cvs | SCI | SCD | Cvs | SCI | SCD | |
1956–1989 | 2.31 | 54.34 | 0.69 | 3.54 | 56.49 | 0.74 |
2006–2016 | 2.52 | 67.9 | 0.78 | 2.14 | 48.02 | 0.71 |
Huangfu | Kuye | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | CVP | PCI | MFI | PCD | P | R | CVP | PCI | MFI | PCD | |
P | * | 0.29 | 1 | 0.57 | 1 | 0.41 | 0.95 | 0.96 | 0.62 | 0.9 | ||
R | 0.97 | 0.77 | 1 | 0.94 | 1 | 0.59 | 0.97 | 0.98 | 0.75 | 0.93 | ||
CVP | 0.71 | 0.23 | 1 | 0.99 | 1 | * | * | 0.96 | ** | 0.31 | ||
PCI | ** | ** | ** | ** | 0.26 | * | * | * | ** | 0.22 | ||
MFI | 0.43 | 0.06 | * | 1 | 1 | 0.38 | 0.25 | 0.99 | 0.99 | 0.94 | ||
PCD | ** | ** | ** | 0.74 | ** | * | * | 0.69 | 0.78 | * |
SD (108 kg·a−1) | Simple Linear Regression | Double Cumulative Curve Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ΔSp (108 kg·a−1) | ΔSh (108 kg·a−1) | ΔSp (%) | ΔSh (%) | ΔSp (108 kg·a−1) | ΔSh (108 kg·a−1) | ΔSp (%) | ΔSh (%) | |||
Huangfu | P1 | 560.87 | ||||||||
P2 | 227.35 | 100.00 | 237.15 | 29.66 | 70.34 | 82.39 | 249.73 | 24.81 | 75.19 | |
P3 | 57.08 | 72.43 | 434.98 | 14.27 | 85.73 | 60.50 | 441.89 | 12.04 | 87.96 | |
Kuye | P1 | 1080.26 | ||||||||
P2 | 109.87 | 277.34 | 692.58 | 28.59 | 71.41 | 306.42 | 721.39 | 29.81 | 70.19 | |
P3 | 11.29 | 101.16 | 967.34 | 9.47 | 90.53 | 114.06 | 1012.34 | 10.13 | 89.87 |
Month | Huangfu | Kuye | ||||||
---|---|---|---|---|---|---|---|---|
Simple | p | Double Cumulative | p | Simple | p | Double Cumulative | p | |
1 | Y = −0.00014x + 0.00086 | 0.57 | Y = 0.0054x − 0.0091 | ** | Y = 0.0071x + 0.061 | 0.19 | Y = 0.056x − 0.34 | ** |
2 | Y = −0.0018x + 0.01 | 0.46 | Y = 0.0054x − 0.11 | ** | Y = 0.014x + 0.13 | 0.07 | Y = 0.069x + 0.41 | ** |
3 | Y = −0.047x + 0.88 | 0.05 | Y = 0.17x + 6.38 | ** | Y = 0.032x + 7.88 | 0.59 | Y = 1.03x + 1.51 | ** |
4 | Y = 0.086x + 0.091 | ** | Y = 0.20x + 5.64 | ** | Y = 0.073x + 1.76 | ** | Y = 0.17x − 0.83 | ** |
5 | Y = −0.066x + 1.61 | 0.05 | Y = 0.14x − 7.08 | ** | Y = 0.050x + 0.97 | ** | Y = 0.088x − 6.80 | ** |
6 | Y =−0.32x − 0.32 | ** | Y = 0.24x + 325.05 | ** | Y = 0.24x + 2.71 | ** | Y = 0.24x + 215.39 | ** |
7 | Y = −0.52x + 76.85 | ** | Y = 0.80x − 357.02 | ** | Y = 1.25x + 113.02 | * | Y = 1.73x − 312.49 | ** |
8 | Y = −0.99x − 4.33 | ** | Y = 0.98x − 313.20 | ** | Y = 1.89x + 73.30 | ** | Y = 2.33x − 824.21 | ** |
9 | Y = −0.35x + 8.94 | 0.06 | Y = 0.34x + 437.97 | ** | Y = 0.74x − 27.85 | ** | Y = 0.45x + 48.04 | ** |
10 | Y = −0.051x + 0.051 | ** | Y = 0.051x + 5.43 | ** | Y = 0.11x + 1.25 | ** | Y = 0.18x + 0.71 | ** |
11 | Y = −0.084x + 0.027 | ** | Y = 0.030x + 0.97 | ** | Y = 0.11x + 1.09 | ** | Y = 0.30x − 0.44 | ** |
12 | Y = −0.0019x − 0.00058 | 0.62 | Y = 0.0014x + 0.031 | ** | Y = 0.14x + 0.11 | * | Y = 0.37x − 0.040 | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Shi, C.; Peng, J.; Liu, W. Quantitative Ascription of Sediment Discharge Changes of Two Highly Sediment-Loaded Tributaries of the Yellow River in China: The Importance of Selecting Rainfall Index and Timescale. Water 2021, 13, 845. https://doi.org/10.3390/w13060845
Ma X, Shi C, Peng J, Liu W. Quantitative Ascription of Sediment Discharge Changes of Two Highly Sediment-Loaded Tributaries of the Yellow River in China: The Importance of Selecting Rainfall Index and Timescale. Water. 2021; 13(6):845. https://doi.org/10.3390/w13060845
Chicago/Turabian StyleMa, Xiaoqing, Changxing Shi, Jia Peng, and Wei Liu. 2021. "Quantitative Ascription of Sediment Discharge Changes of Two Highly Sediment-Loaded Tributaries of the Yellow River in China: The Importance of Selecting Rainfall Index and Timescale" Water 13, no. 6: 845. https://doi.org/10.3390/w13060845
APA StyleMa, X., Shi, C., Peng, J., & Liu, W. (2021). Quantitative Ascription of Sediment Discharge Changes of Two Highly Sediment-Loaded Tributaries of the Yellow River in China: The Importance of Selecting Rainfall Index and Timescale. Water, 13(6), 845. https://doi.org/10.3390/w13060845