Assessment of MERRA-2 and ERA5 to Model the Snow Water Equivalent in the High Atlas (1981–2019)
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Merra-2 Reanalysis
2.3. Era5 Reanalysis
2.4. Dem
2.5. Land Cover
2.6. Modis Snow Cover Area
2.7. Hydro-Climatic Observations
2.8. Era5-Land Swe
3. Methodology
3.1. Snowpack Evolution Modeling
- Micromet computes the spatial distribution of meteorological data (precipitation, air temperature, relative humidity, wind speed, incoming solar radiation and incoming longwave radiation) over the model grid. This distribution can be done at daily, 3 hourly or daily scale depending on the temporal resolution of the input [37].
- EnBal computes the energy fluxes between the snowpack and the atmosphere. It simulates the surface temperature, internal energy, net radiation, sensible heat, latent heat, etc., using the MicroMet outputs. In addition, it simulates the latent and sensible heat fluxes and determines the potential amount of melt [30].
- Snowpack computes the evolution of the height of the snowpack (HS) based on the MicroMet and EnBal outputs.
- SnowTran-3D, this sub-model computes the redistribution of the snow due to wind transport and the blowing snow sublimation [38].
3.2. Evaluation Methodology
4. Results
4.1. Hs Evaluation
4.2. Scf Evaluation
4.3. Discharge Evaluation
4.4. In Situ Precipitation
4.5. Air Temperature
4.6. Era5-Land Swe
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HS | snow height |
SCA | snow cover area |
SCF | snow cover fraction |
SWE | snow water equivalent |
P | precipitation |
T | Temperature |
References
- Agence Japonaise de Coopération Internationale. Etude du Plan de Gestion Integrée des Ressources en Eau dans la Plaine du Haouz; Agence Japonaise de Coopération Internationale: Tokyo, Japan, 2008. [Google Scholar]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Fayad, A.; Gascoin, S.; Faour, G.; Fanise, P.; Drapeau, L.; Somma, J.; Fadel, A.; Bitar, A.A.; Escadafal, R. Snow observations in Mount Lebanon (2011–2016). Earth Syst. Sci. Data 2017, 9, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Araújo, M.B.; Errea, M.; Martinez-Rica, J. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 2007, 17, 420–428. [Google Scholar] [CrossRef]
- Boudhar, A.; Hanich, L.; Boulet, G.; Duchemin, B.; Berjamy, B.; Chehbouni, A. Evaluation of the snowmelt runoff model in the Moroccan High Atlas Mountains using two snow-cover estimates. Hydrol. Sci. J. 2009, 54, 1094–1113. [Google Scholar] [CrossRef]
- N’da, A.B.; Bouchaou, L.; Reichert, B.; Hanich, L.; Brahim, Y.A.; Chehbouni, A.; Beraaouz, E.H.; Michelot, J.L. Isotopic signatures for the assessment of snow water resources in the Moroccan high Atlas mountains: Contribution to surface and groundwater recharge. Environ. Earth Sci. 2016, 75, 755. [Google Scholar] [CrossRef]
- Jarlan, L.; Khabba, S.; Er-Raki, S.; Le Page, M.; Hanich, L.; Fakir, Y.; Merlin, O.; Mangiarotti, S.; Gascoin, S.; Ezzahar, J.; et al. Remote sensing of water resources in semi-arid Mediterranean areas: The joint international laboratory TREMA. Int. J. Remote Sens. 2015, 36, 4879–4917. [Google Scholar] [CrossRef]
- Chehbouni, A.; Escadafal, R.; Duchemin, B.; Boulet, G.; Simonneaux, V.; Dedieu, G.; Mougenot, B.; Khabba, S.; Kharrou, H.; Maisongrande, P.; et al. An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: The SUDMED Programme. Int. J. Remote Sens. 2008, 29, 5161–5181. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev. Water 2016, 3, 461–474. [Google Scholar] [CrossRef]
- Chaponniere, A.; Maisongrande, P.; Duchemin, B.; Hanich, L.; Boulet, G.; Escadafal, R.; Elouaddat, S. A combined high and low spatial resolution approach for mapping snow covered areas in the Atlas mountains. Int. J. Remote Sens. 2005, 26, 2755–2777. [Google Scholar] [CrossRef] [Green Version]
- Boudhar, A.; Duchemin, B.; Hanich, L.; Jarlan, L.; Chaponnière, A.; Maisongrande, P.; Boulet, G.; Chehbouni, A. Long-term analysis of snow-covered area in the Moroccan High-Atlas through remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S109–S115. [Google Scholar] [CrossRef] [Green Version]
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; Le Page, M.; Hagolle, O.; Berjamy, B. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens. Environ. 2015, 160, 72–86. [Google Scholar] [CrossRef]
- Baba, M.W.; Gascoin, S.; Hagolle, O.; Bourgeois, E.; Desjardins, C.; Dedieu, G. Evaluation of Methods for Mapping the Snow Cover Area at High Spatio-Temporal Resolution with VENµS. Remote Sens. 2020, 12, 3058. [Google Scholar] [CrossRef]
- Boudhar, A.; Boulet, G.; Hanich, L.; Sicart, J.E.; Chehbouni, A. Energy fluxes and melt rate of a seasonal snow cover in the Moroccan High Atlas. Hydrol. Sci. J. 2016, 61, 931–943. [Google Scholar] [CrossRef]
- Bouamri, H.; Boudhar, A.; Gascoin, S.; Kinnard, C. Performance of temperature and radiation index models for point-scale snow water equivalent (SWE) simulations in the Moroccan High Atlas Mountains. Hydrol. Sci. J. 2018, 63, 1844–1862. [Google Scholar] [CrossRef]
- Baba, M.W.; Gascoin, S.; Jarlan, L.; Simonneaux, V.; Hanich, L. Variations of the Snow Water Equivalent in the Ourika catchment (Morocco) over 2000–2018 using downscaled MERRA-2 data. Water 2018, 10, 1120. [Google Scholar] [CrossRef] [Green Version]
- Baba, M.W.; Gascoin, S.; Kinnard, C.; Marchane, A.; Hanich, L. Effect of digital elevation model resolution on the simulation of the snow cover evolution in the High Atlas. Water Resour. Res. 2019, 55, 5360–5378. [Google Scholar] [CrossRef]
- Tuel, A.; Chehbouni, A.; Eltahir, E.A. Dynamics of seasonal snowpack over the High Atlas. J. Hydrol. 2020, 125657. [Google Scholar] [CrossRef]
- Raimonet, M.; Oudin, L.; Thieu, V.; Silvestre, M.; Vautard, R.; Rabouille, C.; Moigne, P.L. Evaluation of Gridded Meteorological Datasets for Hydrological Modeling. J. Hydrometeorol. 2017, 18, 3027–3041. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Mernild, S.H.; Liston, G.E.; Hiemstra, C.A.; Yde, J.C.; McPhee, J.; Malmros, J.K. The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile. Int. J. Climatol. 2017, 37, 1699–1715. [Google Scholar] [CrossRef]
- Margulis, S.A.; Liu, Y.; Baldo, E. A joint Landsat-and MODIS-based reanalysis approach for midlatitude montane seasonal snow characterization. Front. Earth Sci. 2019, 7, 272. [Google Scholar] [CrossRef]
- Alonso-Gónzalez, E.; Gutmann, E.; Aalstad, K.; Fayad, A.; Gascoin, S. Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely-sensed fractional snow-covered area. Hydrol. Earth Syst. Sci. Discuss. 2020, 1–31. [Google Scholar] [CrossRef]
- Baba, M.W.; Gascoin, S.; Hanich, L. Assimilation of Sentinel-2 data into a snowpack model in the High Atlas of Morocco. Remote Sens. 2018, 10, 1982. [Google Scholar] [CrossRef] [Green Version]
- Zkhiri, W.; Tramblay, Y.; Hanich, L.; Jarlan, L.; Ruelland, D. Spatiotemporal characterization of current and future droughts in the High Atlas basins (Morocco). Theor. Appl. Climatol. 2019, 135, 593–605. [Google Scholar] [CrossRef]
- Lehmann, J.; Kretschmer, M.; Schauberger, B.; Wechsung, F. Potential for early forecast of Moroccan wheat yields based on climatic drivers. Geophys. Res. Lett. 2020, 47, e2020GL087516. [Google Scholar] [CrossRef]
- Jourdier, B. Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France. Adv. Sci. Res. 2020, 17, 63–77. [Google Scholar] [CrossRef]
- Liston, G.E.; Elder, K. A distributed snow-evolution modeling system (SnowModel). J. Hydrometeorol. 2006, 7, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 14 February 2021).
- Simonneaux, V.; Hanich, L.; Boulet, G.; Thomas, S. Modelling runoff in the Rheraya Catchment (High Atlas, Morocco) using the simple daily model GR4J. Trends over the last decades. In In Proceedings of the 13th IWRA World Water Congress, Montpellier, France, 1–4 September 2008. [Google Scholar]
- Modern-Era Retrospective Analysis for Research and Applications, Version 2. Available online: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (accessed on 16 January 2021).
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. CGIAR-CSI SRTM 90m Database. 2008, 15, 25–54. Available online: http://srtm.Csi.Cgiar.Org (accessed on 23 March 2021).
- ESA. Land Cover CCI Product User Guide Version 2. Techical Report. 2017. Available online: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv22.0.pdf (accessed on 17 March 2021).
- Hall, D.; Riggs, G.; Salomonson, V. MODIS/Terra Snow Cover Daily L3 Global 500 m Grid, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [Google Scholar]
- Liston, G.E.; Elder, K. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeorol. 2006, 7, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Liston, G.E.; Haehnel, R.B.; Sturm, M.; Hiemstra, C.A.; Berezovskaya, S.; Tabler, R.D. Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol. 2007, 53, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Liston, G.E.; Itkin, P.; Stroeve, J.; Tschudi, M.; Stewart, J.S.; Pedersen, S.H.; Reinking, A.K.; Elder, K. A Lagrangian Snow-Evolution System for Sea-Ice Applications (SnowModel-LG): Part I—Model Description. J. Geophys. Res. Ocean. 2020, 125, e2019JC015913. [Google Scholar] [CrossRef]
- Gascoin, S.; Lhermitte, S.; Kinnard, C.; Bortels, K.; Liston, G.E. Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Adv. Water Resour. 2013, 55, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Fayad, A.; Gascoin, S. The role of liquid water percolation representation in estimating snow water equivalent in a Mediterranean mountain region (Mount Lebanon). Hydrol. Earth Syst. Sci. 2020, 24, 1527–1542. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Blöschl, G. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol. 2008, 358, 240–258. [Google Scholar] [CrossRef]
- Di Marco, N.; Avesani, D.; Righetti, M.; Zaramella, M.; Majone, B.; Borga, M. Reducing hydrological modelling uncertainty by using MODIS snow cover data and a topography-based distribution function snowmelt model. J. Hydrol. 2021, 126020. [Google Scholar] [CrossRef]
- Gottardi, F.; Obled, C.; Gailhard, J.; Paquet, E. Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. J. Hydrol. 2012, 432, 154–167. [Google Scholar] [CrossRef]
- Nepal, S.; Krause, P.; Flügel, W.A.; Fink, M.; Fischer, C. Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrol. Process 2014, 28, 1329–1344. [Google Scholar] [CrossRef]
- Margulis, S.A.; Cortés, G.; Girotto, M.; Durand, M. A Landsat-era Sierra Nevada snow reanalysis (1985–2015). J. Hydrometeorol. 2016, 17, 1203–1221. [Google Scholar] [CrossRef]
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, N.; Righetti, M.; Avesani, D.; Zaramella, M.; Notarnicola, C.; Borga, M. Comparison of MODIS and Model-Derived Snow-Covered Areas: Impact of Land Use and Solar Illumination Conditions. Geosciences 2020, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Fiddes, J.; Aalstad, K.; Westermann, S. Hyper-resolution ensemble-based snow reanalysis in mountain regions using clustering. Hydrol. Earth Syst. Sci. 2019, 23, 4717–4736. [Google Scholar] [CrossRef] [Green Version]
- Andreadis, K.M.; Lettenmaier, D.P. Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour. 2006, 29, 872–886. [Google Scholar] [CrossRef]
- Riboust, P.; Thirel, G.; Le Moine, N.; Ribstein, P. Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. J. Hydrol. Hydromech. 2019, 67, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Wang, L.; Koike, T.; Tsutsui, H.; Xue, Y.; Hirabayashi, Y. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data. Hydrol. Earth Syst. Sci. 2014, 18, 747–761. [Google Scholar] [CrossRef] [Green Version]
Catchment | Rdat | Zat | Ourika | Rheraya | Nfis |
---|---|---|---|---|---|
Outlet | Sidi Rahal | Taferiat | Aghbalou | Tahanaout | Iguir Nkouris |
Area (Km | 552 | 525.9 | 502.6 | 225.3 | 823.8 |
Max elevation (m) | 3476 | 3847 | 3996 | 4098 | 4088 |
Mean elevation (m) | 1718.7 | 1831.7 | 2444.5 | 2165.8 | 2202.1 |
RMSE | 2009 | 2010 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|
ERA5 | 24.46 | 43.71 | 32.01 | 21.83 | 15.10 | 28.94 | 26.70 |
MERRA-2 | 25.53 | 26.29 | 40.46 | 28.34 | 24.79 | 26.99 | 34.93 |
Mean Error | 2009 | 2010 | 2013 | 2014 | 2015 | 2016 | 2017 |
ERA5 | −11.35 | 38.58 | 14.09 | 4.62 | 1.25 | 2.57 | 5.45 |
MERRA-2 | 18.64 | 4.46 | −28.74 | 6.52 | 12.65 | 8.91 | 18.69 |
Catchment | Ghdat | Nfis | Ourika | Rheraya | Zat | Seksawa | Mhand | Assif |
---|---|---|---|---|---|---|---|---|
Mean R ERA5 | 0.83 | 0.77 | 0.82 | 0.81 | 0.74 | 0.74 | 0.79 | 0.89 |
Mean R MERRA-2 | 0.70 | 0.67 | 0.85 | 0.79 | 0.65 | 0.67 | 0.75 | 0.76 |
Oukaimeden | Tachedirt | Neltner | CAF | |
---|---|---|---|---|
ERA5 RMSE (C) | 1.84 | 2.45 | 2.37 | 2.02 |
MERRA-2 RMSE (C) | 3.73 | 2.77 | 3.73 | 3.92 |
ERA-2 R | 0.90 | 0.95 | 0.93 | 0.94 |
MERRA-2 | 0.78 | 0.82 | 0.77 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, M.W.; Boudhar, A.; Gascoin, S.; Hanich, L.; Marchane, A.; Chehbouni, A. Assessment of MERRA-2 and ERA5 to Model the Snow Water Equivalent in the High Atlas (1981–2019). Water 2021, 13, 890. https://doi.org/10.3390/w13070890
Baba MW, Boudhar A, Gascoin S, Hanich L, Marchane A, Chehbouni A. Assessment of MERRA-2 and ERA5 to Model the Snow Water Equivalent in the High Atlas (1981–2019). Water. 2021; 13(7):890. https://doi.org/10.3390/w13070890
Chicago/Turabian StyleBaba, Mohamed Wassim, Abdelghani Boudhar, Simon Gascoin, Lahoucine Hanich, Ahmed Marchane, and Abdelghani Chehbouni. 2021. "Assessment of MERRA-2 and ERA5 to Model the Snow Water Equivalent in the High Atlas (1981–2019)" Water 13, no. 7: 890. https://doi.org/10.3390/w13070890
APA StyleBaba, M. W., Boudhar, A., Gascoin, S., Hanich, L., Marchane, A., & Chehbouni, A. (2021). Assessment of MERRA-2 and ERA5 to Model the Snow Water Equivalent in the High Atlas (1981–2019). Water, 13(7), 890. https://doi.org/10.3390/w13070890