Inferring Sediment Transport Capacity from Soil Microtopography Changes on a Laboratory Hillslope
Abstract
:1. Introduction
2. Theory: Transport Capacity and Soil Surface Elevation Change
3. Materials and Methods
3.1. Experimental Infrastructure
3.2. Experimental Setup and Data Description
3.3. Transport Capacity from Elevation Change Information
4. Results
4.1. Flow Hydraulics and Elevation Change
4.2. Effect of Soil Subsurface Hydrology on the Probability of Erosion
5. Discussion
5.1. Implications to the Coupled Detachment-Tc Concept
5.2. Limitations of the Proposed Approach and Sources of Uncertainty
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wainwright, J.; Parsons, A.J.; Cooper, J.R.; Gao, P.; Gillies, J.A.; Mao, L.; Orford, J.D.; Knight, P.G. The concept of transport capacity in geomorphology. Rev. Geophys. 2015, 53, 1155–1202. [Google Scholar] [CrossRef]
- Ellison, W.D. Soil erosion studies: Part I. Agric. Eng. 1947, 28, 145–146. [Google Scholar]
- Meyer, L.D.; Wischmeier, W.H. Mathematical Simulation of the Process of Soil Erosion by Water. Trans. ASAE 1969, 12, 754–758. [Google Scholar]
- Foster, G.R.; Meyer, L.D. A closed-form soil erosion equation for upland areas. In Proceedings of the Sedimentation Symposium to Honor Prof. H. A. Einstein, Fort Collins, CO, USA, 1–19 December 1972. [Google Scholar]
- Clarke, L.E. Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology 2015, 244, 135–145. [Google Scholar] [CrossRef]
- Ali, M.; Sterk, G. Availability and performance of sediment detachment and transport functions for overland flow con-ditions. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 2015, 60, 1550–1565. [Google Scholar] [CrossRef]
- Govers, G. Evaluation of transporting capacity formulae for overland flow conditions. In Overland Flow: Hydraulics and Erosion Mechanics; Parsons, A., Abrahams, A., Eds.; UCL Press: London, UK, 1992; pp. 243–273. [Google Scholar]
- Abrahams, A.D.; Gao, P.; Aebly, F.A. Relation of sediment transport capacity to stone cover and size in rain-impacted interrill flow. Earth Surf. Process. Landf. 2000, 25, 497–504. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Shi, P.J.; Jia, Z.W. Slope Length Effects on Soil Loss for Steep Slopes. Soil Sci. Soc. Am. J. 2000, 64, 1759–1763. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.H.; Sterk, G.; Seeger, M.; Boersema, M.P.; Peters, P.W.M. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds. Hydrol. Earth Syst. Sci. 2012, 16, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Nearing, M.A.; Polyakov, V.O.; Nichols, M.H.; Pierson, F.B.; Cavanaugh, M.L. Evolution of rock cover, surface roughness, and its effect on soil erosion under simulated rainfall. Geoderma 2020, 379, 114622. [Google Scholar] [CrossRef]
- Wainwright, J.; Parsons, A.J.; Müller, E.N.; Brazier, R.E.; Powell, D.M. Response to Kinnell’s ‘Comment on “A transport-distance approach to scaling erosion rates: III. Evaluating scaling characteristics of Mahleran”’. Earth Surf. Process. Landf. 2009, 34, 1320–1321. [Google Scholar] [CrossRef]
- Huang, C.; Wells, L.K.; Norton, L.D. Sediment transport capacity and erosion processes: Model concepts and reality. Earth Surf. Process. Landf. 1999, 24, 503–516. [Google Scholar] [CrossRef]
- Nouwakpo, S.K.; Huang, C.-H. The Role of Subsurface Hydrology in Soil Erosion and Channel Network Development on a Laboratory Hillslope. Soil Sci. Soc. Am. J. 2012, 76, 1197–1211. [Google Scholar] [CrossRef] [Green Version]
- Sander, G.C.; Parlange, J.-Y.; Barry, D.A.; Parlange, M.B.; Hogarth, W.L. Limitation of the transport capacity approach in sediment transport modeling. Water Resour. Res. 2007, 43, 9. [Google Scholar] [CrossRef]
- Einstein, H.A.; Krone, R.B. Experiments to determine modes of cohesive sediment transport in salt water. J. Geophys. Res. Space Phys. 1962, 67, 1451–1461. [Google Scholar] [CrossRef]
- van Leussen, W.; Winterwerp, J.C. Laboratory experiments on sedimentation of fine-grained sediments: A state-of-the-art review in the light of experiments with the Delft tidal flume, In Residual Currents and Long-Term Transport; Springer: Berlin/Heidelberg, Germany, 1990; pp. 241–259. [Google Scholar]
- Self, R.F.; Nowell, A.R.; Jumars, P.A. Factors controlling critical shears for deposition and erosion of individual grains. Mar. Geol. 1989, 86, 181–199. [Google Scholar] [CrossRef]
- Partheniades, E. A fundamental framework for cohesive sediment dynamics. In Estuarine Cohesive Sediment Dynamics; Spring-er: Berlin/Heidelberg, Germany, 1986; pp. 219–250. [Google Scholar]
- Bedford, K.W.; Libicki, C.; Wai, O.; Abdelrhman, M.A.; Van Evra, R. The Structure of a Bottom Sediment Boundary Layer in Central Long Island Sound. In Physical Processes in Estuaries; Springer: Berlin/Heidelberg, Germany, 1988; pp. 446–459. [Google Scholar]
- Kranck, K.; Milligan, T.G. Characteristics of Suspended Particles at an 11-Hour Anchor Station in San Francisco Bay, California. J. Geophys. Res. Space Phys. 1992, 97, 11373–11382. [Google Scholar] [CrossRef]
- Schubel, J.R. Turbidity Maximum of the Northern Chesapeake Bay. Science 1968, 161, 1013–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hairsine, P.B.; Rose, C.W. Modeling water erosion due to overland flow using physical principles: 1. Sheet flow. Water Resour. Res. 1992, 28, 237–243. [Google Scholar] [CrossRef]
- Lei, T.W.; Zhang, Q.; Zhao, J.; Tang, Z. A laboratory study of sediment transport capacity in the dynamic process of rill erosion. Trans. ASAE 2001, 44, 1537–1542. [Google Scholar] [CrossRef]
- Elliot, W.J.; Laflen, J.M.; Thomas, A.W.; Kohl, K.D. Photogrammetric and rillmeter techniques for hydraulic measurement in soil erosion studies. Trans. ASAE 1997, 40, 157–165. [Google Scholar] [CrossRef]
- Kincaid, D.R.; Williams, G. Rainfall Effects on Soil Surface Characteristics following Range Improvement Treatments. J. Range Manag. 1966, 19, 346. [Google Scholar] [CrossRef] [Green Version]
- Darboux, F.H.; Huang, C. An instantaneous-profile laser scanner to measure soil surface microtopography. Soil Sci. Soc. Am. J. 2003, 67, 92–99. [Google Scholar] [CrossRef]
- Helming, K.; Römkens, M.J.M.; Prasad, S.N. Surface Roughness Related Processes of Runoff and Soil Loss: A Flume Study. Soil Sci. Soc. Am. J. 1998, 62, 243–250. [Google Scholar] [CrossRef]
- Römkens, M.; Helming, K.; Prasad, S. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena 2002, 46, 103–123. [Google Scholar] [CrossRef]
- Heng, B.C.P.; Chandler, J.H.; Armstrong, A. Applying close range digital photogrammetry in soil erosion studies. Photogramm. Rec. 2010, 25, 240–265. [Google Scholar] [CrossRef] [Green Version]
- Marzolff, I.; Poesen, J. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology 2009, 111, 48–60. [Google Scholar] [CrossRef]
- Nouwakpo, S.K.; Huang, C.-H. A Simplified Close-Range Photogrammetric Technique for Soil Erosion Assessment. Soil Sci. Soc. Am. J. 2012, 76, 70–84. [Google Scholar] [CrossRef]
- Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gomez, J.A.; Rodríguez, C.C. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and ge-oscience application. J. Geophys. Res. Earth Surf. 2012. [Google Scholar] [CrossRef] [Green Version]
- Nouwakpo, S.K.; James, M.R.; Weltz, M.A.; Huang, C.-H.; Chagas, I.; Lima, L. Evaluation of structure from motion for soil microtopography measurement. Photogramm. Rec. 2014, 29, 297–316. [Google Scholar] [CrossRef]
- Westoby, M.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.R.; Flanagan, D.C.; Nearing, M.A.; Lane, L.J.; Risse, L.M.; Finkner, S.C. Hillslope erosion component. In In WEPP: USDA-Water Erosion Prediction Project; USDA ARS: Lafayette, IN, USA, 1995; Volume 10, pp. 11.1–11.12. [Google Scholar]
- Agisoft LLC. Agisoft PhotoScan Professional Edition; Agisoft LLC: St. Petersburg, Russia, 2013. [Google Scholar]
- ESRI. ArcGIS Desktop Release 10; Evironmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Amare, S.; Langendoen, E.; Keesstra, S.; Van Der Ploeg, M.; Gelagay, H.; Lemma, H.; Van Der Zee, S.E.A.T.M. Susceptibility to Gully Erosion: Applying Random Forest (RF) and Frequency Ratio (FR) Approaches to a Small Catchment in Ethiopia. Water 2021, 13, 216. [Google Scholar] [CrossRef]
- Mosley, M.P. An Experimental Study of Channel Confluences. J. Geol. 1976, 84, 535–562. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Yang, J.; Hu, J.-M.; Tang, C.-J.; Zheng, H.-J. Characteristics of the surface–subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, Southern China. J. Hydrol. 2016, 539, 457–467. [Google Scholar] [CrossRef]
- Nouwakpo, S.K.; Huang, C.-H.; Bowling, L.C.; Owens, P.R. Impact of Vertical Hydraulic Gradient on Rill Erodibility and Critical Shear Stress. Soil Sci. Soc. Am. J. 2010, 74, 1914–1921. [Google Scholar] [CrossRef]
- Fox, G.A.; Chu-Agor, M.; Wilson, G.V. Erosion of noncohesive sediment by groundwater seepage: Lysimeter experi-ments and modeling. Soil Sci. Soc. Am. J. 2007, 71, 1822–1830. [Google Scholar] [CrossRef]
- Huang, C.; Laflen, J.M. Seepage and soil erosion for a clay loam soil. Soil Sci. Soc. Am. J. 1996, 60, 408–416. [Google Scholar] [CrossRef]
- DuBoys, P. Le Rhône et les rivières à lit affouillable (River Rhone and tributaries of unconsolidated sediments). Annum Ponts Chaussées 1879, 5, 141–195. [Google Scholar]
- Al-Madhhachi, A.T.; Fox, G.A.; Hanson, G.J. Quantifying the erodibility of streambanks and hillslopes due to surface and subsurface forces. Trans. Asabe 2014, 57, 1057–1069. [Google Scholar]
Treatment | Replicate | σΔZ (mm) | Average ΔZ (mm) | ||
---|---|---|---|---|---|
LD | 1 | 2.2 | 2.6 | −0.1 | −0.5 |
2 | 3.0 | −1.0 | |||
HD | 1 | 2.5 | 2.4 | −0.3 | −0.2 |
2 | 2.4 | −0.2 | |||
LS | 1 | 4.5 | 3.9 | −0.2 | −0.3 |
2 | 3.3 | −0.4 | |||
HS | 1 | 4.0 | 3.8 | −0.3 | −0.5 |
2 | 3.6 | −0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nouwakpo, S.; Huang, C.-h.; Bowling, L.; Owens, P.; Weltz, M. Inferring Sediment Transport Capacity from Soil Microtopography Changes on a Laboratory Hillslope. Water 2021, 13, 929. https://doi.org/10.3390/w13070929
Nouwakpo S, Huang C-h, Bowling L, Owens P, Weltz M. Inferring Sediment Transport Capacity from Soil Microtopography Changes on a Laboratory Hillslope. Water. 2021; 13(7):929. https://doi.org/10.3390/w13070929
Chicago/Turabian StyleNouwakpo, Sayjro, Chi-hua Huang, Laura Bowling, Phillip Owens, and Mark Weltz. 2021. "Inferring Sediment Transport Capacity from Soil Microtopography Changes on a Laboratory Hillslope" Water 13, no. 7: 929. https://doi.org/10.3390/w13070929
APA StyleNouwakpo, S., Huang, C. -h., Bowling, L., Owens, P., & Weltz, M. (2021). Inferring Sediment Transport Capacity from Soil Microtopography Changes on a Laboratory Hillslope. Water, 13(7), 929. https://doi.org/10.3390/w13070929