Monitoring Variations in Lake Water Storage with Satellite Imagery and Citizen Science
Abstract
:1. Introduction
2. Study Areas
3. Methods
3.1. Measuring Lake Water Levels
3.1.1. Data Acquisition
3.1.2. GPS Processing
3.1.3. Validation
3.2. Measuring Lake Surface Area
3.2.1. Data Acquisition
3.2.2. Water Mask
3.2.3. Validation
3.3. Measuring Lake Water Storage
3.3.1. Calculation of Lake Water Storage
3.3.2. Hypsometric Curve
3.3.3. Propagation of Lake Height Errors into Volume Variations
3.4. Correlations between Change in Lake Water Storage
3.4.1. Data Acquisition
3.4.2. Validation
3.5. Spatial Analysis
4. Results
4.1. Validation Results
4.1.1. Citizen Science Data
4.1.2. Lake Surface Area
4.1.3. Lake Volume Correlations
4.2. Variations in Lake Water Storage
4.2.1. Regional Coherence of Changes in Lake Water Volume
4.2.2. Correlations and Relationship with Distance
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Lake Name | Region | Approx. Size (km2) | Date of First Lake Level Measurement | Date of Last Lake Level Measurement Used | Number of Lake Level Measurements | Number of Satellite Images (1 January 2015–1 February 2020) |
---|---|---|---|---|---|---|
Bay Tree Lake | NC | 5.8 | 18 April 2017 | 20 January 2020 | 325 | 130 |
Catfish Lake | NC | 3.8 | 19 September 2017 | 22 May 2019 | 37 | 196 |
Great Lake | NC | 11.3 | 19 September 2017 | 10 January 2020 | 42 | 127 |
Horsepen Lake | NC | 1.2 | 21 September 2017 | 20 January 2020 | 201 | 130 |
Jones Lake | NC | 0.9 | 18 April 2017 | 1 February 2020 | 149 | 130 |
Lake Mattamuskeet West | NC | 57.6 | 1 June 2017 | 27 January 2020 | 137 | 129 |
Phelps Lake | NC | 64.5 | 1 June 2017 | 25 January 2020 | 295 | 100 |
Salters Lake | NC | 1.3 | 18 April 2017 | 1 February 2020 | 137 | 173 |
Singletary Lake | NC | 2.3 | 18 April 2017 | 30 January 2020 | 97 | 130 |
Lake Mattamuskeet East | NC | 105.7 | 1 June 2017 | 27 January 2020 | 134 | 129 |
Lake Waccamaw | NC | 35.8 | 18 April 2017 | 19 January 2020 | 260 | 130 |
White Lake | NC | 4.3 | 18 April 2017 | 25 December 2019 | 122 | 130 |
Beaver Lake | WA | 0.3 | 10 September 2018 | 25 January 2020 | 56 | 75 |
Walupt Lake | WA | 1.5 | 12 June 2019 | 30 October 2019 | 15 | 109 |
Bosworth Lake | WA | 0.4 | 12 September 2018 | 28 January 2020 | 25 | 122 |
Lake Cassidy | WA | 0.5 | 12 September 2018 | 26 October 2019 | 36 | 122 |
Coldwater Lake | WA | 3.0 | 11 June 2019 | 1 February 2020 | 54 | 75 |
Deep Lake | WA | 0.2 | 10 June 2019 | 28 November 2019 | 39 | 74 |
Dog Lake | WA | 0.2 | 13 June 2019 | 30 October 2019 | 9 | 144 |
Echo Lake | WA | 0.06 | 12 September 2018 | 30 October 2019 | 50 | 132 |
Fish Lake | WA | 2.0 | 12 June 2019 | 24 January 2020 | 24 | 95 |
Lake Howard | WA | 0.1 | 11 June 2019 | 10 December 2019 | 10 | 155 |
Lake Ki | WA | 0.4 | 11 June 2019 | 25 November 2019 | 8 | 154 |
Lake Lawrence | WA | 1.3 | 12 September 2018 | 1 February 2020 | 66 | 135 |
Leech Lake | WA | 0.2 | 13 June 2019 | 5 December 2019 | 30 | 144 |
Phantom Lake | WA | 0.3 | 10 September 2018 | 31 January 2020 | 166 | 100 |
Crabapple Lake | WA | 0.1 | 11 June 2019 | 26 August 2019 | 8 | 134 |
Lake Roesiger | WA | 1.4 | 10 September 2018 | 28 January 2020 | 29 | 121 |
Lake Sammamish | WA | 19.6 | 11 September 2018 | 30 January 2020 | 144 | 98 |
Steel Lake | WA | 0.2 | 10 June 2019 | 31 January 2020 | 110 | 99 |
Flowing Lake | WA | 0.5 | 10 September 2018 | 28 January 2020 | 46 | 122 |
North Lake | WA | 0.2 | 10 June 2019 | 1 February 2020 | 50 | 99 |
Lake Wenatchee | WA | 9.7 | 10 September 2018 | 25 January 2020 | 60 | 95 |
Lake Martha | WA | 0.2 | 13 September 2018 | 26 January 2020 | 74 | 154 |
Diamond Lake | IL | 0.6 | 16 May 2019 | 23 November 2019 | 26 | 63 |
Lake Defiance | IL | 0.3 | 15 May 2019 | 26 December 2019 | 56 | 63 |
Gages Lake | IL | 0.6 | 13 May 2019 | 23 November 2019 | 26 | 91 |
Hastings Lake | IL | 0.3 | 14 May 2019 | 11 January 2020 | 97 | 112 |
Herrick Lake | IL | 0.05 | 23 May 2019 | 31 January 2020 | 89 | 88 |
Harrier Lake | IL | 0.08 | 29 May 2019 | 21 November 2019 | 28 | 63 |
Lake Killarney | IL | 0.2 | 15 May 2019 | 11 December 2019 | 22 | 63 |
Highland Lake | IL | 0.4 | 14 May 2019 | 21 September 2019 | 23 | 91 |
East Loon Lake | IL | 0.8 | 14 May 2019 | 15 January 2020 | 41 | 87 |
West Loon Lake | IL | 0.7 | 14 May 2015 | 15 January 2020 | NA | 87 |
Lily Lake | IL | 0.4 | 15 May 2019 | 17 December 2019 | 26 | 88 |
McCullom Lake | IL | 1.0 | 15 May 2019 | 5 November 2019 | 16 | 102 |
Maple Lake | IL | 0.2 | 16 May 2019 | 11 January 2020 | 26 | 102 |
Deep Quarry Lake | IL | 0.1 | 29 May 19 | 5 November 2019 | 38 | 88 |
Round Lake | IL | 1.0 | 14 May 2019 | 26 December 2019 | 64 | 91 |
Silver Lake | IL | 0.2 | 16 May 19 | 1 January 2020 | 33 | 88 |
Timber Lake | IL | 0.3 | 14 May 2019 | 26 December 2019 | 45 | 87 |
Grays Lake | IL | 0.3 | 13 May 19 | 11 January 2020 | 42 | 91 |
Archibald Lake | WI | 1.6 | 26 April 2016 | 07 May 2019 | 92 | 84 |
Axhandle Lake | WI | 0.3 | 13 July 2015 | 5 October 2017 | 29 | 92 |
Bass Lake | WI | 0.3 | 13 August 2015 | 20 October 2016 | 39 | 58 |
Bear Lake | WI | 0.1 | 22 June 2017 | 3 November 2017 | 12 | 107 |
Big Twin Lake | WI | 0.3 | 15 July 2016 | 04 May 2019 | 59 | 84 |
Clear Lake | WI | 0.3 | 21 June 2017 | 30 November 2017 | 24 | 73 |
Crystal Lake | WI | 0.1 | 14 July 2017 | 21 September 2017 | 10 | 76 |
Deep Lake | WI | 0.1 | 17 June 2017 | 06 July 2017 | 3 | 128 |
Des Moines Lake | WI | 0.9 | 18 April 2017 | 2 November 2017 | 28 | 152 |
Duck Lake | WI | 0.5 | 5 July 2016 | 23 September 2019 | 78 | 137 |
Grindle Lake | WI | 0.2 | 9 November 2015 | 10 August 2019 | 91 | 112 |
Horseshoe Lake | WI | 1.6 | 18 August 2015 | 6 June 2019 | 69 | 159 |
Kentuck Lake | WI | 4.0 | 05 July 2019 | 5 July 2019 | 1 | 101 |
Kilby Lake | WI | 0.2 | 20 May 2017 | 1 October 2017 | 40 | 120 |
Lake Five | WI | 0.4 | 23 May 2017 | 3 October 2017 | 19 | 119 |
Long Lake | WI | 1.1 | 18 August 2015 | 19 August 2019 | 57 | 159 |
Loon Lake | WI | 0.1 | 14 August 2015 | 20 October 2016 | 20 | 89 |
Mann Lake | WI | 1.0 | 21 May 2018 | 12 May 2018 | 1 | 104 |
Moose Lake | WI | 0.5 | 6 August 2016 | 29 September 2018 | 5 | 94 |
Parker Lake | WI | 0.2 | 10 June 2017 | 16 September 2017 | 14 | 128 |
Paya Lake | WI | 0.4 | 2 November 2015 | 20 September 2019 | 64 | 88 |
Phantom Lake | WI | 0.2 | 19 August 2015 | 6 November 2015 | 14 | 58 |
Poplar Lake | WI | 0.5 | 30 June 2018 | 11 September 2019 | 9 | 159 |
Sand Lake | WI | 3.6 | 18 April 2017 | 26 July 2017 | 15 | 120 |
South Neva Lake | WI | 0.1 | 30 August 2015 | 21 November 2016 | 23 | 152 |
Spur Lake | WI | 0.5 | 29 July 2019 | 24 September 2019 | 12 | 105 |
Stratton Lake | WI | 0.3 | 11 July 2017 | 21 September 2017 | 10 | 76 |
Summit Lake | WI | 1.1 | 5 April 2019 | 6 September 2019 | 17 | 137 |
Twin Lakes | WI | 0.05 | 11 June 2017 | 1 October 2017 | 16 | 124 |
Underwood Lake | WI | 0.2 | 24 August 2015 | 7 May 2019 | 9 | 165 |
Wheeler Lake | WI | 1.1 | 26 August 2015 | 7 May 2019 | 46 | 84 |
Wolf Lake | WI | 0.1 | 22 June 2017 | 3 November 2017 | 13 | 98 |
References
- MEA. Millennium Ecosystem Assessment Global Assessment Reports; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Williamson, C.; Saros, J.; Vincent, W.; Smol, J. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change Fifth Assessment Report, 5th ed.; The Intergovernmental Panel on Climate Change: Washington, DC, USA, 2014. [Google Scholar]
- Wang, J.; Song, C.; Reager, J.; Yao, F.; Familietti, J.; Sheng, Y.; MacDonald, G.; Brun, F.; Schmied, H.M.; Marston, R.A.; et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef] [Green Version]
- Stanley, E.H.; Collins, S.M.; Lotting, N.R.; Oliver, S.K.; Webster, K.E.; Cheruvelil, K.S.; Soranno, P.A. Biases in lake water quality sampling and implications for macroscale research. Limnol. Oceanogr. 2019, 64, 1572–1585. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Euliss, N.H.; Mushet, D.M. Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region. Wetlands 1996, 16, 587–593. [Google Scholar] [CrossRef]
- Watras, C.J.; Read, J.S.; Holoman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanely, E.H. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications. Geophys. Res. Lett. 2014, 41, 456–462. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Ryan, J.C.; Pitcher, L.H.; Pavelsky, T.M. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophys. Res. Lett. 2019, 46, 2111–2120. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Bird, B.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Shum, C.K.; Yi, K.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Hanson, P.C.; Carpenter, S.R.; Cardille, J.A.; Coe, M.T.; Winslow, L.A. Small lakes dominate a random sample of regional lake characteristics. Freshw. Biol. 2007, 52, 814–822. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Updated Daily. USGS Water Data for the Nation: U.S. Geological Survey National Water Information System Database; U.S. Geological Survey: Reston, VA, USA, 2020. Available online: https://waterdata.usgs.gov/nwis (accessed on 1 December 2018).
- Lake Level Minnesota. Available online: https://www.dnr.state.mn.us/climate/waterlevels/lakes/index.html (accessed on 27 January 2019).
- How to Get the Numbers. Available online: https://waterdatafortexas.org/reservoirs/methodology (accessed on 10 February 2020).
- Shiklomanov, A.I.; Lammers, R.B.; Vörösmarty, C.J. Widespread decline in hydrological monitoring threatens Pan-Arctic research. Eos Trans. Am. Geophys. Union 2002, 83, 13–16. [Google Scholar] [CrossRef]
- IAHS Ad Hoc Group on Global Water Data Sets. Global water data: A newly endangered species. Eos Trans. Am. Geophys. Union 2001, 8, 54–58. [Google Scholar] [CrossRef]
- Stokstad, E. Scarcity of rain, stream gages threatens forecasts. Science 1999, 285, 1199–1200. [Google Scholar] [CrossRef]
- Fekete, B.M.; Robarts, R.D.; Kumagai, M.; Nachtnebel, H.-P.; Odada, E.; Zhulidov, A.V. Time for in situ renaissance. Science 2015, 14, 685–686. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Abarca-del-Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef] [Green Version]
- Baup, F.; Frappart, F.; Maubant, J. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes. Hydrol. Earth Syst. Sci. 2014, 18, 2007–2020. [Google Scholar] [CrossRef] [Green Version]
- Kleinherenbrink, M.; Naeije, M.; Slobbe, C.; Egido, A.; Smith, W. The performance of CryoSat-2 fully-focused SAR for inland water-level estimation. Remote Sens. Environ. 2020, 237, 111589. [Google Scholar] [CrossRef]
- Arsen, A.; Crétaux, J.; Abarca-del-Rio, R. Use of SARAL/AltiKa over Mountainous Lakes, Intercomparison with Envisat Mission. Mar. Geod. 2015, 38, 534–548. [Google Scholar] [CrossRef]
- Hughes, D.A. Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Birkett, C.M.; Dunne, T.; Melack, J.; Hess, L. Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys. Res. Lett. 2001, 28, 2671–2674. [Google Scholar] [CrossRef]
- Kite, G.; Pietroniro, A. Remote sensing of surface water. Remote Sens. Hydrol. Water Manag. 2000, 42, 217–238. [Google Scholar]
- Peckel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2016, 185, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Lowery, C.S.; Fienen, M.N. CrowdHydrology: Crowdsourcing Hydrologic Data and Engaging Citizen Scientists. Groundwater 2012, 51, 151–156. [Google Scholar] [CrossRef]
- Buytaert, W.; Zulkafli, Z.; Grainger, S.; Acosta, L.; Alemie, T.C.; Bastiaensen, J.; Bievre, B.D.; Bhusal, J.; Clark, J.; Dewulf, A.; et al. Citizen Science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2014, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Lowery, C.S.; Fienen, M.N.; Hall, D.D.; Stepenuck, K.F. Growing Pains of Crowdsourced Stream Stage Monitoring Using Mobile Phones: The Development of CrowdHydrology. Front. Earth Sci. 2019, 7, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Strobl, B.; Etter, S.; van Meerveld, I.; Seibert, J. The CrowdWater game: A playful way to improve the accuracy of crowdsourced water level class data. PLoS ONE 2019, 14, e0222579. [Google Scholar] [CrossRef] [Green Version]
- McDonald, C.P.; Rover, J.A.; Stets, E.G.; Striegl, R.G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of the global lake extent. Limnol. Oceanogr. 2012, 57, 597–606. [Google Scholar] [CrossRef]
- Lake Observations by Citizen Scientists and Satellites. Available online: www.locss.org (accessed on 15 August 2018).
- Citizen Lake Monitoring Network. Available online: https://dnr.wi.gov/lakes/clmn/ (accessed on 26 October 2018).
- Pavelsky, T.; Ghafoor, S.; Hossain, F.; Parkins, G.; Yelton, S.; Little, S.; Topp, S.; Rodgers, M.; Yang, X. Monitoring the World’s Lakes: Progress from Citizen Science and Remote Sensing. 2019. Available online: https://pubs.awma.org/flip/EM-Nov-2019/pavelsky.pdf (accessed on 1 March 2021).
- Pitcher, L.H.; Smith, L.C.; Cooley, S.W.; Zaino, A.; Carlson, R.; Pettit, J.; Gleason, C.J.; Minear, T.; Fayne, J.V.; Harlan, M.E.; et al. Advancing field-based GNSS surveying for validation of remotely sensed water surface elevation products. Front. Earth Sci. 2020, 8, 278. [Google Scholar] [CrossRef]
- Cohen, J.P. Citizen science: Can volunteers do real research? BioScience 2008, 58, 192. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Simley, J.D.; Carswell, W.J., Jr. The National Map–Hydrography: U.S. Geological Survey Fact Sheet 2009–3054; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 2009.
- Jones, J.W. Improvised Automated Detection of Subpizel-Scale Inundation–Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests. Remote Sens. 2019, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir NRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Hossain, F.; Eldardiry, H.; Pavelsky, T.M. A Fusion Approach for Water Area Classification using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2471–2480. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Planet Team. Planet Application Program Interface: In Space for Life on Earth; Planet Team: San Francisco, CA, USA, 2017; Available online: https://api.planet.com (accessed on 1 March 2021).
- Cooley, S.W.; Smith, L.C.; Stephan, L.; Mascaro, J. Tracking Dynamic Northern Surface Water Change with High-Frequency Planet CubeSat Imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef] [Green Version]
- Quellec, M.; Crétaux, J.-F. Progress in Lake Water Storage Algorithms; SWOT Science Team: Pasadena, CA, USA, 2018.
- Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [Google Scholar] [CrossRef] [Green Version]
- Medina, C.; Gomez-Enri, J.; Alonso, J.J.; Villares, P. Water volume variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar Altimeter (RA-2) and Advanced Synthetic Aperture Radar (ASAR) data products. J. Hydrol. 2009, 382, 34–48. [Google Scholar] [CrossRef]
- Liebe, J.; van de Giesen, N.; Andrenini, M. Estimation of small reservoir storage capacities in a semi-arid environment. Phys. Chem. Earth 2005, 30, 448–454. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Perales, K.M.; Hein, C.L.; Lottig, N.R.; Zanden, M.J.V. Lake water level response to drought in a lake-rich region explained by lake and landscape characteristics. Can. J. Fish. Aquat. Sci. 2020, 77, 1836–1845. [Google Scholar] [CrossRef]
- Lottig, N.R.; Tan, P.-N.; Wagner, T.; Cheruvelil, K.S.; Soranno, P.A.; Stanley, E.H.; Scott, C.E.; Stow, C.A.; Yuan, S. Macroscale patterns of synchrony identify complex relationships among spatial and temporal ecosystem drivers. Ecosphere 2017, 8, e02024. [Google Scholar] [CrossRef] [Green Version]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys. 2016, 37, 307–337. [Google Scholar] [CrossRef] [Green Version]
North Carolina | Washington | Illinois | Wisconsin | |
---|---|---|---|---|
Number of Lakes | 12 | 22 | 18 | 32 |
Lake Areas (km2) Mean (Min–Max) | 24.54 (0.89–103) | 5.72 (0.06–89) | 0.41 (0.06–0.98) | 3.85 (0.05–39.61) |
Distance to other study Lakes (km) Mean (Min–Max) | 115.32 (0.3–249) | 89.72 (1–206) | 31.85 (0.1–83) | 181.62 (0.8–437) |
Satellite Images Available (1 January 2015–1 February 2020) | 2497 | 2303 | 1289 | 3056 |
Number of Lake Level Measurements | 2238 | 1296 | 827 | 960 |
Lake Level Starting Dates | 18 April 2017 | 10 September 2018 | 13 May 2019 | 1 April 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Little, S.; Pavelsky, T.M.; Hossain, F.; Ghafoor, S.; Parkins, G.M.; Yelton, S.K.; Rodgers, M.; Yang, X.; Crétaux, J.-F.; Hein, C.; et al. Monitoring Variations in Lake Water Storage with Satellite Imagery and Citizen Science. Water 2021, 13, 949. https://doi.org/10.3390/w13070949
Little S, Pavelsky TM, Hossain F, Ghafoor S, Parkins GM, Yelton SK, Rodgers M, Yang X, Crétaux J-F, Hein C, et al. Monitoring Variations in Lake Water Storage with Satellite Imagery and Citizen Science. Water. 2021; 13(7):949. https://doi.org/10.3390/w13070949
Chicago/Turabian StyleLittle, Sarina, Tamlin M. Pavelsky, Faisal Hossain, Sheikh Ghafoor, Grant M. Parkins, Sarah K. Yelton, Megan Rodgers, Xiao Yang, Jean-François Crétaux, Catherine Hein, and et al. 2021. "Monitoring Variations in Lake Water Storage with Satellite Imagery and Citizen Science" Water 13, no. 7: 949. https://doi.org/10.3390/w13070949
APA StyleLittle, S., Pavelsky, T. M., Hossain, F., Ghafoor, S., Parkins, G. M., Yelton, S. K., Rodgers, M., Yang, X., Crétaux, J. -F., Hein, C., Ullah, M. A., Lina, D. H., Thiede, H., Kelly, D., Wilson, D., & Topp, S. N. (2021). Monitoring Variations in Lake Water Storage with Satellite Imagery and Citizen Science. Water, 13(7), 949. https://doi.org/10.3390/w13070949