Mapping the Pollution Plume Using the Self-Potential Geophysical Method: Case of Oum Azza Landfill, Rabat, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Regional Piezometrical Survey
2.3. Self-Potential Measurements
2.4. Groundwater and Leachates Physico-Chemical Characteristics
3. Results
3.1. Regional Watertable Flow
3.2. Physico-Chemical Parameters
3.3. Self-Potential Measurements
4. Discussion
4.1. Mio-Pliocene Watertable
4.2. Reliability of the Self-Potential Data
4.3. Self-Potential Variations in the Landscape
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Z.; Ma, H.; Shi, G.; He, L.; Wei, L.; Shi, Q. A review of groundwater contamination near municipal solid waste landfill sites in China. Sci. Total Environ. 2016, 569–570, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Krčmar, D.; Tenodi, S.; Grba, N.; Kerkez, D.; Watson, M.; Rončević, S.; Dalmacija, B. Preremedial assessment of the municipal landfill pollution impact on soil and shallow groundwater in Subotica, Serbia. Sci. Total Environ. 2018, 615, 1341–1354. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Cozzarelli, I.M.; Böhlke, J.K.; Masoner, J.; Breit, G.N.; Lorah, M.M.; Tuttle, M.L.W.; Jaeschke, J.B. Biogeochemical Evolution of a Landfill Leachate Plume, Norman, Oklahoma. Groundwater 2011, 49, 663–687. [Google Scholar] [CrossRef] [PubMed]
- Koda, E.; Sieczka, A.; Miszkowska, A.; Osiński, P. Groundwater Contamination by Organic Compounds: A Case Study of Łubna Landfill Site in Warsaw, Poland. In Proceedings of the Environmental Geotechnology; Agnihotri, A.K., Reddy, K.R., Bansal, A., Eds.; Springer: Singapore, 2019; pp. 307–317. [Google Scholar]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Shao, J.; Pan, X.; Niu, Y.; Huang, J. Groundwater level response to hydrogeological factors in a semi-arid basin of Beijing, China. J. Water Supply Res. Technol. 2017, 66, 266–278. [Google Scholar] [CrossRef]
- Tazioli, A. Landfill investigation using tritium and isotopes as pollution tracers. AQUA Mundi 2011, 18, 83–92. [Google Scholar]
- Arora, T.; Linde, N.; Revil, A.; Castermant, J. Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data. J. Contam. Hydrol. 2007, 92, 274–292. [Google Scholar] [CrossRef]
- Ward, S. Geotechnical and Environmental Geophysics; Society of Exploration Geophysicists: Tulsa, OK, USA, 1990. [Google Scholar]
- Senos Matias, M.; Marques da Silva, M.; Ferreira, P.; Ramalho, E. A geophysical and hydrogeological study of aquifers contamination by a landfill. J. Appl. Geophys. 1994, 32, 155–162. [Google Scholar] [CrossRef]
- Frohlich, R.K.; Barosh, P.J.; Boving, T. Investigating changes of electrical characteristics of the saturated zone affected by hazardous organic waste. J. Appl. Geophys. 2008, 64, 25–36. [Google Scholar] [CrossRef]
- Jouniaux, L.; Maineult, A.; Naudet, V.; Pessel, M.; Sailhac, P. Review of self-potential methods in hydrogeophysics. C. R. Geosci. 2009, 341, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Giang, N.V.; Kochanek, K.; Vu, N.T.; Duan, N.B. Landfill leachate assessment by hydrological and geophysical data: Case study NamSon, Hanoi, Vietnam. J. Mater. Cycles Waste Manag. 2018, 20, 1648–1662. [Google Scholar] [CrossRef]
- Naudet, V.; Revil, A.; Rizzo, E.; Bottero, J.-Y.; Bégassat, P. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrol. Earth Syst. Sci. 2004, 8, 8–22. [Google Scholar] [CrossRef]
- Revil, A.; Cary, L.; Fan, Q.; Finizola, A.; Trolard, F. Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Revil, A.; Hort, R.D.; Munakata-Marr, J.; Atekwana, E.A.; Kulessa, B. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments. J. Hydrol. 2015, 530, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gallas, J.D.F. Método Do Potencial Espontâneo (SP) Uma revisão sobre suas causas, seu uso histórico e suas aplicações atuais. Rev. Bras. Geofís. 2005, 23, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Naudet, V.; Revil, A.; Bottero, J.-Y.; Bégassat, P. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys. Res. Lett. 2003, 30, 30. [Google Scholar] [CrossRef]
- Schüring, J.; Schlieker, M.; Hencke, J. Redox Fronts in Aquifer Systems and Parameters Controlling their Dimensions. In Redox: Fundamentals, Processes and Applications; Schüring, J., Schulz, H.D., Fischer, W.R., Böttcher, J., Duijnisveld, W.H.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 135–151. ISBN 978-3-662-04080-5. [Google Scholar]
- Atekwana, E.A.; Slater, L.D. Biogeophysics: A new frontier in Earth science research. Rev. Geophys. 2009, 47, 47. [Google Scholar] [CrossRef]
- Arisalwadi, M.; Rahmania. Mapping leachate distribution based on the self-potential method in Manggar Landfill, Balikpapan Indonesia. J. Phys. Conf. Ser. 2021, 1763, 12013. [Google Scholar] [CrossRef]
- Stanly, R.; Yasala, S.; Oliver, D.H.; Nair, N.C.; Emperumal, K.; Subash, A. Hydrochemical appraisal of groundwater quality for drinking and irrigation: A case study in parts of southwest coast of Tamil Nadu, India. Appl. Water Sci. 2021, 11, 53. [Google Scholar] [CrossRef]
- Rani, P.; Piegari, E.; Di Maio, R.; Vitagliano, E.; Soupios, P.; Milano, L. Monitoring time evolution of self-potential anomaly sources by a new global optimization approach. Application to organic contaminant transport. J. Hydrol. 2019, 575, 955–964. [Google Scholar] [CrossRef]
- Alam, M.I.; Katumwehe, A.; Leseane, K.; Al-Hadhrami, F.; Briand, B.; Morse, D.; Wei, S.; Atekwana, E. Imaging landfill leachate plume boundaries using electrical-resistivity inversion, spontaneous potential, EM 34 and Geochemical Analysis: A case study on Norman Landfill. In SEG Technical Program Expanded Abstracts 2018; Society of Exploration Geophysicists: Tulsa, OK, USA, 2018; pp. 2818–2822. [Google Scholar]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers; Geonics Limited: Mississauga, ON, Canada, 1980; pp. 1–15. [Google Scholar]
- Petiau, G. Second Generation of Lead-lead Chloride Electrodes for Geophysical Applications. Pure Appl. Geophys. 2000, 157, 357–382. [Google Scholar] [CrossRef]
- Birch, F.S. Testing Fournier’s Method for Finding Water Table from Self-Potential. Groundwater 1993, 31, 50–56. [Google Scholar] [CrossRef]
- Panthulu, T.V.; Krishnaiah, C.; Shirke, J.M. Detection of seepage paths in earth dams using self-potential and electrical resistivity methods. Eng. Geol. 2001, 59, 281–295. [Google Scholar] [CrossRef]
- Revil, A.; Leroy, P. Constitutive equations for ionic transport in porous shales. J. Geophys. Res. Solid Earth 2004, 109, B3. [Google Scholar] [CrossRef]
- Revil, A.; Mendonça, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.J. Understanding biogeobatteries: Where geophysics meets microbiology. J. Geophys. Res. Biogeosci. 2010, 115, 115. [Google Scholar] [CrossRef] [Green Version]
- Weigel, M. Self-potential surveys on waste dumps theory and practice. In Proceedings of the Detection of Subsurface Flow Phenomena; Merkler, G.-P., Militzer, H., Hötzl, H., Armbruster, H., Brauns, J., Eds.; Springer: Heidelberg, Germany, 1989; pp. 109–120. [Google Scholar]
- Pengra, D.B.; Li, S.X.; Wong, P. Determination of rock properties by low-frequency AC electrokinetics. J. Geophys. Res. Solid Earth 1999, 104, 29485–29508. [Google Scholar] [CrossRef]
pH | Eh (mV) | EC (µs cm−1) | |
---|---|---|---|
Groundwater around the landfill | 7.27 | +128 | 5662 |
Groundwater in the thalweg (plume) | 7.09 | +36 | 5399 |
Leachates | 8.01 | −320 | 2950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touzani, M.; Mohsine, I.; Ouardi, J.; Kacimi, I.; Morarech, M.; El Bahajji, M.H.; Bouramtane, T.; Tiouiouine, A.; Yameogo, S.; El Mahrad, B. Mapping the Pollution Plume Using the Self-Potential Geophysical Method: Case of Oum Azza Landfill, Rabat, Morocco. Water 2021, 13, 961. https://doi.org/10.3390/w13070961
Touzani M, Mohsine I, Ouardi J, Kacimi I, Morarech M, El Bahajji MH, Bouramtane T, Tiouiouine A, Yameogo S, El Mahrad B. Mapping the Pollution Plume Using the Self-Potential Geophysical Method: Case of Oum Azza Landfill, Rabat, Morocco. Water. 2021; 13(7):961. https://doi.org/10.3390/w13070961
Chicago/Turabian StyleTouzani, Meryem, Ismail Mohsine, Jamila Ouardi, Ilias Kacimi, Moad Morarech, Mohamed Habib El Bahajji, Tarik Bouramtane, Abdessamad Tiouiouine, Suzanne Yameogo, and Badr El Mahrad. 2021. "Mapping the Pollution Plume Using the Self-Potential Geophysical Method: Case of Oum Azza Landfill, Rabat, Morocco" Water 13, no. 7: 961. https://doi.org/10.3390/w13070961
APA StyleTouzani, M., Mohsine, I., Ouardi, J., Kacimi, I., Morarech, M., El Bahajji, M. H., Bouramtane, T., Tiouiouine, A., Yameogo, S., & El Mahrad, B. (2021). Mapping the Pollution Plume Using the Self-Potential Geophysical Method: Case of Oum Azza Landfill, Rabat, Morocco. Water, 13(7), 961. https://doi.org/10.3390/w13070961