Model Parameters for Aerobic Biological Sulfide Oxidation in Sewer Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Investigations
2.2. Analytical Procedures
3. Results
3.1. OUR Experiments
3.2. Reaction Stoichiometry
3.3. Experimental Conditions
3.4. Model Development
3.5. Verification of the Model Concept
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boon, A.G.; Lister, A.P. Formation of sulfide in rising main sewers and its prevention. Prog. Water Technol. 1975, 7, 289–300. [Google Scholar]
- Pomeroy, R. Generation and control of sulfide in filled pipes. Sewage Ind. Wastes 1959, 31, 1082–1095. [Google Scholar]
- Hvitved-Jacobsen, T. Sewer Processes—Microbial and Chemical Process Engineering of Sewer Networks; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Lahav, O.; Sagiv, A.; Friedler, E. A different approach for predicting H2S(g) emission rates in gravity sewers. Water Res. 2006, 40, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.; Hvitved-Jacobsen, T.; Vollertsen, J. Recent findings on sinks for sulfide in gravity sewer networks. Water Sci. Technol. 2006, 54, 127–134. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Hvitved-Jacobsen, T.; Vollertsen, J. Effect of sewer headspace air-flow on hydrogen sulfide removal by corroding concrete surfaces. Water Environ. Res. 2012, 84, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy, R.D.; Parkhurst, J.D. The forecasting of sulfide buildup rates in sewers. Prog. Water Technol. 1977, 9, 621–628. [Google Scholar]
- Vollertsen, J.; Revilla, N.; Hvitved-Jacobsen, T.; Nielsen, A.H. Modeling sulfides, pH and hydrogen sulfide gas in the sewers of San Francisco. Water Environ. Res. 2015, 87, 1980–1989. [Google Scholar] [CrossRef]
- Pokorna, D.; Zabranska, J. Sulfur-oxidizing bacteria in environmental technology. Biotechnol. Adv. 2015, 33, 1246–1259. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Vollertsen, J.; Hvitved-Jacobsen, T. Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature. Water Environ. Res. 2006, 78, 275–283. [Google Scholar] [CrossRef]
- Kuenen, J.G. Colourless sulfur bacteria and the sulfur cycle. Plant Soil 1975, 43, 49–76. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Huang, C.; Tseng, C.-P. Kinetics of hydrogen sulfide oxidation by immobilized autotrophic and heterotrophic bacteria in bioreactors. Biotechnol. Tech. 1996, 10, 743–748. [Google Scholar] [CrossRef]
- Kuenen, J.G.; Beudeker, R.F.; Shively, J.M.; Codd, G.A. Microbiology of thiobacilli and other sulphur-oxidizing autotrophs, mixotrophs and heterotrophs. Philos. Trans. R. Soc. B Biol. Sci. 1982, 298, 473–497. [Google Scholar] [CrossRef]
- Gujer, W.; Henze, M.; Mino, T.; van Loosdrecht, M. Activated sludge model no. 3. Water Sci. Technol. 1999, 39, 183–193. [Google Scholar] [CrossRef]
- Vollertsen, J.; Hvitved-Jacobsen, T. Biodegradability of wastewater—A method for COD-fractionation. Water Sci. Technol. 2002, 45, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaarup-Jensen, K.; Hvitved-Jacobsen, T.; Jütte, B.; Nielsen, B.; Pedersen, T. A Danish sewer research and monitoring station. Water Sci. Technol. 1998, 37, 197–204. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA; AWWA: Denver, CO, USA; WEF: Alexandria, VA, USA, 2005. [Google Scholar]
- Dewil, R.; Baeyens, J.; Roels, J.; Van De Steene, B. Distribution of sulphur compounds in sewage sludge treatment. Environ. Eng. Sci. 2008, 25, 879–886. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Vollertsen, J.; Hvitved-Jacobsen, T. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks. Environ. Sci. Technol. 2003, 37, 3853–3858. [Google Scholar] [CrossRef]
- Chen, K.Y.; Morris, J.C. Kinetics of oxidation of aqueous sulfide by O2. Environ. Sci. Technol. 1972, 6, 529–537. [Google Scholar] [CrossRef]
- Janssen, A.J.H.; Sleyster, R.; Van Der Kaa, C.; Jochemsen, A.; Bontsema, J.; Lettinga, G. Biological sulphide oxidation in a fed-batch reactor. Biotechnol. Bioeng. 1995, 47, 327–333. [Google Scholar] [CrossRef]
- Kleinjan, W.E.; de Keizer, A.; Janssen, A.J.H. Biologically produced sulfur. Top. Curr. Chem. 2003, 230, 167–188. [Google Scholar]
- Sears, K.; Alleman, J.E.; Barnard, J.L.; Oleszkiewicz, J.A. Impacts of reduced sulfur components on active and resting ammonia oxidizers. J. Ind. Microbiol. Biotechnol. 2004, 31, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Millero, F.J.; Hubinger, S.; Fernandez, M.; Garnett, S. Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength. Environ. Sci. Technol. 1987, 21, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Buisman, C.J.N.; Jspeert, P.I.; Hof, A.; Janssen, A.J.H.; Hagen, R.T.; Lettinga, G. Kinetic parameters of a mixed culture oxidizing sulfide and sulfur with oxygen. Biotechnol. Bioeng. 1991, 38, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Vollertsen, J.; Jahn, A.; Nielsen, J.L.; Hvitved-Jacobsen, T.; Nielsen, P.H. Comparison of methods for determination of microbial biomass in wastewater. Water Res. 2001, 35, 1649–1658. [Google Scholar] [CrossRef]
- Jolley, R.A.; Forster, C.F. The kinetics of sulphide oxidation. Environ. Technol. Lett. 1985, 6, 1–10. [Google Scholar] [CrossRef]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Nielsen, P.H. A process and model concept for microbial wastewater trans-formations in gravity sewers. Water Sci. Technol. 1998, 37, 233–241. [Google Scholar] [CrossRef]
- Dell’Orco, M.J.; Chadik, P.A.; Bitton, G.; Neumann, R. Sulfide-oxidizing bacteria: Their role during air-stripping. J. Am. Water Work. Assoc. 1998, 90, 107–115. [Google Scholar] [CrossRef]
- Wilmot, P.D.; Cadee, K.; Katinic, J.J.; Kavanagh, B.V. Kinetics of sulfide oxidation by dissolved oxygen. J. Water Pollut. Control Fed. 1988, 60, 1264–1270. [Google Scholar]
- Maochun, C.; Yongkui, Z.; Benhe, Z.; Liyou, Q.; Bin, L. Growth kinetics of thiobacilli strain HSS and its application in bioleaching phosphate ore. Ind. Eng. Chem. Res. 2002, 41, 1329–1334. [Google Scholar] [CrossRef]
Process | Rate Equation | ||||
---|---|---|---|---|---|
Chemical S(−II) oxidation | −1 | ||||
Biological S(−II) oxidation | −1 | 1 | |||
Biological S(0) oxidation | 1 |
Symbol | Definition | Unit |
---|---|---|
SS(−II) | Total dissolved sulfide (H2S + HS− + S2−) | g COD m−3 |
SO | Dissolved oxygen | g O2 m−3 |
XS(−II) | Elemental sulfur | g S m−3 |
XSOB | Sulfide oxidizing biomass | g COD m−3 |
RC | Stoichiometric coefficient for chemical sulfide oxidation | g O2 (g S)−1 |
RB,S(−II) | Stoichiometric coefficient for biological SS(−II) oxidation | g O2 (g S)−1 |
RB,S(0) | Stoichiometric coefficient for biological SS(0) oxidation | g O2 (g S)−1 |
kS(−II)c | Rate constant for chemical sulfide oxidation | d−1 |
m | Reaction order with respect to SS(−II) | − |
n | Reaction order with respect to SO | − |
kS(−II)b | Rate constant for biological sulfide oxidation | d−1 |
μSOB | Maximum specific growth rate of XSOB | d−1 |
YSOB | Yield constant for XSOB | g COD (g S)−1 |
KS(−II) | Saturation constant for SS(−II) | g S m−3 |
KS(0) | Saturation constant for SS(0) | g S m−3 |
Symbol | Definition | Value 1 | Unit |
---|---|---|---|
XSOB | Initial concentration of SOB | 0.59 (±0.25) | g COD m−3 |
RB,S(−II) | Stoichiometric coefficient for biological SS(−II) oxidation | 0.5 (2) | g O2 (g S)−1 |
RB,S(0) | Stoichiometric coefficient for biological SS(0) oxidation | 1.3 (±0.3) | g O2 (g S)−1 |
kS(−II)b | Rate constant for biological sulfide oxidation | 63.8 (±20.0) | d−1 |
μSOB | Maximum specific growth rate of XSOB | 1.98 (±0.59) | d−1 |
YSOB | Yield constant for XSOB | 0.17 (±0.10) | g COD (g S)−1 |
KS(−II) | Saturation constant for SS(−II) | 0.1 (2) | g S m−3 |
KS(0) | Saturation constant for SS(0) | 0.1 (2) | g S m−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, A.H.; Vollertsen, J. Model Parameters for Aerobic Biological Sulfide Oxidation in Sewer Wastewater. Water 2021, 13, 981. https://doi.org/10.3390/w13070981
Nielsen AH, Vollertsen J. Model Parameters for Aerobic Biological Sulfide Oxidation in Sewer Wastewater. Water. 2021; 13(7):981. https://doi.org/10.3390/w13070981
Chicago/Turabian StyleNielsen, Asbjørn Haaning, and Jes Vollertsen. 2021. "Model Parameters for Aerobic Biological Sulfide Oxidation in Sewer Wastewater" Water 13, no. 7: 981. https://doi.org/10.3390/w13070981
APA StyleNielsen, A. H., & Vollertsen, J. (2021). Model Parameters for Aerobic Biological Sulfide Oxidation in Sewer Wastewater. Water, 13(7), 981. https://doi.org/10.3390/w13070981