Thermal Characteristics of a Beaver Dam Analogues Equipped Spring-Fed Creek in the Canadian Rockies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Data Analysis
3. Results
3.1. Stream Temperature
3.2. Pond Temperature
4. Discussion
4.1. Stream and Pond Temperatures
4.2. Mechanisms of Thermal Variation
4.3. Implications of Warmed Waters for Fish
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janzen, K.; Westbrook, C.J. Hyporheic flows along a channelled peatland: Influence of beaver dams. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2011, 36, 331–347. [Google Scholar] [CrossRef]
- Westbrook, C.J.; Cooper, D.; Baker, B. Beaver assisted river valley formation. River Res. Appl. 2011, 27, 247–256. [Google Scholar] [CrossRef]
- Harvey, J.; Gooseff, M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resour. Res. 2015, 51, 6893–6922. [Google Scholar] [CrossRef] [Green Version]
- Stout, T.; Majerova, M.; Neilson, B. Impacts of beaver dams on channel hydraulics and substrate characteristics in a mountain stream. Ecohydrology 2017, 10, e1767. [Google Scholar] [CrossRef]
- Pollock, M.M.; Beechie, T.J.; Jordan, C.E. Geomorphic changes upstream of beaver dams in Bridge Creek, an incised stream channel in the interior Columbia River basin, eastern Oregon. Earth Surf. Process. Landf. 2007, 32, 1174–1185. [Google Scholar] [CrossRef]
- Butler, D.R.; Malanson, G.P. The geomorphic influences of beaver dams and failures of beaver dams. Geomorphology 2005, 71, 48–60. [Google Scholar] [CrossRef]
- Wolf, E.C.; Cooper, D.J.; Hobbs, N.T. Hydrologic regime and herbivory stabilize an alternative state in Yellowstone National Park. Ecol. Appl. 2007, 17, 1572–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, K.C.; Westbrook, C.J. Changes in riparian area structure, channel hydraulics, and sediment yield following loss of beaver dams. J. Ecosyst. Manag. 2009, 10, 68–79. [Google Scholar]
- Bouwes, N.; Weber, N.; Jordan, C.E.; Saunders, W.C.; Tattam, I.A.; Volk, C.; Wheaton, J.M.; Pollock, M.M. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss). Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pollock, M.; Wheaton, J.; Bouwes, N.; Jordan, C. Working with Beaver to Restore Salmon Habitat in the Bridge Creek Intensively Monitored Watershed; Nation Oceanic and Atmospheric Administration: Seattle, WA, USA, 2012.
- Pollock, M.M.; Beechie, T.J.; Wheaton, J.M.; Jordan, C.E.; Bouwes, N.; Weber, N.; Volk, C. Using beaver dams to restore incised stream ecosystems. Bioscience 2014, 64, 279–290. [Google Scholar] [CrossRef]
- National Marine Fisheries Service. Middle Columbia River Steelhead Distinct Population Segment ESA Recovery Plan; NMFS, Northwest Region: Portland, OR, USA, 2019; p. 260.
- Charnley, S. Beavers, Landowners, and Watershed Restoration: Experimenting with Beaver Dam Analogues in the Scott River Basin, California; U.S. Department of Agriculture, Forest Service: Portland, OR, USA, 2018; p. 38.
- Pilliod, D.S.; Rohde, A.T.; Charnley, S.; Davee, R.R.; Dunham, J.B.; Gosnell, H.; Grant, G.E.; Hausner, M.B.; Huntington, J.L.; Nash, C. Survey of beaver-related restoration practices in rangeland streams of the western USA. Environ. Manag. 2018, 61, 58–68. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Burke, B.J.; Lawler, J.J.; Torgersen, C.E.; Ebersole, J.L.; Leibowitz, S.G. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape. Ecosphere 2017, 8, e02052. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.P. The Behavior and Ecology of Pacific Salmon and Trout; University of Washington Press: Seattle, WA, USA, 2018. [Google Scholar]
- Underwood, Z.; Myrick, C.; Rogers, K. Effect of acclimation temperature on the upper thermal tolerance of Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus: Thermal limits of a North American salmonid. J. Fish Biol. 2012, 80, 2420–2433. [Google Scholar] [CrossRef] [PubMed]
- McRae, G.; Edwards, C.J. Thermal characteristics of Wisconsin headwater streams occupied by beaver: Implications for brook trout habitat. Trans. Am. Fish. Soc. 1994, 123, 641–656. [Google Scholar] [CrossRef]
- Poole, G.C.; Berman, C.H. An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-causedthermal degradation. Environ. Manag. 2001, 27, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Weber, N.; Bouwes, N.; Pollock, M.M.; Volk, C.; Wheaton, J.M.; Wathen, G.; Wirtz, J.; Jordan, C.E. Alteration of stream temperature by natural and artificial beaver dams. PLoS ONE 2017, 12, e0176313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pörtner, H.O.; Peck, M. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. J. Fish Biol. 2010, 77, 1745–1779. [Google Scholar] [CrossRef] [PubMed]
- Cleator, H.; Earle, J.; Fitch, L.; Humphries, S.; Koops, M.; Martin, K.; Mayhood, D.; Petry, S.; Pacas, C.; Stelfox, J. Information Relevant to a Recovery Potential Assessment of Pure Native Westslope Cutthroat Trout, Alberta Population; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2009; p. 26.
- Earle, J.E. Recovery planning for westslope cutthroat trout: A threatened species in Alberta. In Proceedings of the Wild Trout X Symposium Conserving Wild Trout, West Yellowstone, MT, USA, 28–30 September 2010; pp. 28–39. [Google Scholar]
- Bear, E.A.; McMahon, T.E.; Zale, A.V. Comparative thermal requirements of westslope cutthroat trout and rainbow trout: Implications for species interactions and development of thermal protection standards. Trans. Am. Fish. Soc. 2007, 136, 1113–1121. [Google Scholar] [CrossRef]
- Munir, T.M.; Westbrook, C.J. Beaver dam analogue configurations influence stream and riparian water table dynamics of a degraded spring-fed creek in the Canadian Rockies. River Res. Appl. 2020, 1–13. [Google Scholar] [CrossRef]
- Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O’Neill, M.W. Managed flood effects on beaver pond habitat in a desert riverine ecosystem, Bill Williams River, Arizona USA. Wetlands 2011, 31, 195–206. [Google Scholar] [CrossRef]
- Majerova, M.; Neilson, B.; Schmadel, N.; Wheaton, J.; Snow, C. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream. Hydrol. Earth Syst. Sci. 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Majerova, M.; Neilson, B.T.; Roper, B.B. Beaver dam influences on streamflow hydraulic properties and thermal regimes. Sci. Total Environ. 2020, 718, 134853. [Google Scholar] [CrossRef]
- Shetter, D.S.; Whalls, M.J. Effect of impoundment on water temperatures of Fuller Creek, Montmorency County, Michigan. J. Wildl. Manag. 1955, 19, 47–54. [Google Scholar] [CrossRef]
- Margolis, B.E.; Castro, M.S.; Raesly, R.L. The impact of beaver impoundments on the water chemistry of two Appalachian streams. Can. J. Fish Aquat. Sci. 2001, 58, 2271–2283. [Google Scholar] [CrossRef]
- Fuller, M.R.; Peckarsky, B.L. Ecosystem engineering by beavers affects mayfly life histories. Freshw. Biol. 2011, 56, 969–979. [Google Scholar] [CrossRef]
- Lautz, L.; Kelleher, C.; Vidon, P.; Coffman, J.; Riginos, C.; Copeland, H. Restoring stream ecosystem function with beaver dam analogues: Let’s not make the same mistake twice. Hydrol. Process. 2019, 33, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Grasby, S.E.; Chen, Z.; Hamblin, A.P.; Wozniak, P.R.; Sweet, A.R. Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta. Can. J. Earth Sci. 2008, 45, 1501–1516. [Google Scholar] [CrossRef]
- Shyba, G.; Rempel, R. Ann and Sandy Cross Conservation Area: Adaptive Managemen Plan 2015–2040; Calgary Foundation: Calgary, AB, Canada, 2015. [Google Scholar]
- Baayens, D.M.; Brewin, M.K. Fisheries Resources of the Fish Creek Watershed; Fisheries Management Enhancement Program, Alberta Conservation Association: Edmonton, AB, Canada, 1990; p. 41. [Google Scholar]
- Cahill, C.L.; Mogensen, S.; Wilson, K.L.; Cantin, A.; Sinnatamby, R.N.; Paul, A.J.; Christensen, P.; Reilly, J.R.; Winkel, L.; Farineau, A.; et al. Multiple challenges confront a high-effort inland recreational fishery in decline. Can. J. Fish. Aquat. Sci. 2018, 75, 1357–1368. [Google Scholar] [CrossRef]
- White, R. Beaver Reintroduction Project; Mary Nersessian: Calgary, AB, Canada, 2016. [Google Scholar]
- Landau, S.; Everitt, B. A Handbook of Statistical Analyses Using SPSS; CRC: Washington, DC, USA, 2004. [Google Scholar]
- Nyssen, J.; Pontzeele, J.; Billi, P. Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium. J. Hydrol. 2011, 402, 92–102. [Google Scholar] [CrossRef]
- Vowinckel, E.; Orvig, S. The heat and water budgets of a beaver pond. Atmosphere 1973, 11, 166–178. [Google Scholar] [CrossRef] [Green Version]
- De Frenne, P.; Graae, B.J.; Rodríguez-Sánchez, F.; Kolb, A.; Chabrerie, O.; Decocq, G.; De Kort, H.; De Schrijver, A.; Diekmann, M.; Eriksson, O.; et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 2013, 101, 784–795. [Google Scholar] [CrossRef]
- Clark, E.; Webb, B.; Ladle, M. Microthermal gradients and ecological implications in Dorset rivers. Hydrol. Process. 1999, 13, 423–438. [Google Scholar] [CrossRef]
- Appleton, C. Observations on the thermal regime of a stream in the Eastern Transvaal, with reference to certain aquatic Pulmonata. S. Afr. J. Sci. 1976, 72, 20. [Google Scholar]
- Schmadel, N.M.; Neilson, B.T.; Heavilin, J.E. Spatial considerations of stream hydraulics in reach scale temperature modeling. Water Resour. Res. 2015, 51, 5566–5581. [Google Scholar] [CrossRef] [Green Version]
- Ebersole, J.L.; Liss, W.J.; Frissell, C.A. Cold water patches in warm streams: Physicochemical characteristics and the influence of shading 1. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 355–368. [Google Scholar] [CrossRef]
- Smith, J.M.; Mather, M.E. Beaver dams maintain fish biodiversity by increasing habitat heterogeneity throughout a low-gradient stream network. Freshw. Biol. 2013, 58, 1523–1538. [Google Scholar] [CrossRef]
Effect/Term | Stream Temp. (°C) | BDA Pondwater Temp. (°C) | ||||
---|---|---|---|---|---|---|
df | F or t-Ratio | p/ LogWorth (-log10(p)) | df | F or t-Ratio | p/ LogWorth (-log10(p)) | |
PAIRED t-TESTS (Pre- vs. post-BDA installation) | ||||||
T_1-config. (2018–2019; R2 = 0.57) | 107 | 5.36 | <0.001 | n/a | ||
T_2-config. (2018–2019; R2 = 0.15) | 107 | 11.41 | <0.001 | |||
T_2-config. (2017–2019; R2 = 0.11) | 107 | 12.31 | <0.001 | |||
T_3-config. (2018–2019; R2 = 0.84) | 107 | 7.92 | <0.001 | |||
Tmax one-way ANOVA (Holm–Sidak method) | ||||||
(1-config. = 8.3 °C) vs. (2-config. = 9.0 °C) | 175 | −1.81 | 0.070 | 96 | 0.23 | 0.822 |
(1-config. = 8.3 °C) vs. (3-config. = 9.9 °C) | 169 | −4.12 | <0.001 | 98 | −2.36 | 0.038 |
(2-config. = 9.0 °C) vs. (3-config. = 9.9 °C) | 169 | −2.30 | <0.042 | 96 | −2.59 | 0.030 |
MIXED-EFFECTS MODELS (Stepwise Regressions) | ||||||
BDA configuration | 2,2 | 13.99 | <0.001/ 8.17 | 2,2 | 21.36 | <0.001/ 8.65 |
(T_1-config.)-(T_2-config.) | - | −2.43 | 0.071 | - | −1.14 | 0.601 |
(T_1-config.)-(T_3-config.) | - | −6.07 | <0.001 | - | −5.63 | <0.001 |
(T_2-config.)-(T_3-config.) | - | −2.71 | 0.034 | - | −4.12 | <0.001 |
Stream discharge | 1,1 | −10.51 | <0.001/ 23.56 | 1,1 | −6.13 | <0.001/ 8.53 |
Rainfall | 1,1 | −0.58 | 0.565 | 1,1 | −2.06 | 0.041 |
BDA pondwater level | 1,1 | −3.69 | <0.001/ 3.57 | 1,1 | −3.46 | <0.001/ 3.20 |
Stream discharge × Rainfall | 1,1 | 4.43 | <0.001 | 1,1 | 3.79 | <0.001 |
BDA-config. × Stream discharge × Rainfall | 2,2 | 4.80 | 0.003 | 2,2 | 2.25 | 0.025 |
Year | BDA Configuration | Total Hours Sampled | Percent of Total Hours in Temperature Range (°C) | ||||
---|---|---|---|---|---|---|---|
<10 | 10–12 | 13–15 | 16–19.5 | ≥19.6 | |||
2018 | Single | 2776 | 62 | 34 | 4 | 0 | 0 |
Double | 3258 | 45 | 29 | 20 | 6 | 0 | |
Triple | 2775 | 48 | 37 | 4 | 11 | 0 | |
2019 | Single | 2570 | 69 | 20 | 10 | 1 | 0 |
Double | 2572 | 64 | 36 | 0 | 0 | 0 | |
Triple | 2571 | 72 | 23 | 3 | 2 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, T.M.; Westbrook, C.J. Thermal Characteristics of a Beaver Dam Analogues Equipped Spring-Fed Creek in the Canadian Rockies. Water 2021, 13, 990. https://doi.org/10.3390/w13070990
Munir TM, Westbrook CJ. Thermal Characteristics of a Beaver Dam Analogues Equipped Spring-Fed Creek in the Canadian Rockies. Water. 2021; 13(7):990. https://doi.org/10.3390/w13070990
Chicago/Turabian StyleMunir, Tariq M., and Cherie J. Westbrook. 2021. "Thermal Characteristics of a Beaver Dam Analogues Equipped Spring-Fed Creek in the Canadian Rockies" Water 13, no. 7: 990. https://doi.org/10.3390/w13070990
APA StyleMunir, T. M., & Westbrook, C. J. (2021). Thermal Characteristics of a Beaver Dam Analogues Equipped Spring-Fed Creek in the Canadian Rockies. Water, 13(7), 990. https://doi.org/10.3390/w13070990