Aquaculture and Restoration: Perspectives from Mediterranean Sea Experiences
Abstract
:1. Introduction
2. Marine Restoration
3. Production and Restoration
4. Mariculture Development: Inshore vs. Offshore
5. Integrated Aquaculture and Artificial Reefs in the Mediterranean Area: Problems and Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World scientists’ warning of a climate emergency. Bioscience 2020. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, B.S.; Frazier, M.; Afflerbach, J.; Lowndes, J.S.; Micheli, F.; O’Hara, C.; Scarborough, C.; Selkoe, K.A. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 2019, 9, 11609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.K.; Myers, R.A.; Kehler, D.G.; Worm, B.; Harley, S.J.; Doherty, P.A. Collapse and conservation of shark populations in the Northwest Atlantic. Science 2003, 299, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.A.; Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 2003, 423, 280–283. [Google Scholar] [CrossRef]
- Stickney, R.R.; Treece, G.D. History of aquaculture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 15–50. [Google Scholar]
- Gallardi, D. Effects of bivalve aquaculture on the environment and their possible mitigation: A review. Fish. Aquac. J. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture 2020; Sustainability in action; FAO: Rome, Italy, 2020; ISBN 9789251326923. [Google Scholar]
- Duarte, C.M.; Holmer, M.; Olsen, Y.; Soto, D.; Marbà, N.; Guiu, J.; Black, K.; Karakassis, I. Will the oceans help feed humanity? Bioscience 2009, 59, 967–976. [Google Scholar] [CrossRef]
- Serpa, D.; Duarte, P. Impacts of aquaculture and mitigation measures. Dyn. Biochem. Process. Biotechnol. Mol. Biol. 2008, 2, 1–20. [Google Scholar]
- Lozano, S.; Iribarren, D.; Moreira, M.T.; Feijoo, G. Environmental impact efficiency in mussel cultivation. Resour. Conserv. Recycl. 2010, 54, 1269–1277. [Google Scholar] [CrossRef]
- Aubin, J.; Fontaine, C.; Callier, M.; Roque d’orbcastel, E. Blue mussel (Mytilus edulis) bouchot culture in Mont-St Michel Bay: Potential mitigation effects on climate change and eutrophication. Int. J. Life Cycle Assess. 2018, 23, 1030–1041. [Google Scholar] [CrossRef]
- Watson, S.C.L.; Preston, J.; Beaumont, N.J.; Watson, G.J. Assessing the natural capital value of water quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. Sci. Total Environ. 2020, 744, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The cost and feasibility of marine coastal restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, J.H.; Peterson, C.H. Restoring oyster reefs to recover ecosystem services. In Theoretical Ecology Series; Academic Press: Cambridge, MA, USA, 2007; pp. 281–298. [Google Scholar]
- Matthew, G. Fifteen Years of Rhode Island Oyster Restoration: A Performance Evaluation and Cost-Benefit Analysis. Ph.D. Thesis, University of Rhode Island, Kingston, RI, USA, 2016. [Google Scholar]
- Karakassis, I. Environmental interactions and initiatives on site selection and carrying capacity estimation for fish farming in the Mediterranean. In Site Selection and Carrying Capacities for Inland and Coastal; Ross, L.G., Telfer, T.C., Falconer, L., Soto, D., Aguilar-Manjarrez, J., Eds.; FAO: Rome, Italy, 2013; pp. 160–170. [Google Scholar]
- Alexander, K.A.; Potts, T.P.; Freeman, S.; Israel, D.; Johansen, J.; Kletou, D.; Meland, M.; Pecorino, D.; Rebours, C.; Shorten, M.; et al. The implications of aquaculture policy and regulation for the development of integrated multi-trophic aquaculture in Europe. Aquaculture 2015, 443, 16–23. [Google Scholar] [CrossRef]
- Boström-Einarsson, L.; Babcock, R.C.; Bayraktarov, E.; Ceccarelli, D.; Cook, N.; Ferse, S.C.A.; Hancock, B.; Harrison, P.; Hein, M.; Shaver, E.; et al. Coral restoration—A systematic review of current methods, successes, failures and future directions. PLoS ONE 2020, 15, e022663. [Google Scholar] [CrossRef] [PubMed]
- Fey, S.B.; Siepielski, A.M.; Nusslé, S.; Cervantes-Yoshida, K.; Hwan, J.L.; Huber, E.R.; Fey, M.J.; Catenazzi, A.; Carlson, S.M. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. USA 2015, 112, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Epstein, N.; Bak, R.P.M.; Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 387–395. [Google Scholar] [CrossRef]
- Tamburello, L.; Papa, L.; Guarnieri, G.; Basconi, L.; Zampardi, S.; Scipione, M.B.; Terlizzi, A.; Zupo, V.; Fraschetti, S. Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies. PLoS ONE 2019, 14, e0224477. [Google Scholar] [CrossRef]
- Baldacconi, R.; Cardone, F.; Longo, C.; Mercurio, M.; Nonnis Marzano, C.; Gaino, E.; Corriero, G. Transplantation of Spongia officinalis L. (Porifera, Demospongiae): A technical approach for restocking this endangered species. Mar. Ecol. Evol. Perspect. 2010, 31, 309–317. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 2019, 7, 201. [Google Scholar] [CrossRef] [Green Version]
- Rinkevich, B. Ecological engineering approaches in coral reef restoration. ICES J. Mar. Sci. 2020, 78, 410–420. [Google Scholar] [CrossRef] [Green Version]
- Lirman, D.; Thyberg, T.; Herlan, J.; Hill, C.; Young-Lahiff, C.; Schopmeyer, S.; Huntington, B.; Santos, R.; Drury, C. Propagation of the threatened staghorn coral Acropora cervicornis: Methods to minimize the impacts of fragment collection and maximize production. Coral Reefs 2010, 29, 729–735. [Google Scholar] [CrossRef]
- Beazley, L.I.; Kenchington, E.L.; Murillo, F.J.; Sacau, M.d.M. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 2013, 70, 1471–1490. [Google Scholar] [CrossRef]
- Bo, M.; Bertolino, M.; Bavestrello, G.; Canese, S.; Giusti, M.; Angiolillo, M.; Pansini, M.; Taviani, M. Role of deep sponge grounds in the Mediterranean Sea: A case study in southern Italy. Hydrobiologia 2012, 687, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, M.; Giangrande, A.; Corriero, G. Epibiontic and endobiontic polychaetes of Geodia cydonium (Porifera, Demospongiae) from the Mediterranean Sea. Hydrobiologia 2001, 443, 87–101. [Google Scholar] [CrossRef]
- Gerovasileiou, V.; Chintiroglou, C.C.; Konstantinou, D.; Voultsiadou, E. Sponges as “living hotels” in Mediterranean marine caves. Sci. Mar. 2016, 80, 279–289. [Google Scholar] [CrossRef]
- Goren, L.; Idan, T.; Shefer, S.; Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the israeli Mediterranean coast. Front. Mar. Sci. 2021, 7, 1–14. [Google Scholar] [CrossRef]
- Klitgaard, A.B. The fauna associated with outer shelf and upper slope sponges (Porifera, Demospongiae) at the Faroe islands, northeastern Atlantic. Sarsia 1995, 80, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Verdenal, B.; Vacelet, J. Sponge culture on vertical ropes in the Northwestern Mediterranean Sea. In New Perspectives in Sponge Biology; Rützler, K., Ed.; Smithsonian Institution Press: Washington, DC, USA, 1990; pp. 416–424. [Google Scholar]
- Pronzato, R.; Bavestrello, G.; Cerrano, C.; Magnino, G.; Manconi, R.; Pantelis, J.; Sarà, A.; Sidri, M. Sponge farming in the Mediterranean Sea: New perspectives. Mem. Queensl. Mus. 1999, 44, 485–491. [Google Scholar]
- Scalera Liaci, L.; Mercurio, M.; Palladino, F.; Massari, S.; Corriero, G. La spongicoltura: Una forma di maricoltura costiera compatibile con i vincoli di tutela delle aree protette. In Proceedings of the 29° Congresso S.I.B.M., Ustica, Italy, 15–20 June 1998. [Google Scholar]
- Scalera Liaci, L.; Mercurio, M.; Palladino, F.; Massari, S.; Corriero, G. L’allevamento di spugne commerciali nella Riserva Marina di Porto Cesareo (LE). Biol. Mar. Mediterr. 1999, 6, 110–118. [Google Scholar]
- Mercurio, M.; Longo, C.; Nonnis Marzano, C.; Scalera Liaci, L.; Corriero, G. L’allevamento di spugne commerciali nella Riserva Naturale Marina ‘Isola di Ustica. ’ Biol. Mar. Mediterr. 2003, 10, 462–464. [Google Scholar]
- Corriero, G.; Longo, C.; Mercurio, M.; Nonnis Marzano, C.; Lembo, G.; Spedicato, M.T. Rearing performance of Spongia officinalis on suspended ropes off the Southern Italian Coast (Central Mediterranean Sea). Aquaculture 2004, 238, 195–205. [Google Scholar] [CrossRef]
- Pronzato, R.; Manconi, R. Mediterranean commercial sponges: Over 5000 years of natural history and cultural heritage. Mar. Ecol. 2008, 29, 146–166. [Google Scholar] [CrossRef]
- De Caralt, S.; Sánchez-Fontenla, J.; Uriz, M.J.; Wijffels, R.H. In situ aquaculture methods for Dysidea avara (demospongiae, porifera) in the Northwestern Mediterranean. Mar. Drugs 2010, 8, 1731–1742. [Google Scholar] [CrossRef] [Green Version]
- van Treeck, P.; Eisinger, M.; Müller, J.; Paster, M.; Schuhmacher, H. Mariculture trials with Mediterranean sponge species: The exploitation of an old natural resource with sustainable and novel methods. Aquaculture 2003, 218, 439–455. [Google Scholar] [CrossRef]
- Giangrande, A.; Pierri, C.; Arduini, D.; Borghese, J.; Licciano, M.; Trani, R.; Corriero, G.; Basile, G.; Cecere, E.; Petrocelli, A.; et al. An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea). J. Mar. Sci. Eng. 2020, 8, 733. [Google Scholar] [CrossRef]
- Corriero, G.; Mercurio, M.; Nonnis Marzano, C.; Longo, C. Metodologia per la reintroduzione di poriferi in ambiente naturale. In Brevetto Nazionale Depositato Presso la Camera di Commercio Industria Artigianato Agricoltura di Bari; n. BA 2003 A000011; Ministero dello Sviluppo Economico: Rome, Italy, 2003. [Google Scholar]
- Rossi, S. The destruction of the “animal forests” in the oceans: Towards an over-simplification of the benthic ecosystems. Ocean. Coast. Manag. 2013, 84, 77–85. [Google Scholar] [CrossRef]
- Rossi, S.; Bramanti, L.; Gori, A.; Orejas, C. Animal forests of the world: An overview. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Springer: Cham, Switzerland, 2017; ISBN 9783319210124. [Google Scholar]
- Paoli, C.; Montefalcone, M.; Morri, C.; Vassallo, P.; Bianchi, C.N. Ecosystem functions and services of the marine animal forests. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Springer: Cham, Switzerland, 2017; ISBN 9783319210124. [Google Scholar]
- Rossi, S.; Rizzo, L. Marine animal forests as carbon immobilizers or why we should preserve these three-dimensional alive structures. In Perspectives on the Marine Animal Forests of the World; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Westoby, R.; Becken, S.; Laria, A.P. Perspectives on the human dimensions of coral restoration. Reg. Environ. Chang. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Lorenzen, K.; Agnalt, A.L.; Blankenship, H.L.; Hines, A.H.; Leber, K.M.; Loneragan, N.R.; Taylor, M.D. Evolving context and maturing science: Aquaculture-based enhancement and restoration enter the marine fisheries management toolbox. Rev. Fish. Sci. 2013, 21, 213–221. [Google Scholar] [CrossRef]
- Carroll, M.L.; Cochrane, S.; Fieler, R.; Velvin, R.; White, P. Organic enrichment of sediments from salmon farming in Norway: Environmental factors, management practices, and monitoring techniques. Aquaculture 2003, 1, 165–180. [Google Scholar] [CrossRef]
- Karakassis, I.; Tsapakis, M.; Hatziyanni, E.; Papadopoulou, K.N.; Plaiti, W. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES J. Mar. Sci. 2000, 57, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Theuerkauf, S.J.; Morris, J.A.; Waters, T.J.; Wickliffe, L.C.; Alleway, H.K.; Jones, R.C. A global spatial analysis reveals where marine aquaculture can benefit nature and people. PLoS ONE 2019, 14, e0222282. [Google Scholar] [CrossRef] [PubMed]
- Schröder, T.; Stank, J.; Schernewski, G.; Krost, P. The impact of a mussel farm on water transparency in the Kiel Fjord. Ocean. Coast. Manag. 2014, 101, 45–52. [Google Scholar] [CrossRef]
- Rose, J.M.; Bricker, S.B.; Ferreira, J.G. Comparative analysis of modeled nitrogen removal by shellfish farms. Mar. Pollut. Bull. 2015, 91, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.B.; Stephenson, K.; Brown, B.L. Nutrient bioassimilation capacity of aquacultured oysters: Quantification of an ecosystem service. J. Environ. Qual. 2011, 40, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallman, J.C.; Forrester, G.E. Oyster grow-out cages function as artificial reefs for temperate fishes. Trans. Am. Fish. Soc. 2007, 136, 790–799. [Google Scholar] [CrossRef]
- Kraufvelin, P.; Díaz, E.R. Sediment macrofauna communities at a small mussel farm in the northern Baltic proper. Boreal Environ. Res. 2015, 20, 378–390. [Google Scholar]
- Chopin, T. Reducing the carbon footprint of ocean-derived food production (fisheries and aquaculture) and shifting diets: Another of the five opportunities to make the ocean part of the solution to climate change. Aquaculture 2020, 23, 12–13. [Google Scholar]
- Mongin, M.; Baird, M.E.; Hadley, S.; Lenton, A. Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification. Environ. Res. Lett. 2016, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rabiei, R.; Phang, S.M.; Yeong, H.Y.; Lim, P.E.; Ajdari, D.; Zarshenas, G.; Sohrabipour, J. Bioremediation efficiency and biochemical composition of Ulva reticulata Forsskål (Chlorophyta) cultivated in shrimp (Penaeus monodon) hatchery effluent. Iran. J. Fish. Sci. 2014, 13, 621–639. [Google Scholar]
- Gagnon, K.; Rinde, E.; Bengil, E.G.T.; Carugati, L.; Christianen, M.J.A.; Danovaro, R.; Gambi, C.; Govers, L.L.; Kipson, S.; Meysick, L.; et al. Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. J. Appl. Ecol. 2020, 57, 1161–1179. [Google Scholar] [CrossRef]
- Ahmed, M.; Lorica, M.H. Improving developing country food security through aquaculture development—Lessons from Asia. Food Policy 2002, 27, 125–141. [Google Scholar] [CrossRef]
- Aslan, L.O.M.; Iba, W.; Bolu, L.O.R.; Ingram, B.A.; Gooley, G.J.; de Silva, S.S. Mariculture in SE Sulawesi, Indonesia: Culture practices and the socio economic aspects of the major commodities. Ocean. Coast. Manag. 2015, 116, 44–57. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Gentry, R.R.; Halpern, B.S. Conservation aquaculture: Shifting the narrative and paradigm of aquaculture’s role in resource management. Biol. Conserv. 2017, 215, 162–168. [Google Scholar] [CrossRef]
- Alleway, H.K.; Gillies, C.L.; Bishop, M.J.; Gentry, R.R.; Theuerkauf, S.J.; Jones, R. The Ecosystem Services of Marine Aquaculture: Valuing Benefits to People and Nature. Bioscience 2019, 69, 59–68. [Google Scholar] [CrossRef]
- Rodriguez-Perez, A.; James, M.; Donnan, D.W.; Henry, T.B.; Møller, L.F.; Sanderson, W.G. Conservation and restoration of a keystone species: Understanding the settlement preferences of the European oyster (Ostrea edulis). Mar. Pollut. Bull. 2019, 138, 312–321. [Google Scholar] [CrossRef]
- Jaris, H.; Brown, D.S.; Proestou, D.A. Assessing the contribution of aquaculture and restoration to wild oyster populations in a Rhode Island coastal lagoon. Conserv. Genet. 2019, 20, 503–516. [Google Scholar] [CrossRef]
- Thurstan, R.H.; Pandolfi, J.M.; zu Ermgassen, P.S.E. Animal forests through time: Historical data to understand present changes in marine ecosystems. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots; Rossi, S., Bramanti, L., Gori, A., Covadonga, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 947–963. ISBN 978-3-319-21012-4. [Google Scholar]
- Cheney, D.; Langan, R.; Heasman, K.; Friedman, B.; Davis, J. Shellfish culture in the open ocean: Lessons learned for offshore expansion. Mar. Technol. Soc. J. 2010, 44, 55–67. [Google Scholar] [CrossRef]
- Galimany, E.; Wikfors, G.H.; Dixon, M.S.; Newell, C.R.; Meseck, S.L.; Henning, D.; Li, Y.; Rose, J.M. Cultivation of the Ribbed Mussel (Geukensia demissa) for Nutrient Bioextraction in an Urban Estuary. Environ. Sci. Technol. 2017, 51, 13311–13318. [Google Scholar] [CrossRef]
- Chopin, T. Global Aquaculture Advocate; GAA: Portsmouth, NH, USA, 2012. [Google Scholar]
- Chopin, T. Integrated multi-trophic aquaculture–ancient, adaptable concept focuses on ecological integration. Glob. Aquac. Advocate 2013, 16, 16–19. [Google Scholar]
- Olsen, Y. Resources for fish feed in future mariculture. Aquac. Environ. Interact. 2011, 1, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbø, R.; Krogdahl, Å.; Lock, E.J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Mizuta, D.D.; Fregeau, M.; Dixon, M.S.; Maney, E.J.J.; Wikfors, G.H. Offshore mussel aquaculture: Strategies for farming in the changing environment of the Northeast U.S. shelf EEZ. Bull. Jpn. Fish. Res. Edu. Agency 2019, 49, 111–119. [Google Scholar]
- Osmundsen, T.C.; Amundsen, V.S.; Alexander, K.A.; Asche, F.; Bailey, J.; Finstad, B.; Olsen, M.S.; Hernández, K.; Salgado, H. The operationalisation of sustainability: Sustainable aquaculture production as defined by certification schemes. Glob. Environ. Chang. 2020, 60, 1–8. [Google Scholar] [CrossRef]
- Trujillo, P.; Piroddi, C.; Jacquet, J. Fish farms at Sea: The ground truth from Google Earth. PLoS ONE 2012, 10, e0134745. [Google Scholar] [CrossRef]
- Naylor, R.; Burke, M. Aquaculture and ocean resources: Raising tigers of the sea. Annu. Rev. Environ. Resour. 2005, 30, 185–218. [Google Scholar] [CrossRef] [Green Version]
- Sturrock, H.; Newton, R.; Paffrath, S.; Bostock, J.; Muir, J.; Young, J.; Immink, A.; Dickson, M. Prospective Analysis of the Aquaculture Sector in the EU; JRCEC: Seville, Spain, 2008; ISBN 9789279094415. [Google Scholar]
- Lado-Insua, T.; Ocampo, F.J.; Moran, K. Offshore mussel aquaculture: New or just renewed? In Proceedings of the OCEANS ’09 Balancing Technology with Future Needs, Bremen, Germany, 11–14 May 2009. [Google Scholar]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Buck, B.H.; Grote, B. Seaweed in high-energy environments. Protocol to move Saccharina cultivation offshore. In Macroalagae Research; Charrier, B., Wichard, T., Reddy, C.R.K., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 4–36. [Google Scholar]
- Mann, C.C. The Bluewater Revolution. Wired. 2004. Available online: https://www.wired.com/2004/05/fish/ (accessed on 5 February 2021).
- Simpson, S. The blue food revolution. Sci. Am. 2011, 304, 54–61. [Google Scholar] [CrossRef]
- Corbin, J.S. Marine aquaculture: Today’s necessity for tomorrow’s seafood. Mar. Technol. Soc. J. 2007, 41, 16–23. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.G. Ecological engineering in aquaculture—Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.G.; Hawkins, A.J.S.; Monteiro, P.; Moore, H.; Service, M.; Pascoe, P.L.; Ramos, L.; Sequeira, A. Integrated assessment of ecosystem-scale carrying capacity in shellfish growing areas. Aquaculture 2008, 275, 138–151. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Sequeira, A.; Hawkins, A.J.S.; Newton, A.; Nickell, T.D.; Pastres, R.; Forte, J.; Bodoy, A.; Bricker, S.B. Analysis of coastal and offshore aquaculture: Application of the FARM model to multiple systems and shellfish species. Aquaculture 2009, 289, 32–41. [Google Scholar] [CrossRef]
- Venayagamoorthy, S.K.; Ku, H.; Fringer, O.B.; Chiu, A.; Naylor, R.L.; Koseff, J.R. Numerical modeling of aquaculture dissolved waste transport in a coastal embayment. Environ. Fluid Mech. 2011, 11, 329–351. [Google Scholar] [CrossRef]
- Løland, G. Current forces on, and water flow through and around, floating fish farms. Aquac. Int. 1993, 1, 72–89. [Google Scholar] [CrossRef]
- Tomassetti, P.; Gennaro, P.; Lattanzi, L.; Mercatali, I.; Persia, E.; Vani, D.; Porrello, S. Benthic community response to sediment organic enrichment by Mediterranean fish farms: Case studies. Aquaculture 2016, 450, 262–272. [Google Scholar] [CrossRef]
- Martinez-Garcia, E.; Carlsson, M.S.; Sanchez-Jerez, P.; Sánchez-Lizaso, J.L.; Sanz-Lazaro, C.; Holmer, M. Effect of sediment grain size and bioturbation on decomposition of organic matter from aquaculture. Biogeochemistry 2015, 125, 123–148. [Google Scholar] [CrossRef]
- Hughes, A.D.; Black, K.D. Going beyond the search for solutions: Understanding trade-offs in European integrated multi-trophic aquaculture development. Aquac. Environ. Interact. 2016, 8, 191–199. [Google Scholar] [CrossRef]
- Granada, L.; Sousa, N.; Lopes, S.; Lemos, M.F.L. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?—A review. Rev. Aquac. 2016, 8, 283–300. [Google Scholar] [CrossRef]
- Sarà, G.; Reid, G.K.; Rinaldi, A.; Palmeri, V.; Troell, M.; Kooijman, S.A.L.M. Growth and reproductive simulation of candidate shellfish species at fish cages in the Southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture 2012, 324-325, 259–266. [Google Scholar] [CrossRef]
- Barrington, K.; Chopin, T.; Robinson, S. Integrated multitrophic aquaculture (IMTA) in marine temperate waters. In Integrated Mariculture; Soto, D., Ed.; FAO: Rome, Italy, 2009; Volume 529, ISBN 9789251063873. [Google Scholar]
- Aguilar-Manjarrez, J.; Kapetsky, J.; Soto, D. The Potential of Spatial Planning Tools to Support the Ecosytem Approach to Aquaculture; FAO: Rome, Italy, 2010; ISBN 9789251064788. [Google Scholar]
- Stabili, L.; Cecere, E.; Licciano, M.; Petrocelli, A.; Sicuro, B.; Giangrande, A. Integrated multitrophic aquaculture by-products with added value: The Polychaete Sabella spallanzanii and the Seaweed Chaetomorpha linum as Potential Dietary Ingredients. Mar. Drugs 2019, 17, 677. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Mier, F.; Sanz-Lázaro, C.; Marín, A. Does bivalve mollusc polyculture reduce marine fin fish farming environmental impact? Aquaculture 2010, 306, 101–107. [Google Scholar] [CrossRef]
- Mahmood, T.; Fang, J.; Jiang, Z.; Zhang, J. Carbon and nitrogen flow, and trophic relationships, among the cultured species in an integrated multi-trophic aquaculture (IMTA) bay. Aquac. Environ. Interact. 2016, 8, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Ning, Z.; Liu, S.; Zhang, G.; Ning, X.; Li, R.; Jiang, Z.; Fang, J.; Zhang, J. Impacts of an integrated multi-trophic aquaculture system on benthic nutrient fluxes: A case study in Sanggou Bay, China. Aquac. Environ. Interact. 2016, 8, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Lazaro, C.; Sanchez-Jerez, P. Mussels do not directly assimilate fish farm wastes: Shifting the rationale of integrated multi-trophic aquaculture to a broader scale. J. Environ. Manag. 2017, 201, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giangrande, A.; Lezzi, M.; Del Pasqua, M.; Pierri, C.; Longo, C.; Gravina, M.F. Two cases study of fouling colonization patterns in the Mediterranean Sea in the perspective of integrated aquaculture systems. Aquac. Rep. 2020, 18, 1–12. [Google Scholar] [CrossRef]
- Bannister, J.; Sievers, M.; Bush, F.; Bloecher, N. Biofouling in marine aquaculture: A review of recent research and developments. Biofouling 2019, 35, 631–648. [Google Scholar] [CrossRef] [Green Version]
- Buck, B.H. Experimental trials on the feasibility of offshore seed production of the mussel Mytilus edulis in the German Bight: Installation, technical requirements and environmental conditions. Helgol. Mar. Res. 2007, 61, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Buck, B.H.; Nevejan, N.; Wille, M.; Chambers, M.D.; Chopin, T. Offshore and multi-use aquaculture with extractive species: Seaweeds and bivalves. In Aquaculture Perspective of Multi-Use Sites in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene; FAO: Rome, Italy, 2017; ISBN 9783319511597. [Google Scholar]
- Buck, B.H.; Krause, G.; Rosenthal, H. Extensive open ocean aquaculture development within wind farms in Germany: The prospect of offshore co-management and legal constraints. Ocean. Coast. Manag. 2004, 47, 95–122. [Google Scholar] [CrossRef]
- Buck, B.H.; Ebeling, M.W.; Michler-Cieluch, T. Mussel cultivation as a co-use in offshore wind farms: Potential and economic feasibility. Aquac. Econ. Manag. 2010, 14, 255–281. [Google Scholar] [CrossRef]
- Griffin, R.; Buck, B.; Krause, G. Private incentives for the emergence of co-production of offshore wind energy and mussel aquaculture. Aquaculture 2015, 436, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Jansen, H.M.; Van Den Burg, S.; Bolman, B.; Jak, R.G.; Kamermans, P.; Poelman, M.; Stuiver, M. The feasibility of offshore aquaculture and its potential for multi-use in the North Sea. Aquac. Int. 2016, 24, 735–756. [Google Scholar] [CrossRef] [Green Version]
- van den Burg, S.W.K.; Kamermans, P.; Blanch, M.; Pletsas, D.; Poelman, M.; Soma, K.; Dalton, G. Business case for mussel aquaculture in offshore wind farms in the North Sea. Mar. Policy 2017, 85, 1–7. [Google Scholar] [CrossRef]
- Brenner, M.; Buchholz, C.; Heemken, O.; Buck, B.H.; Koehler, A. Health and growth performance of the blue mussel (Mytilus edulis L.) from two hanging cultivation sites in the German Bight: A nearshore-offshore comparison. Aquac. Int. 2012, 20, 751–778. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019. [CrossRef]
- Tamburini, E.; Turolla, E.; Fano, E.A.; Castaldelli, G. Sustainability of mussel (Mytilus galloprovincialis) farming in the Po river delta, northern Italy, based on a life cycle assessment approach. Sustainability 2020, 12, 3814. [Google Scholar] [CrossRef]
- Danioux, C.; Bompais, X.; Loste, C.; Paquotte, P.; Muir, J.; Basurco, B. Offshore mollusc production in the Mediterranean basin. In Mediterranean Offshore Mariculture; CIHEAMIAMZ-Options Méditerranéennes: Rome, Italy, 2000; Volume 30, pp. 115–140. [Google Scholar]
- Cranford, P.J.; Reid, G.K.; Robinson, S.M.C. Open water integrated multi-trophic aquaculture: Constraints on the effectiveness of mussels as an organic extractive component. Aquac. Environ. Interact. 2013, 4, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Caroppo, C.; Giordano, L.; Palmieri, N.; Bellio, G.; Bisci, A.P.; Portacci, G.; Sclafani, P.; Hopkins, T.S. Progress toward sustainable mussel aquaculture in Mar Piccolo, Italy. Ecol. Soc. 2012, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Tiller, R. Conceptualizing future scenarios of integrated multi-trophic aquaculture (IMTA) in the Norwegian salmon industry. Mar. Policy 2019, 104, 198–209. [Google Scholar] [CrossRef]
- Riggio, S.; Badalamenti, F.; D’Anna, G. Artificial Reefs in Sicily: An Overview. In Artificial Reefs in European Seas; Springer: Cham, Switzerland, 2000. [Google Scholar]
- Simard, F. Réflexions sur les récifs artificiels au Japon. Biol. Mar. Mediterr. 1995, 2, 99–109. [Google Scholar]
- Bombace, G.; Fabi, G.; Fiorentini, L.; Speranza, S. Analysis of the efficacy of artificial reefs located in five different areas of the Adriatic Sea. Bull. Mar. Sci. 1994, 55, 559–580. [Google Scholar]
- Fabi, G.; Sala, A. An assessment of biomass and diel activity of fish at an artificial reef (Adriatic sea) using a stationary hydroacoustic technique. ICES J. Mar. Sci. 2002, 59, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Relini, G.; Lanteri, L.; Franco, A.; Cimmino, C. Fishes of artificial reefs in the gulf of Genoa. In Proceedings of the 47th EMBS, Arendal, Norway, 3–7 September 2012; p. 129. [Google Scholar]
- Ardizzone, G.D.; Gravina, M.F.; Belluscio, A. Temporal development of epibenthic communities on artificial reefs in the central Mediterranean Sea. Bull. Mar. Sci. 1989, 44, 592–608. [Google Scholar]
- Gravina, M.F.; Ardizzone, G.D.; Belluscio, A. Polychaetes of an artificial reef in the central mediterranean sea. Estuar. Coast. Shelf Sci. 1989, 28, 161–172. [Google Scholar] [CrossRef]
- Somaschini, A.; Ardizzone, G.D.; Gravina, M.F. Long-term changes in the structure of a polychaete community on artificial habitats. Bull. Mar. Sci. 1997, 60, 460–466. [Google Scholar]
- Relini, G.; Orsi Relini, L. Artificial reefs in the Ligurian Sea (northwestern Mediterranean): Aims and results. Bull. Mar. Sci. 1989, 44, 743–751. [Google Scholar]
- Relini, G.; Relini, M.; Palandri, G.; Merello, S.; Beccornia, E. History, ecology and trends for artificial reefs of the Ligurian sea, Italy. Hydrobiologia 2007, 13, 193–217. [Google Scholar]
- OSPAR Commission. OSPAR Guidelines on Artificial Reefs in relation to Living Marine Resources; OSPAR 99/15/1-E, Annex 6; OSPAR Commission: Paris, France, 1999. [Google Scholar]
- OSPAR Commission. Assessment of Construction or Placement of Artificial Reefs; OSPAR Commission: Paris, France, 2009; p. 27. [Google Scholar]
- London Convention and Protocol. UNEP London Convention and Protocol/UNEP Guidelines for the Placement of Artificial Reefs; London Convention and Protocol: London, UK, 2009; p. 303. [Google Scholar]
- UNEP-MAP. UNEP-MAP Guidelines for the Placement at Sea of Matter for Purpose Other than the Mere Disposal (Construction of Artificial Reefs); UNEP-MAP: Athens, Greece, 2005. [Google Scholar]
- GFCM. FAO General Fisheries Commission for the Mediterranean Report of the Thirty-Fourth Session; GFCM: Athens, Greece, 2010. [Google Scholar]
- Bombace, G.; Fabi, G.; Fiorentini, L. Artificial reefs in the Adriatic sea. In Artificial Reefs in European Seas; Jensen, A.C., Collins, K.J., Lockwood, A.P.M., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 31–63. ISBN 978-94-011-4215-1. [Google Scholar]
- Fabi, G.; Spagnolo, A. Artificial reefs and mariculture. In Proceedings of the NATO Advanced Reserch Work of Mode Aquatic. Coast Zoessons Opportunity, Porto, Portugal, 14–17 September 1998; pp. 91–98. [Google Scholar]
- Fabi, G.; Manoukian, S.; Spagnolo, A. Impact of an open-sea suspended mussel culture on macrobenthic community (Western Adriatic Sea). Aquaculture 2009, 289, 54–63. [Google Scholar] [CrossRef]
- Martin, J.H. Glacial-interglacial CO2 change: The Iron Hypothesis. Paleoceanography 1990. [Google Scholar] [CrossRef]
- Smetacek, V.; Naqvi, S.W.A. The next generation of iron fertilization experiments in the Southern Ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 3947–3967. [Google Scholar] [CrossRef] [PubMed]
- Smetacek, V.; Klaas, C.; Strass, V.H.; Assmy, P.; Montresor, M.; Cisewski, B.; Savoye, N.; Webb, A.; D’Ovidio, F.; Arrieta, J.M.; et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 2012, 487, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Kautsky, N.; Troell, M. The Costs of Eutrophication from Salmon Farming: Implications for Policy. J. Environ. Manag. 1994, 40, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Glibert, P.; Burford, M. Globally changing nutrient loads and harmful algal blooms: Recent advances, new paradigms, and continuing challenges. Oceanography 2017, 30, 58–69. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giangrande, A.; Gravina, M.F.; Rossi, S.; Longo, C.; Pierri, C. Aquaculture and Restoration: Perspectives from Mediterranean Sea Experiences. Water 2021, 13, 991. https://doi.org/10.3390/w13070991
Giangrande A, Gravina MF, Rossi S, Longo C, Pierri C. Aquaculture and Restoration: Perspectives from Mediterranean Sea Experiences. Water. 2021; 13(7):991. https://doi.org/10.3390/w13070991
Chicago/Turabian StyleGiangrande, Adriana, Maria Flavia Gravina, Sergio Rossi, Caterina Longo, and Cataldo Pierri. 2021. "Aquaculture and Restoration: Perspectives from Mediterranean Sea Experiences" Water 13, no. 7: 991. https://doi.org/10.3390/w13070991
APA StyleGiangrande, A., Gravina, M. F., Rossi, S., Longo, C., & Pierri, C. (2021). Aquaculture and Restoration: Perspectives from Mediterranean Sea Experiences. Water, 13(7), 991. https://doi.org/10.3390/w13070991