Extreme Floods in the Eastern Part of Europe: Large-Scale Drivers and Associated Impacts
Abstract
:1. Introduction
2. Data and Methods
2.1. Catchment Area Description and Data Sources
2.1.1. Siret River Basin
2.1.2. Prut River Basin
2.2. Data
2.3. Methods
3. Results
3.1. July 2008 Flood Event
3.1.1. Hydrological Situation
3.1.2. Atmospheric Conditions
3.1.3. Socio-Economic Impact of July 2008 Flood Event
3.2. June–July 2010 Flood Event
3.2.1. Hydrological Situation
3.2.2. Atmospheric Conditions
3.2.3. Socio-Economic Impact of June 2010 Flood Event
3.3. June 2020 Flood Event
3.3.1. Hydrological Situation
3.3.2. Atmospheric Conditions
3.3.3. Socio-Economic Impact of June 2020 Flood Event
4. Perspectives
5. Discussion and Conclusions
- In terms of the streamflow amplitude and impact, the flood from July 2008 was the highest since instrumental data became available. In 2008, the streamflow reached values up to 2414 m3/s on the Siret River and up to 4033 m3/s on the Prut River, while the total economic damages were more than 2 billion Euro.
- During the flood from June to July 2010, the recorded streamflow was lower compared to 2008 (1678 m3/s and 1930 m3/s on Siret and Prut Rivers respectively), while the total damage was estimated at more than 1 billion Euro.
- The flood from June 2020 had particular characteristics, with extraordinary high streamflow on the Prut River (the second biggest flood after July 2008 flood), which reached up to 2920 m3/s, while on the Siret River, the highest streamflow was 640 m3/s recorded on June 24. The total damages of the June 2020 flood event were estimated at approximately half a billion Euro (Table 1 and Table S4).
- The Prut streamflow exceeded 33 times the monthly norm during the 2008 flood, 24 times during the 2020 flood, and 16 times during the 2010 flood, while for the Siret River, the streamflow exceeded 40 times the monthly norm during the 2008 flood, 28 times during the 2010 flood, and 10 times during 2020 flood.
- All flood events analyzed in this study were triggered by similar large-scale atmospheric features: PV intrusions associated with Rossby wave breaking, cold air advection from the north toward our analyzed region (e.g., Siret and Prut River basins), pivoting cut-off lows, and increased water vapor transport over the catchment area of the two rivers.
- The time lag between the peak of the WVT and the flood peak (≈3–4 days) can be used as a potential predictor for the upcoming floods. The moisture advection from the Mediterranean Sea and the Black Sea led to repeated episodes of heavy precipitation over a few days, which in turn triggered record-breaking flood peaks.
- Atmospheric blocking, albeit its frequent association with droughts and heat waves, is one of the leading triggers for large-scale condition favoring the atmospheric instability over the eastern part of Europe and rains with torrential character.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNISDR. The Human Cost of Weather-Related Disasters 1995–2015. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/COP21_WeatherDisastersReport_2015_FINAL.pdf (accessed on 22 February 2021).
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- WHO. Flooding: Managing Health Risks in the WHO European Region; World Health Organisation Regional Office for Europe: Copenhagen, Denmark, 2017; ISBN 978-9-28905-279-5. [Google Scholar]
- WHO. Floods in the WHO European Region: Health Effects and Their Prevention; Menne, B., Murray, V., Eds.; World Health Organisation: Geneva, Switzerland, 2013; ISBN 978-92-890-0011-6. [Google Scholar]
- Chbab, E.H. How extreme were the 1995 flood waves on the rivers Rhine and Meuse? Phys. Chem. Earth 1995, 20, 455–458. [Google Scholar] [CrossRef]
- Fink, A.; Ulbrich, U.; Engel, H. Aspects of the January 1995 flood in Germany. Weather 1996, 51, 34–39. [Google Scholar] [CrossRef]
- Engel, H.; Busch, N.; Wilke, K.; Krahe, P.; Mendel, H.-G.; Giebel, H.; Zieger, C. Das Hochwasser 1993/94 im Rheingebiet; Bundesanstalt für Gewässerkunde, BfG-Nr.: Koblenz, Germany, 1994. [Google Scholar]
- Ionita, M.; Nagavciuc, V.; Guan, B. Rivers in the sky, flooding on the ground: The role of atmospheric rivers in inland flooding in central Europe. Hydrol. Earth Syst. Sci. 2020, 24, 5125–5147. [Google Scholar] [CrossRef]
- Ulbrich, U.; Brücher, T.; Fink, A.H.; Leckebusch, G.C.; Krüger, A.; Pinto, J.G. The central European floods of August 2002: Part 2 –Synoptic causes and considerations with respect to climatic change. Weather 2003, 58, 434–442. [Google Scholar] [CrossRef]
- Ulbrich, U.; Brücher, T.; Fink, A.H.; Leckebusch, G.C.; Krüger, A.; Pinto, J.G. The central European floods of August 2002: Part 1—Rainfall periods and flood development. Weather 2003, 58. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M.; Dima, M.; Lohmann, G.; Scholz, P.; Rimbu, N. Predicting the June 2013 European Flooding Based on Precipitation, Soil Moisture, and Sea Level Pressure. J. Hydrometeorol. 2014, 16, 598–614. [Google Scholar] [CrossRef] [Green Version]
- Ionita, M. Interannual summer streamflow variability over Romania and its connection to large-scale atmospheric circulation. Int. J. Climatol. 2015, 35, 4186–4196. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.I. Normalised flood losses in Europe: 1970–2006. Nat. Hazards Earth Syst. Sci. 2009, 9, 97–104. [Google Scholar] [CrossRef]
- Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- Bissolli, P.; Friedrich, K.; Rapp, J.; Ziese, M. Flooding in eastern central Europe in May 2010—Reasons, evolution and climatological assessment. Weather 2011, 66, 147–153. [Google Scholar] [CrossRef]
- Kelman, I. The autumn 2000 floods in England and flood management. Weather 2001, 56, 346–360. [Google Scholar] [CrossRef]
- Posthumus, H.; Morris, J.; Hess, T.M.; Neville, D.; Phillips, E.; Baylis, A. Impacts of the summer 2007 floods on agriculture in England. J. Flood Risk Manag. 2009, 2, 182–189. [Google Scholar] [CrossRef]
- Muchan, K.; Lewis, M.; Hannaford, J.; Parry, S. The winter storms of 2013/2014 in the UK: Hydrological responses and impacts. Weather 2015, 70, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.J.; Clarke, D.; Nicholls, R.J. Trends in reported flooding in the UK: 1884–2013. Hydrol. Sci. J. 2016, 61, 50–63. [Google Scholar] [CrossRef]
- RPA. Study on Economic and Social Benefits of Environmental Protection and Resource Efficiency Related to the European Semester; J834/EU Semester; Risk & Policy Analysts Ltd.: Norwich, UK, 2014. [Google Scholar]
- Lavers, D.A.; Pappenberger, F.; Zsoter, E. Extending medium-range predictability of extreme hydrological events in Europe. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- DeFlorio, M.J.; Waliser, D.E.; Guan, B.; Ralph, F.M.; Vitart, F. Global evaluation of atmospheric river subseasonal prediction skill. Clim. Dyn. 2019, 52, 3039–3060. [Google Scholar] [CrossRef]
- Rimbu, N.; Dima, M.; Lohmann, G.; Musat, I. Seasonal prediction of Danube flow variability based on stable teleconnection with sea surface temperature. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Chelcea, S. Spatio-temporal variability of dryness/wetness in the Danube River Basin. Hydrol. Process. 2015, 29, 4483–4497. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Ionita, M.; Czymzik, M.; Brauer, A. Interannual to millennial-scale variability of River Ammer floods and its relationship with solar forcing. Int. J. Climatol. 2021, 41, E644–E655. [Google Scholar] [CrossRef]
- Hu, H.; Dominguez, F.; Wang, Z.; Lavers, D.A.; Zhang, G.; Ralph, F.M. Linking Atmospheric River Hydrological Impacts on the U.S. West Coast to Rossby Wave Breaking. J. Clim. 2017, 30, 3381–3399. [Google Scholar] [CrossRef]
- Paltan, H.; Waliser, D.; Lim, W.H.; Guan, B.; Yamazaki, D.; Pant, R.; Dadson, S. Global Floods and Water Availability Driven by Atmospheric Rivers. Geophys. Res. Lett. 2017, 44, 310–387, 395. [Google Scholar] [CrossRef]
- Guan, B.; Molotch, N.P.; Waliser, D.E.; Fetzer, E.J.; Neiman, P.J. The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res. 2013, 49, 6731–6743. [Google Scholar] [CrossRef]
- Kreibich, H.; Blauhut, V.; Aerts, J.C.J.H.; Bouwer, L.M.; Van Lanen, H.A.J.; Mejia, A.; Mens, M.; Van Loon, A.F. How to improve attribution of changes in drought and flood impacts. Hydrol. Sci. J. 2019, 64, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sommerwerk, N.; Hein, T.; Schneider-Jacoby, M.; Baumgartner, C.; Ostojić, A.; Siber, R.; Bloesch, J.; Paunović, M.; Tockner, K. Chapter 3—The Danube River Basin. In Rivers of Europe; Tockner, K., Uehlinger, U., Robinson, C.T., Eds.; Academic Press: London, UK, 2009; pp. 59–112. ISBN 978-0-12-369449-2. [Google Scholar]
- Briciu, A.-E.; Mihăilă, D.; Lazurca, L.G.; Costan, L.-A.; Nagavciuc, V.; Bădăluță, C.-A. Observations on the spatial variability of the Prut River discharges. ANALELE Univ. Ştefan Mare Suceava Ser. Geogr. 2011, 20, 45–56. [Google Scholar] [CrossRef]
- Cornes, R.C.; Schrier, G.; Van Der Besselaar, E.J.M.; Van Den Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. Geophys. Res. Atom 2018, 123. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; Springer: New York, NY, USA, 1992. [Google Scholar]
- Romanescu, G.; Stoleriu, C.; Romanescu, A.M. Water reservoirs and the risk of accidental flood occurrence. Case study: Stanca-Costesti reservoir and the historical floods of the Prut river in the period July–August 2008, Romania. Hydrol. Process. 2011, 25, 2056–2070. [Google Scholar] [CrossRef]
- Romanescu, G.; Stoleriu, C. Causes and effects of the catastrophic flooding on the Siret River (Romania) in July–August. Nat. Hazards 2013, 69, 1351–1367. [Google Scholar] [CrossRef]
- Cazac, V.; Boian, I. Inundațiile Catastrofale din Vara Anului 2008 în Republica Moldova. Available online: http://old.meteo.md/newsait/floods/floods1.htm (accessed on 17 December 2020).
- Piaget, N.; Froidevaux, P.; Giannakaki, P.; Gierth, F.; Martius, O.; Riemer, M.; Wolf, G.; Grams, C.M. Dynamics of a local Alpine flooding event in October 2011: Moisture source and large-scale circulation. Q. J. R. Meteorol. Soc. 2015, 141, 1922–1937. [Google Scholar] [CrossRef] [Green Version]
- Schlemmer, L.; Martius, O.; Sprenger, M.; Schwierz, C.; Twitchett, A. Disentangling the Forcing Mechanisms of a Heavy Precipitation Event along the Alpine South Side Using Potential Vorticity Inversion. Mon. Weather Rev. 2010, 138, 2336–2353. [Google Scholar] [CrossRef] [Green Version]
- Pleșoianu, D.; Olariu, P. Câteva observații privind inundațiile produse în anul 2008 în bazinul Siretului. An. Univ. Ştefan Mare Suceava 2010, 19, 69–80. [Google Scholar]
- Apostol, L.; Machidon, O. Impact of the abundant precipitations of 22–27 July 2008 in the north and north-east Moldova. Present Environ. Sustain. Dev. 2009, 3, 1–10. [Google Scholar]
- WHO. Floods in Moldova, Romania, and Ukraine (Summer 2008). Available online: https://www.euro.who.int/en/health-topics/health-emergencies/from-disaster-preparedness-and-response/policy/response/floods-2008 (accessed on 9 January 2021).
- Zaxid Повені (Eng. Floods). Available online: https://zaxid.net/poveni_tag52230/newsfrom748/ (accessed on 9 January 2021).
- Reliefweb Floods in Eastern Europe. (as of 29 Jul 2008). Available online: https://reliefweb.int/map/ukraine/floods-eastern-europe-29-jul-2008 (accessed on 9 January 2021).
- Boian, I.; Serenco, L.; Bejenaru, G.; Moldovanu, N. Evaluarea Inundaţiilor Catastrofale din Vara Anului 2010 pe Teritoriul Republicii Moldova. Available online: http://old.meteo.md/mold/inundatii.htm (accessed on 18 January 2021).
- Romanescu, G.; Constantin Stoleriu, C. Exceptional floods in the Prut basin, Romania, in the context of heavy rains in the summer of 2010. Nat. Hazards Earth Syst. Sci. 2017, 17, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Romanescu, G.; Mihu-Pintilie, A.; Stoleriu, C.C.; Carboni, D.; Paveluc, L.E.; Cimpianu, C.I. A comparative analysis of exceptional flood events in the context of heavy rains in the summer of 2010: Siret basin (NE Romania) case study. Water 2018, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Șalaru, G.; Boian, I.; Serenco, L.; Bejenaru, G.; Moldovanu, N. Evaluarea inundaţiilor catastrofale din vara anului 2010 pe teritoriul Republicii Moldova. Mediu. Ambiant 2010, 5, 1–6. [Google Scholar]
- Kundzewicz, Z.W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F.F.; Huang, S.; Milly, P.C.D.; Stoffel, M.; Driessen, P.P.J.; et al. Differences in flood hazard projections in Europe—Their causes and consequences for decision making. Hydrol. Sci. J. 2017, 62, 1–14. [Google Scholar] [CrossRef] [Green Version]
- ICPDR. Floods in the Danube River Basin; Brief overview of key events and lessons learned; Vienna International Centre: Wagramer, Austria, 2012. [Google Scholar]
- Epoch Times. România Bilanţ Cutremurător al Inundaţiilor din Botoşani. Available online: https://epochtimes-romania.com/news/bilant-cutremurator-al-inundatiilor-din-botosani---84311 (accessed on 21 January 2021).
- CARITAS. Situation Report: Floods in Romania—June 2010. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/BAC3A79B57F282DBC12577520043C146-Full_Report.pdf (accessed on 21 January 2021).
- DREF. Romania: Floods. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/887A8506CBD450748525775A006709DD-Full_Report.pdf (accessed on 21 January 2021).
- EVZ. Bilanţul Inundaţiilor. Cod Roşu pe Prut. Available online: https://evz.ro/bilantul-inundatiilor-3-morti-sute-de-sinistrati-2000-de-case-inundate-pe-prut-este-cod-ro.html/2 (accessed on 8 January 2021).
- SHS. Raport Hidrologic Privind Viitura Pluvială din Luna Iunie 2020. Available online: http://www.meteo.md/images/uploads/news/floods_2020/Raporthidrologicviiturile.pdf (accessed on 27 January 2021).
- Ziare.com. Zece Comune din Judetul Galati Primesc Fonduri Speciale Pentru a Inlatura Efectele Inundatiilor si Alunecarilor de Teren. Available online: https://ziare.com/galati/stiri-actualitate/zece-comune-din-judetul-galati-primesc-fonduri-speciale-pentru-a-inlatura-efectele-inundatiilor-si-alunecarilor-de-teren-8169641 (accessed on 28 January 2021).
- CAPITAL. S-au dat Banii Pentru Localitățile Afectate de Inundații. Available online: https://www.capital.ro/s-au-dat-banii-pentru-localitatile-afectate-de-inundatii-353-de-milioane-de-lei-pentru-14-judete.html (accessed on 28 January 2021).
- RFE/RL. Inundații în România: Viitura de pe Râul Prut a Ajuns la Intrarea în Țară. Available online: https://romania.europalibera.org/a/inundatii-in-romania-viitura-de-pe-raul-prut-a-ajuns-la-intrarea-in-tara/30689642.html (accessed on 28 January 2021).
- DIGI24. Inundații Devastatoare în Cea Mai Ploioasă Lună Iunie din Ultimii 60 de Ani. Available online: https://www.digi24.ro/stiri/actualitate/inundatii-devastatoare-in-cea-mai-ploioasa-luna-iunie-din-ultimii-60-de-ani-patru-oameni-au-murit-o-fetita-a-fost-luata-de-viitura-1327761 (accessed on 28 January 2021).
- HotNews. Bilanțul Inundațiilor: Trei Persoane Luate de Viitură, 71 Evacuate, Aproape 400 de Case Inundate. Available online: https://www.hotnews.ro/stiri-esential-24133784-inundatii-romania-bilant-igsu-trei-persoane-luate-viitura-71-evacuate-aproape-400-case-inundate.htm (accessed on 28 January 2021).
- Ziaruldeiasi. Orban: Riscul cel Mai Mare îl Avem pe Prut, Unde Urmează să Intre în Ţară Viitura din Ucraina. Available online: https://www.ziaruldeiasi.ro/stiri/orban-riscul-cel-mai-mare-il-avem-pe-prut-unde-urmeaza-sa-intre-in-tara-viitura-din-ucraina--256663.html (accessed on 28 January 2021).
- NewsMarker. Digurile de Protecție de pe Râurile Prut și Nistru. Available online: https://newsmaker.md/ro/digurile-de-protectie-de-pe-raurile-prut-si-nistru-urmeaza-sa-fie-restabilite/ (accessed on 28 January 2021).
- DSE. Indici Statistici Despre Numărul Situaţiilor Excepţionale ce s-au Produs în Republica Moldova pe Parcursul 1–30 June 2020. Available online: http://dse.md/ro/date_statistice (accessed on 5 February 2021).
- Promin. З Найбільшої Повені на Буковині Пройшло 12 Років, а Дамби й Досі Немає, Twelve years have passed since the Great Flood in Bukovyna, and the Dam is still missing. Available online: https://promin.cv.ua/2020/06/24/naibilshoi-poveni-na-bukovyni-proishlo-12-rokiv-a-damby-i-dosi-nemaie.html (accessed on 1 February 2021).
- Kundzewicz, Z.W.; Lugeri, N.; Dankers, R.; Hirabayashi, Y.; Döll, P.; Pińskwar, I.; Dysarz, T.; Hochrainer, S.; Matczak, P. Assessing river flood risk and adaptation in Europe—Review of projections for the future. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 641–656. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C; An An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- World Bank. Romania Water Diagnostic Report: Moving toward EU Compliance, Inclusion, and Water Security; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Apele Române. Planul Național de Management Actualizat Aferent Porțiunii din Bazinul Hidrografic Internațional al Fluviului Dunăreacare este Cuprinsă în Teritoriul României 2016–2021; Administraţia Naţională Apele Române: Bucuresti, Romania, 2017. [Google Scholar]
- Dniester Commission. Flooding in Western Ukraine: Causes, Lessons Learned and Potential to Avoid Harmful Future Effects. Available online: https://dniester-commission.com/en/news/flooding-in-western-ukraine-causes-lessons-learned-and-potential-to-avoid-harmful-future-effects/ (accessed on 16 February 2021).
- MMSC Managementul. Riscului la Inundaţii. Available online: http://www.mmediu.ro/beta/domenii/managementul-apelor-2/managementul-riscului-la-inundatii/ (accessed on 15 February 2021).
- Maximyuk, O. Чому Річки Виходять із Берегів на Буковині, а Калинівський Ринок не Готовий до Підтоплень, Why Rivers Leave the Shores in Bukovyna, and Kalynivsky Market Is Not Ready for Floods. Available online: https://shpalta.media/2020/06/24/chomu-richki-vixodyat-iz-beregiv-na-bukovini-a-kalinivskij-rinok-ne-gotovij-do-pidtoplen/ (accessed on 16 February 2021).
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučuniene, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Apel, H.; Thieken, A.H.; Merz, B.; Blöschl, G. Flood risk assessment and associated uncertainty. Nat. Haz. Earth Syst. Sci. 2004, 4, 295–308. [Google Scholar] [CrossRef]
- Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B. Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett. 2006, 33, L13801. [Google Scholar] [CrossRef] [Green Version]
- Rimbu, N.; Czymzik, M.; Ionita, M.; Lohmann, G.; Brauer, A. Atmospheric circulation patterns associated with the variability of River Ammer floods: Evidence from observed and proxy data. Clim. Past 2016, 12. [Google Scholar] [CrossRef] [Green Version]
- Martius, O.; Zenklusen, E.; Schwierz, C.; Davies, H.C. Episodes of alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol. 2006, 26, 1149–1164. [Google Scholar] [CrossRef]
- Ionita, M.; Chelcea, S.; Rimbu, N.; Adler, M.-J. Spatial and temporal variability of winter streamflow over Romania and its relationship to large-scale atmospheric circulation. J. Hydrol. 2014, 519, 1339–1349. [Google Scholar] [CrossRef]
- Hundecha, Y.; Merz, B. Exploring the relationship between changes in climate and floods using a model-based analysis. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Steirou, E.; Gerlitz, L.; Apel, H.; Merz, B. Links between large-scale circulation patterns and streamflow in Central Europe: A review. J. Hydrol. 2017, 549, 484–500. [Google Scholar] [CrossRef]
- Prudhomme, C.; Genevier, M. Can atmospheric circulation be linked to flooding in Europe? Hydrol. Process. 2011, 25, 1180–1190. [Google Scholar] [CrossRef] [Green Version]
- Jacobeit, J.; Philipp, A.; Nonnenmacher, M. Atmospheric circulation dynamics linked with prominent discharge events in Central Europe. Hydrol. Sci. J. 2006, 51, 946–965. [Google Scholar] [CrossRef]
- Mudelsee, M.; Börngen, M.; Tetzlaff, G.; Grünewald, U. Extreme floods in central Europe over the past 500 years: Role of cyclone pathway “Zugstrasse Vb”. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Froidevaux, P.; Martius, O. Exceptional integrated vapour transport toward orography: An important precursor to severe floods in Switzerland. Q. J. R. Meteorol. Soc. 2016, 142, 1997–2012. [Google Scholar] [CrossRef] [Green Version]
- Payne, A.E.; Magnusdottir, G. Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Clim. 2014, 27, 7133–7150. [Google Scholar] [CrossRef] [Green Version]
- Hess, P.; Brezowsky, H. Katalog der Grosswetterlagen Europas; Deutscher Wetterdienst: Offenbach, Germany, 1952. [Google Scholar]
2008 | 2010 | 2020 | ||
---|---|---|---|---|
River Basin | Hydrometric Station | Streamflow (m3/s)/Date | Streamflow (m3/s)/Date | Streamflow (m3/s)/Date |
Siret | Siret | 920/25 July | 1115/29 June | - |
Siret | Lespezi | 1793/27 July | 1719/29 June | 640/24 June |
Siret | Drăgești | 2930/27July | 2058/30 June | - |
Siret | Nicolae Bălcescu | 2200/28July | 1339/01 July | - |
Suceava | Ițcani | 1710/26July | 883/29 June | - |
Prut | Chernovtsy | 3890/25July | - | 1490/24 June |
Prut | Rădăuți-Prut (Șirăuți *) | 4033/28 July | * 1930/02 July | 2920/26 June |
Prut | Stânca-Costești downstream | 1400/31 July | 800–830/01 July | 680/26 June |
Total economic damages | ||||
more than 2 billion Euro | more than 1 billion Euro | ~half of billion Euro |
2008 | 2010 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Day | ARWB | GWL | Day | ARWB | GWL | Day | ARWB | GWL |
19.07 | WZ | 22.06 | * | HM | 17.06 | SEZ | ||
20.07 | WZ | 23.06 | * | HM | 18.06 | HNFZ | ||
21.07 | TRM | 24.06 | HM | 19.06 | HNFZ | |||
22.07 | TRM | 25.06 | BM | 20.06 | HNFZ | |||
23.07 | * | TRM | 26.06 | BM | 21.06 | * | BM | |
24.07 | * | HNFZ | 27.06 | * | BM | 22.06 | * | BM |
25.07 | * | HNFZ | 28.06 | * | BM | 23.06 | * | BM |
26.07 | * | HNFZ | 29.06 | * | BM | 24.06 | * | SEA |
27.07 | * | HNFZ | 30.06 | * | BM | 25.06 | * | SEA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionita, M.; Nagavciuc, V. Extreme Floods in the Eastern Part of Europe: Large-Scale Drivers and Associated Impacts. Water 2021, 13, 1122. https://doi.org/10.3390/w13081122
Ionita M, Nagavciuc V. Extreme Floods in the Eastern Part of Europe: Large-Scale Drivers and Associated Impacts. Water. 2021; 13(8):1122. https://doi.org/10.3390/w13081122
Chicago/Turabian StyleIonita, Monica, and Viorica Nagavciuc. 2021. "Extreme Floods in the Eastern Part of Europe: Large-Scale Drivers and Associated Impacts" Water 13, no. 8: 1122. https://doi.org/10.3390/w13081122
APA StyleIonita, M., & Nagavciuc, V. (2021). Extreme Floods in the Eastern Part of Europe: Large-Scale Drivers and Associated Impacts. Water, 13(8), 1122. https://doi.org/10.3390/w13081122