Evaluating the Impacts of Rice-Based Protection Dykes on Floodwater Dynamics in the Vietnamese Mekong Delta Using Geographical Impact Factor (GIF)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Setup
2.2. Model Calibration and Validation
- On Mekong Rivers: Tan Chau (water level and discharge), Vam Nao (water level), Cao Lanh (water level), My Thuan (water level and discharge), and My Tho (water level).
- On Bassac Rivers: Chau Doc (water level and discharge), Long Xuyen (water level), Can Tho (water level and discharge), and Dai Ngai (water level).
- In the Plain of Reeds (PoR): the only available data of water level for calibration and validation occurred at the gauges of Truong Xuan, Moc Hoa, Kien Binh, and Tuyen Nhon.
- In the Long Xuyen Quadrangle (LXQ): the only available data of water level for calibration and validation occurred at the gauges of Xuan To, Tri To, and Tan Hiep.
2.3. Assumption of Dyke Compartment Development in the VMD Floodplains
3. Results and Discussion
3.1. Results of Model Calibration and Validation
3.2. GIF-Based Influences of Dyke Compartment Scenarios on the Water Levels along the Main Rivers and in Terms of Flood Magnitudes
3.3. GIF-Based Sensitivities of the Influences of Geographical Dyke Compartment Scenarios on Flood Water Levels in Terms of Flood Magnitudes
4. Conclusions
- Overall, the high-dyke developments for land use purposes cause relatively minor impacts on the water levels in the Mekong and Bassac Rivers. However, the high-dyke measurements at multiple compartments in the middle zone indicate higher effects on the water levels at Tan Chau, Chau Doc, Cao Lanh, and Can Tho. Besides, the compartment of A9 (Omon-Xano system) would be susceptible to the increase in water level at Can Tho in the case of the high-dyke system built in this area.
- Different flooding magnitudes such as high-, medium-, and low-floods cause different influences on flood water along the Mekong Rivers if the compartment is located in the middle zone (A10, A11, A12) or near the main rivers (A1, A3, A5, A7, A9, A13, A15, A17, A19, A21), when the dyke compartment locates outside the middle zone and far from the main rivers (A2, A4, A6, A8, A14, A16, A18, A20, and A22), the impact of different flood magnitudes is negligible.
- The GIF has been established to help scientists and planners in various aspects. It could anticipate a possible impact of the dyke-based measures on the water level along the main rivers. Therefore, any construction of high dykes at any location in the Mekong Delta would be quickly assessed under all kinds of flood conditions. The GIF would also be a scientific basis for developing a flood level estimation method (FLEM) for flood water level prediction along the Mekong Rivers [42].
- Agricultural production plans under high-dyke protections could be assessed and optimised according to the rivers’ accepted flood water levels. The smaller the GIF identified for any high-dyke compartment, the better the triple rice production cultivated in that compartment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dao, T.A.; Thai, V.T.; Nguyen, N.V. (Eds.) The Domestic Rice Value Chain in the Mekong Delta; Springer: Singapore, 2020. [Google Scholar]
- Käkönen, M. Mekong delta at the crossroads: More control or adaptation? AMBIO J. Hum. Environ. 2008, 37, 205–212. [Google Scholar] [CrossRef]
- Park, E.; Ho, H.L.; Tran, D.D.; Yang, X.; Alcantara, E.; Merino, E.; Son, V.H. Dramatic decrease of flood frequency in the Mekong delta due to river-bed mining and dyke construction. Sci. Total Environ. 2020, 723, 138066. [Google Scholar] [CrossRef]
- Chu, V.C.; Brown, S.; To, H.H.; Hockings, M. Using Melaleuca fences as soft coastal engineering for mangrove restoration in Kien Giang, Vietnam. Ecol. Eng. 2015, 81, 256–265. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Erkens, G.; Pham, V.H.; Vuong, B.T.; Stouthamer, E. Assessing the potential of the multi-aquifer subsurface of the Mekong delta (Vietnam) for land subsidence due to groundwater extraction. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Khong, T.D.; Young, M.D.; Loch, A.; Thennakoon, J. Mekong river delta farm-household willingness to pay for salinity intrusion risk reduction. Agric. Water Manag. 2018, 200, 80–89. [Google Scholar] [CrossRef]
- Eslami, S.; Hoekstra, P.; Trung, N.N.; Kantoush, S.A.; Van Binh, D.; Quang, T.T.; Van der Vegt, M. Tidal amplification and salt intrusion in the Mekong delta driven by anthropogenic sediment starvation. Sci. Rep. 2019, 9, 18746. [Google Scholar] [CrossRef]
- Hoang, L.P.; Lauri, H.; Kummu, M.; Koponen, J.; Van Vliet, M.T.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 2016, 20, 3027–3041. [Google Scholar] [CrossRef] [Green Version]
- Triet, N.V.K.; Dung, N.V.; Fujii, H.; Kummu, M.; Merz, B.; Apel, H. Has dyke development in the Vietnamese Mekong delta shifted flood hazard downstream? Hydrol. Earth Syst. Sci. 2017, 21, 3991–4010. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.D.; Van Halsema, G.; Hellegers, P.J.G.J.; Hoang, P.L.; Tran, Q.T.; Kummu, M.; Ludwig, F. Assessing impacts of dike construction on the flood dynamics of the Mekong delta. Hydrol. Earth Syst. Sci. 2018, 22, 1875–1896. [Google Scholar] [CrossRef] [Green Version]
- Beilfuss, R.; Tran, T. A Scoping Study on Climate Change and Hydropower in the Mekong River Basin: A Synthesis of Research; Deutsche Gesellschaft für International Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2014. [Google Scholar]
- Duong, T.A.; Hoang, L.P.; Bui, M.D.; Rutschmann, P. Modelling seasonal flows alteration in the Vietnamese Mekong delta under upstream discharge changes, rainfall changes and sea level rise. Int. J. River Basin Manag. 2019, 17, 435–449. [Google Scholar] [CrossRef]
- Triet, N.V.K.; Dung, N.V.; Hoang, L.P.; Duy, L.N.; Tran, D.D.; Anh, T.T.; Kummu, M.; Merz, B.; Apel, H. Future projections of flood dynamics in the Vietnamese Mekong delta. Sci. Total Environ. 2020, 742, 140596. [Google Scholar] [CrossRef]
- Triet, N.K.V.; Dung, N.V.; Merz, B.; Apel, H. Towards risk-based flood management in highly productive paddy rice cultivation—Concept development and application to the Mekong delta. Nat. Hazards Earth Syst. Sci. 2018, 18, 2859–2876. [Google Scholar] [CrossRef] [Green Version]
- Hoa, L.T.V.; Nguyen, H.N.; Wolanski, E.; Tran, T.C.; Haruyama, S. The combined impact on the flooding in Vietnam’s Mekong river delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Sedimentological and ecohydrological processes of Asian deltas: The Yangtze and the Mekong. Estuar. Coast. Shelf Sci. 2007, 71, 110–116. [Google Scholar] [CrossRef]
- Hoa, L.T.V.; Shigeko, H.; Nhan, N.H.; Cong, T.T. Infrastructure effects on floods in the Mekong river delta in Vietnam. Hydrol. Process. 2008, 22, 1359–1372. [Google Scholar] [CrossRef]
- Danh, V.; Mushtaq, S. Living with Floods: An Evaluation of the Resettlement Program of the Mekong Delta of Vietnam. In Environmental Change and Agricultural Sustainability in the Mekong Delta; Stewart, M.A., Coclanis, P.A., Eds.; Springer: Dordrecht, Netherlands, 2011. [Google Scholar]
- Le, A.T. Flood Risk Reduction and Climate Change Responses to Rice Production in the Mekong River Delta of Vietnam. 2013. Available online: https://www.researchgate.net/publication/259005604_Flood_risk_reduction_and_climate_change_reponses_to_rice_production_in_the_mekong_river_delta_of_vietnam (accessed on 16 April 2021).
- Van, T.C. Impacts of rising sea level on the Mekong Delta. Int. J. Hydropower Dams 2010, 17, 73. [Google Scholar]
- Duong, V.H.T.; Van, T.C.; Franz, N.; Peter, O.; Trung, N.N. Land Use Base Flood Hazards Analysis for the Mekong Delta. In Proceedings of the 19th IAHR–APD Congress 2014, Hanoi, Vietnam, 21–24 September 2014. [Google Scholar] [CrossRef]
- Tran, D.D.; Weger, J. Barriers to implementing irrigation and drainage policies in an Giang province, Mekong delta, Vietnam. Irrig. Drain 2018, 67, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood mapping and flood dynamics of the Mekong delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Hoang, L.P.; Michelle, T.H.; Van Vlieth, M.T.; Kummu, M.; Lauri, H.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. The Mekong’s future flows under multiple drivers: How climate change, hydropower developments and irrigation expansions drive hydrological changes. Sci. Total Environ. 2019, 649, 601–609. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.J.; Saito, Y.; Nguyen, V.L. Recent evolution of the Mekong delta and the impacts of dams. Earth Sci. Rev. 2017, 175, 1–17. [Google Scholar] [CrossRef]
- Pearse-Smith, S.W. The impact of continued Mekong basin hydropower development on local livelihoods. Consilience 2012, 7, 73–86. [Google Scholar]
- Duong, V.H.T. Land Used Based Flood Hazard Analysis for the Mekong Delta. Doctoral Dissertation, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2019. [Google Scholar] [CrossRef]
- Vuong, Q.H. Vietnam’s political economy: A discussion on the 1986–2016 period. CEB-ULB WP 2014. [Google Scholar] [CrossRef] [Green Version]
- Benedikter, S. The Vietnamese Hydrocracy and the Mekong Delta: Water Resources Development from State Socialism to Bureaucratic Capitalism; University of Bonn: Bonn, Germany, 2013; ISBN 978-3-643-90437-9. [Google Scholar]
- Nhut, Q.M. Efficiency Analysis of Selected Farming Patterns: The Case of Irrigated Systems in the Mekong Delta of Vietnam. In Environmental Change and Agricultural Sustainability in the Mekong Delta; Stewart, M., Coclanis, P., Eds.; Springer: Dordrecht, The Netherland, 2011; Volume 45. [Google Scholar]
- Van, P.D.T.; Trung, N.H.; Tuu, N.T. Flow dynamics in the Long Xuyen Quadrangle under the impacts of full-dyke systems and sea level rise. VNU J. Sci. Earth 2012, 28, 205–214. [Google Scholar]
- Thanh, V.Q.; Roelvink, D.; Van der Wegen, M.; Reyns, J.; Kernkamp, H.; Vinh, G.V.; Thi, P.L.V. Flooding in the Mekong delta: The impact of dyke systems on downstream hydrodynamics. Hydrol. Earth Syst. Sci. 2020, 24, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Nguyen, V.N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- Sakamoto, T.; Van Phung, C.; Kotera, A.; Duy, K.N.; Yokozawa, M. Detection of yearly change in farming systems in the Vietnamese Mekong delta from MODIS time-series imagery. Jpn. Agric. Res. Q. JARQ 2009, 43, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Duong, V.H.T.; Nestmann, F.; Van, T.C.; Oberle, P.; Geiger, H. Geographical Impact of Dyke Measurement for Land Use on Flood Water in the Mekong Delta. In Proceedings of the WA 8th Eastern European Young Water Professionals Conference, Gdansk, Poland, 12–14 May 2016; pp. 308–317. [Google Scholar]
- Dung, N.V.; Merz, B.; Bárdossy, A.; Thang, T.D.; Apel, H. Multi-objective automatic calibration of hydrodynamic models utilizing inundation maps and gauge data. Hydrol. Earth Syst. Sci. 2011, 15, 1339–1354. [Google Scholar] [CrossRef] [Green Version]
- DHI. A Modelling System for Rivers and Channels: User Guide. 2012. Available online: https://www.mikepoweredbydhi.com/products/mike-11 (accessed on 16 April 2021).
- Dang, T.D.; Cochrane, T.A.; Arias, M.E.; Van, P.D.T.; Vries, D.T.T. Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrol. Process. 2016, 30, 3824–3838. [Google Scholar] [CrossRef]
- Dang, D.T.; Cochrane, T.A.; Arias, M.E. Future hydrological alterations in the Mekong delta under the impact of water resources development, land subsidence and sea level rise. J. Hydrol. Reg. Stud. 2018, 15, 119–133. [Google Scholar] [CrossRef]
- Aberle, J.; Järvelä, J. Flow resistance of emergent rigid and flexible floodplain vegetation. J. Hydraul. Res. 2013, 51, 33–45. [Google Scholar] [CrossRef]
- Nepf, H.M. Hydrodynamics of vegetated channels. J. Hydraul. Res. 2012, 50, 262–279. [Google Scholar] [CrossRef] [Green Version]
- Pasquino, V.; Gualtieri, P.; Doria, G.P. On Evaluating Flow Resistance of Rigid Vegetation Using Classic Hydraulic Roughness at High Submergence Levels: An Experimental Work. In Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces; Springer: Cham, Switzerland, 2016; pp. 269–277. [Google Scholar]
- Duong, V.H.T.; Nestmann, F.; Van, T.C.; Hinz, S.; Oberle, P. Introduction about the flood level estimation method (FLEM) for prediction water level along the Mekong rivers. In Proceedings of the 10th Eastern European Young Water Professionals Conference IWA-YWP, Zagreb, Croatia, 7–12 May 2018; Available online: https://www.researchgate.net/publication/325228600_Introduction_about_the_Flood_Level_Estimation_Method_FLEM_for_prediction_water_level_along_the_Mekong_Rivers (accessed on 16 April 2021).
Descriptions | Manning’s Coefficient Range (s/m1/3) | Remark |
---|---|---|
1. Mekong and Bassac Rivers | n = 0.014 to 0.030 | |
| n = 0.028 to 0.030 | Cambodian territory: from Kratie to Tan Chau, Chau Doc |
| n = 0.026 to 0.028 | On Mekong River (MK): from Tan Chau to Vam Nao On Bassac River (BS): from Chau Doc to Long Xuyen |
| n = 0.022 to 0.026 | MK: Vam Nao to My Thuan BS: Long Xuyen to Can Tho |
| n = 0.014 to 0.022 | MK: My Thuan to Cua Dai BS: Dai Ngai to Tran De |
2. Main channels | n = 0.022 to 0.030 | |
3. Inland channels | n = 0.028 to 0.030 | |
4. Floodplains | n = 0.033 to 0.035 |
No. | Code | Name | Area (ha) | No. | Code | Name | Area (ha) |
---|---|---|---|---|---|---|---|
1 | A1 | LXQ1 | 33,202 | 13 | A13 | PoR1 | 26,803 |
2 | A2 | LXQ2 | 115,116 | 14 | A14 | PoR2 | 19,963 |
3 | A3 | LXQ3 | 90,837 | 15 | A15 | PoR3 | 16,593 |
4 | A4 | LXQ4 | 59,395 | 16 | A16 | PoR4 | 36,115 |
5 | A5 | LXQ5 | 38,531 | 17 | A17 | PoR5 | 55,050 |
6 | A6 | LXQ6 | 32,957 | 18 | A18 | PoR6 | 79,306 |
7 | A7 | WBR1 | 61,474 | 19 | A19 | PoR7 | 67,797 |
8 | A8 | WBR2 | 48,035 | 20 | A20 | PoR8 | 82,596 |
9 | A9 | WBR3 | 125,000 | 21 | A21 | PoR9 | 74,841 |
10 | A10 | MID1 | 77,102 | 22 | A22 | PoR10 | 95,553 |
11 | A11 | MID2 | 37,797 | 23 | Total | Total | 1,337,000 |
12 | A12 | MID3 | 62,937 |
Flood Type | Scenarios | Discharge | Water Level | Rainfall | Dyke System |
---|---|---|---|---|---|
(m3·s−1) | (m) | (m) | |||
High flood | Baseline | Q_2011 | H_2011 | R_2011 | No dyke at all compartments |
High-dyke | Q_2011 | H_2011 | R_2011 | High-dyke at all compartments | |
Ai | Q_2011 | H_2011 | R_2011 | High-dyke at Ai, no-dyke system | |
(with i = 1÷22) | at other 21 compartments | ||||
Medium flood | Baseline | Q_2013 | H_2013 | R_2013 | No dyke at all compartments |
High-dyke | Q_2013 | H_2013 | R_2013 | Highdyke at all compartments | |
Ai | Q_2013 | H_2013 | R_2013 | High-dyke at Ai, no-dyke system | |
(with i = 1÷22) | at other 21 compartments | ||||
Low flood | Baseline | Q_2012 | H_2012 | R_2012 | No dyke at all compartments |
High-dyke | Q_2012 | H_2012 | R_2012 | High-dyke at all compartments | |
Ai | Q_2012 | H_2012 | R_2012 | High-dyke at Ai, no-dyke system | |
(with i = 1÷22) | at other 21 compartments |
No. | Station | High Flood (2000) | High Flood (2011) | Medium Flood (2013) | Low Flood (2012) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Description | E | E | E | E | E | E | E | E | ||
Q (m3/s) | WL (cm) | Q (m3/s) | WL (cm) | Q (m3/s) | WL (cm) | Q (m3/s) | WL (cm) | |||
1 | On the main rivers | Tan Chau | 0.80 | 0.91 | 0.85 | 0.98 | 0.86 | 0.92 | 0.73 | 0.80 |
2 | Chau Doc | 0.82 | 0.82 | 0.92 | 0.98 | 0.93 | 0.92 | 0.76 | 0.75 | |
3 | Vam Nao | 0.86 | - | 0.81 | 0.98 | 0.73 | 0.94 | 0.75 | 0.78 | |
4 | Cho Moi | - | - | - | 0.96 | - | - | - | - | |
5 | Long Xuyen | - | - | - | 0.79 | - | 0.8 | - | 0.65 | |
6 | Can Tho | 0.75 | 0.94 | 0.90 | 0.93 | 0.70 | 0.94 | 0.80 | 0.88 | |
7 | Dai Ngai | - | - | - | 0.94 | - | 0.96 | - | 0.96 | |
8 | Cao Lanh | - | - | - | 0.96 | - | 0.94 | - | 0.76 | |
9 | My Thuan | - | 0.88 | - | 0.95 | - | 0.97 | - | 0.97 | |
10 | My Tho | - | 0.97 | - | 0.93 | - | 0.93 | - | 0.9 | |
11 | On the inland canals | Xuan To | - | 0.94 | - | 0.88 | - | 0.76 | - | 0.60 |
12 | Tri Ton | - | 0.9 | - | 0.92 | - | 0.71 | - | 0.72 | |
13 | Tan Hiep | - | 0.65 | - | 0.65 | - | 0.85 | - | 0.66 | |
14 | Moc Hoa | - | 0.69 | - | 0.94 | - | 0.76 | - | 0.63 | |
15 | Truong Xuan | - | 0.80 | - | 0.91 | - | 0.81 | - | - | |
16 | Kien Binh | - | - | - | 0.82 | - | 0.66 | - | - | |
17 | Tuyen Nhon | - | - | - | 0.73 | - | 0.67 | - | - | |
18 | Cai Lay | - | - | - | 0.66 | - | 0.68 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, H.T.D.; Trinh, V.C.; Tran, D.D.; Oberle, P.; Hinz, S.; Nestmann, F. Evaluating the Impacts of Rice-Based Protection Dykes on Floodwater Dynamics in the Vietnamese Mekong Delta Using Geographical Impact Factor (GIF). Water 2021, 13, 1144. https://doi.org/10.3390/w13091144
Vu HTD, Trinh VC, Tran DD, Oberle P, Hinz S, Nestmann F. Evaluating the Impacts of Rice-Based Protection Dykes on Floodwater Dynamics in the Vietnamese Mekong Delta Using Geographical Impact Factor (GIF). Water. 2021; 13(9):1144. https://doi.org/10.3390/w13091144
Chicago/Turabian StyleVu, Hoang Thai Duong, Van Cong Trinh, Dung Duc Tran, Peter Oberle, Stefan Hinz, and Franz Nestmann. 2021. "Evaluating the Impacts of Rice-Based Protection Dykes on Floodwater Dynamics in the Vietnamese Mekong Delta Using Geographical Impact Factor (GIF)" Water 13, no. 9: 1144. https://doi.org/10.3390/w13091144
APA StyleVu, H. T. D., Trinh, V. C., Tran, D. D., Oberle, P., Hinz, S., & Nestmann, F. (2021). Evaluating the Impacts of Rice-Based Protection Dykes on Floodwater Dynamics in the Vietnamese Mekong Delta Using Geographical Impact Factor (GIF). Water, 13(9), 1144. https://doi.org/10.3390/w13091144