Effects of Ferrihydrite-Impregnated Powdered Activated Carbon on Phosphate Removal and Biofouling of Ultrafiltration Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of FHPAC
2.2. Preparation of Feed Solutions
2.3. Batch Adsorption of DOM and Phosphate
2.4. Membrane Filtration Processes
2.5. Biofouling Characteristics
2.6. Analytical Methods
3. Results and Discussion
3.1. FHPAC Characteristics
3.2. Adsorption Kinetics and Isotherms
3.2.1. Phosphate Adsorption Kinetics and Isotherm
3.2.2. Simultaneous DOC and Phosphate Adsorption
3.3. Membrane Fouling and Filtration Resistance
3.3.1. Biofouling Test and Fouling Mechanism
3.3.2. Fouling Observation from Bench-Scale Filtration Test
3.4. Biofouling Observation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa. In Water Quality; InTech: London, UK, 2017; pp. 401–416. [Google Scholar] [CrossRef] [Green Version]
- Stoquart, C.; Servais, P.; Bérubé, P.R.; Barbeau, B. Hybrid Membrane Processes using activated carbon treatment for drinking water: A review. J. Membr. Sci. 2012, 411–412, 1–12. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-L.; Han, Z.-S.; Li, G.-B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Yang, Y.; Lohwacharin, J.; Takizawa, S. Hybrid ferrihydrite-MF/UF membrane filtration for the simultaneous removal of dissolved organic matter and phosphate. Water Res. 2014, 65, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Frandsen, C.; Wallace, A.F.; Legg, B.; Khalid, S.; Zhang, H.; Mørup, S.; Banfield, J.F.; Waychunas, G.A. Precipitation pathways for ferrihydrite formation in acidic solutions. Geochim. Cosmochim. Acta 2016, 172, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Michel, F.; Ehm, L.; Antao, S.M.; Lee, P.L.; Chupas, P.J.; Liu, G.; Strongin, D.R.; Schoonen, M.A.A.; Phillips, B.L.; Parise, J.B. The Structure of Ferrihydrite, a Nanocrystalline Material. Science 2007, 316, 1726–1729. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Huggins, F.E.; Feng, Z.; Huffman, G.P. Ferrihydrite: Surface Structure and Its Effects on Phase Transformation. Clays Clay Miner. 1994, 42, 737–746. [Google Scholar]
- Chen, W.; Parette, R.; Zou, J.; Cannon, F.S.; Dempsey, B.A. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41, 1851–1858. [Google Scholar] [CrossRef]
- Maji, S.; Kao, Y.-H.; Liu, C.-W. Arsenic removal from real arsenic-bearing groundwater by adsorption on iron-oxide-coated natural rock (IOCNR). Desalination 2011, 280, 72–79. [Google Scholar] [CrossRef]
- Omoregie, E.O.; Couture, R.-M.; Van Cappellen, P.; Corkhill, C.L.; Charnock, J.M.; Polya, D.A.; Vaughan, D.; Vanbroekhoven, K.; Lloyd, J.R. Arsenic Bioremediation by Biogenic Iron Oxides and Sulfides. Appl. Environ. Microbiol. 2013, 79, 4325–4335. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lohwacharin, J.; Takizawa, S.; Hou, L.-A. Comparison between ferrihydrite adsorption and full-scale advanced drinking water treatment processes for controlling bacterial regrowth potential. Chemosphere 2020, 241, 125001. [Google Scholar] [CrossRef]
- Campos, C.; Mariñas, B.J.; Snoeyink, V.L.; Baudin, I.; Laîné, J.M. Adsorption of trace organic compounds in CRISTAL® processes. Desalination 1998, 117, 265–271. [Google Scholar] [CrossRef]
- Mavrov, V.; Chmiel, H.; Kluth, J.; Meier, J.; Heinrich, F.; Ames, P.; Backes, K.; Usner, P. Comparative study of different MF and UF membranes for drinking water production. Desalination 1998, 117, 189–196. [Google Scholar] [CrossRef]
- Lebeau, T.; Lelièvre, C.; Buisson, H.; Cléret, D.; Van De Venter, L.W.; Côté, P. Immersed membrane filtration for the production of drinking water: Combination with PAC for NOM and SOCs removal. Desalination 1998, 117, 219–231. [Google Scholar] [CrossRef]
- Campinas, M.; Rosa, M.J. Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Res. 2010, 44, 1636–1644. [Google Scholar] [CrossRef]
- Park, H.-S.; Koduru, J.R.; Choo, K.-H.; Lee, B. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J. Hazard. Mater. 2015, 286, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.; Partlan, E.; Li, M.; Lapolli, F.; Mefford, O.T.; Karanfil, T.; Ladner, D.A. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux. Water Res. 2016, 100, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Choo, K.-H. Granular iron oxide adsorbents to control natural organic matter and membrane fouling in ultra-filtration water treatment. Water Res. 2013, 47, 4227–4237. [Google Scholar] [CrossRef]
- Leone, P.; Gennari, M.; Nègre, M.; Boero, V. Role of ferrihydrite in adsorption of three imidazolinone herbicides. J. Agric. Food Chem. 2001, 49, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Iritani, E.; Katagiri, N. Developments of Blocking Filtration Model in Membrane Filtration. KONA Powder Part. J. 2016, 33, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.-Y.; Lee, D.-J.; Yang, Z.; Peng, X.F.; Lai, J.Y. Fluorecent Staining for Study of Extracellular Polymeric Substances in Membrane Biofouling Layers. Environ. Sci. Technol. 2006, 40, 6642–6646. [Google Scholar] [CrossRef] [PubMed]
- Mahardika, D.; Park, H.-S.; Choo, K.-H. Ferrihydrite-impregnated granular activated carbon (FH@GAC) for efficient phosphorus removal from wastewater secondary effluent. Chemosphere 2018, 207, 527–533. [Google Scholar] [CrossRef]
- Phetrak, A.; Sangkarak, S.; Ampawong, S.; Ittisupornrat, S.; Phihusut, D. Kinetic Adsorption of Hazardous Methylene Blue from Aqueous Solution onto Iron-Impregnated Powdered Activated Carbo. Environ. Nat. Resour. J. 2019, 17, 78–86. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Seo, G. Iron oxide nanoparticle-impregnated powder-activated carbon (IPAC) for NOM removal in MF membrane water treatment system. Desalination Water Treat. 2013, 51, 6392–6400. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Z.; Deng, L. Adsorption Behaviors and Removal Efficiencies of Inorganic, Polymeric and Organic Phosphates from Aqueous Solution on Biochar Derived from Sewage Sludge of Chemically Enhanced Primary Treatment Process. Water 2018, 10, 869. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.-J.; Wang, M.K.; Fu, M.-L.; Ci, E. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soils Sediments 2011, 11, 1135–1141. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Fu, Q.; Hu, H. Adsorption of phosphate on pure and humic acid-coated ferrihydrite. J. Soils Sediments 2015, 15, 1500–1509. [Google Scholar] [CrossRef]
- Mallet, M.; Barthélémy, K.; Ruby, C.; Renard, A.; Naille, S. Investigation of phosphate adsorption onto ferrihydrite by X-ray Photoelectron Spectroscopy. J. Colloid Interface Sci. 2013, 407, 95–101. [Google Scholar] [CrossRef]
- Kang, S.K.; Choo, K.H.; Lim, K.H. Use of Iron Oxide Particles as Adsorbents to Enhance Phosphorus Removal from Secondary Wastewater Effluent. Sep. Sci. Technol. 2003, 38, 3853–3874. [Google Scholar] [CrossRef]
- Park, H.-S.; Kwak, S.-H.; Mahardika, D.; Mameda, N.; Choo, K.-H. Mixed metal oxide coated polymer beads for enhanced phosphorus removal from membrane bioreactor effluents. Chem. Eng. J. 2017, 319, 240–247. [Google Scholar] [CrossRef]
- Borggaard, O.; Raben-Lange, B.; Gimsing, A.; Strobel, B. Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 2005, 127, 270–279. [Google Scholar] [CrossRef]
- Qualls, R.G.; Sherwood, L.J.; Richardson, C.J. Effect of natural dissolved organic carbon on phosphate removal by ferric chloride and aluminum sulfate treatment of wetland waters. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Li, X.; Kuang, Y.; Chen, J.; Wu, D. Competitive adsorption of phosphate and dissolved organic carbon on lanthanum modified zeolite. J. Colloid Interface Sci. 2020, 574, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhu, J.; Wang, H.; Fu, Q.; Hu, H.; Huang, Q.; Violante, A.; Huang, L. Sorption of humic acid on Fe oxides, bacteria, and Fe oxide-bacteria composites. J. Soils Sediments 2014, 14, 1378–1384. [Google Scholar] [CrossRef]
- Yang, Y.; Lohwacharin, J.; Takizawa, S. Analysis of adsorption processes of dissolved organic matter (DOM) on ferrihydrite using surrogate organic compounds. Environ. Sci. Pollut. Res. 2017, 24, 21867–21876. [Google Scholar] [CrossRef] [PubMed]
- Juang, R.; Chen, H.; Chen, Y. Resistance-in-series analysis in cross-flow ultrafiltration of fermentation broths of Bacillus subtilis culture. J. Membr. Sci. 2008, 323, 193–200. [Google Scholar] [CrossRef]
- Fane, T. Irreversible Fouling. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. [Google Scholar]
Materials | SBET a (m2/g) | Smic b (m2/g) | Smic/SBET | Vtot c (cm3/g) | Vmic d (cm3/g) | Vmic/Vtot | Pore Diameter e (nm) |
---|---|---|---|---|---|---|---|
PAC | 647 | 127 | 0.196 | 0.870 | 0.064 | 0.074 | 3.8 |
FHPAC | 337 | 51 | 0.151 | 0.395 | 0.035 | 0.089 | 3.8 |
Parameters | Feedwater | Permeate | |
---|---|---|---|
PAC | FHPAC | ||
pH | 7.49 | 7.56 | 7.52 |
Conductivity, µS/cm | 1033 | 1007 | 991 |
DOC, mg/L | 7.55 | 4.02 | 6.49 |
Ammonia, mg-N/L | 1.24 | 0.09 | 0.07 |
Nitrite, mg-N/L | ND | 0.03 | 0.05 |
Nitrate, mg-N/L | 0.85 | 2.07 | 8.69 |
Phosphate, mg-P/L | 0.51 | 0.22 | 0.07 |
HPC *, CFU/ml | 1.63×108 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lohwacharin, J.; Maliwan, T.; Osawa, H.; Takizawa, S. Effects of Ferrihydrite-Impregnated Powdered Activated Carbon on Phosphate Removal and Biofouling of Ultrafiltration Membrane. Water 2021, 13, 1178. https://doi.org/10.3390/w13091178
Lohwacharin J, Maliwan T, Osawa H, Takizawa S. Effects of Ferrihydrite-Impregnated Powdered Activated Carbon on Phosphate Removal and Biofouling of Ultrafiltration Membrane. Water. 2021; 13(9):1178. https://doi.org/10.3390/w13091178
Chicago/Turabian StyleLohwacharin, Jenyuk, Thitiwut Maliwan, Hideki Osawa, and Satoshi Takizawa. 2021. "Effects of Ferrihydrite-Impregnated Powdered Activated Carbon on Phosphate Removal and Biofouling of Ultrafiltration Membrane" Water 13, no. 9: 1178. https://doi.org/10.3390/w13091178
APA StyleLohwacharin, J., Maliwan, T., Osawa, H., & Takizawa, S. (2021). Effects of Ferrihydrite-Impregnated Powdered Activated Carbon on Phosphate Removal and Biofouling of Ultrafiltration Membrane. Water, 13(9), 1178. https://doi.org/10.3390/w13091178