Impacts of Water Resources Allocation on Water Environmental Capacity under Climate Change
Abstract
:1. Introduction
2. Methodology
2.1. Framework for Assessing the Impacts of Water Resources Allocation on Water Environmental Capacity under Climate Change
2.2. Water Availability Estimation Module
2.3. Water Demand Projection Module
2.3.1. Socioeconomic Water Demand
2.3.2. In-Stream Ecology Water Demand
2.4. Water Resources Allocation Module
2.5. Water Environmental Capacity Determination Module
3. A Case Study in Mid-Lower Reaches of Hanjiang River Basin
3.1. Study Area
3.2. Description of Water Demand and Availability Schemes
3.3. Data Set
3.3.1. Hydrological Data
3.3.2. Socioeconomic Water Demand Data
3.3.3. Characteristics of Reservoirs
3.3.4. Water Quality Data
4. Results and Discussion
4.1. Water Availability under Historical and Future RCP4.5 Scenarios
4.2. Water Demand in 2016 and 2030
4.3. Results of Water Resources Allocation Model under Climate Change
4.4. Water Environmental Capacity Response to Water Resources Allocation under Climate Change
4.4.1. Impacts of Variations of Water Availability on Water Environmental Capacity
4.4.2. Impacts of Water Demand Scenarios on Water Environmental Capacity
4.4.3. Impacts of Water Resources Allocation on Water Environmental Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45, W00A12. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zhang, L.; Li, Y.; Zhang, L.; Wang, X. A three-dimensional water quality model to evaluate the environmental capacity of nitrogen and phosphorus in Jiaozhou Bay. Mar. Pollut. Bull. 2014, 91, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Pastresa, R.; Ciavattaa, S.; Cossarinib, G.; Solidorob, C. Sensitivity analysis as a tool for the implementation of a water quality regulation based on the Maximum Permissible Loads policy. Reliab. Eng. Syst. Saf. 2003, 79, 239–244. [Google Scholar] [CrossRef]
- Chen, L.; Han, L.; Ling, H.; Wu, J.; Tan, J.; Chen, B.; Zhang, F.; Liu, Z.; Fan, Y.; Zhou, M.; et al. Allocating water environmental capacity to meet water quality control by considering both point and non-point source pollution using a mathematical model. Water 2019, 11, 900. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, R.; Men, C.; Guo, L.; Miao, Y. Temporal-spatial analysis of water environmental capacity based on the couple of SWAT model and differential evolution algorithm. J. Hydrol. 2019, 569, 155–166. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, Y.; Qin, Y.; Shen, Y.; Zhang, J. Water supply-water environmental capacity nexus in a saltwater intrusion area under nonstationary conditions. Water 2019, 11, 346. [Google Scholar] [CrossRef] [Green Version]
- Nnaji, G.A.; Huang, W.; Gitau, M.W.; Clark, C. Frequency analysis of minimum ecological flow and gage height in Suwannee River, Florida. J. Coast. Res. 2014, 68, 152–159. [Google Scholar] [CrossRef]
- Cooley, D. Return periods and return levels under climate change. In Extremes in a Changing Climate; Springer: Dordrecht, The Netherlands, 2013; Volume 65, pp. 97–114. [Google Scholar]
- Du, T.; Xiong, L.; Xu, C.; Gippel, C.; Guo, S.; Liu, P. Return period and risk analysis of nonstationary low-flow series under climate change. J. Hydrol. 2015, 527, 234–250. [Google Scholar] [CrossRef] [Green Version]
- Rootzén, H.; Katz, R.W. Design Life Level: Quantifying risk in a changing climate. Water Resour. Res. 2013, 49, 5964–5972. [Google Scholar] [CrossRef] [Green Version]
- Obeysekera, J.; Salas, J.D. Frequency of eecurrent extremes under nonstationarity. J. Hydrol. Eng. 2016, 21, 04016005. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Teng, J.; Vaze, J.; Post, D.A.; Perraud, J.M.; Kirono, D.G.C.; Viney, N.R. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Sharma, D.; Babel, M.S. Assessing hydrological impacts of climate change using bias-corrected downscaled precipitation in Mae Klong basin of Thailand. Meteorol. Appl. 2018, 25, 384–393. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Liu, P.; Xia, J. Using raw regional climate model outputs for quantifying climate change impacts on hydrology. Hydrol. Process. 2017, 31, 4398–4413. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Guo, S.; Shao, Q.; Liu, P.; Xiong, L.; Wang, L.; Hong, X.; Xu, Y.; Wang, Z. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions. J. Hydrol. 2018, 556, 759–774. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; Gentine, P.; Sullivan, S.C.; Gu, L.; He, S.; Chen, J.; Liu, P. Does the Hook Structure Constrain Future Flood Intensification under Anthropogenic Climate Warming? Water Resour. Res. 2021, 57, e2020WR028491. [Google Scholar] [CrossRef]
- Loucks, D.P. From analyses to implementation and innovation. Water 2020, 12, 974. [Google Scholar] [CrossRef] [Green Version]
- Kirby, J.M.; Mainuddin, M.; Mpelasoka, F.; Ahmad, M.D.; Palash, W.; Quadir, M.E.; Shah-Newaz, S.M.; Hossain, M.M. The impact of climate change on regional water balances in Bangladesh. Clim. Chang. 2016, 135, 481–491. [Google Scholar] [CrossRef]
- Nepal, S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro-Environ. Res. 2016, 10, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.J.; Huang, G.H.; Guo, P.; Shen, N. Interval multistage joint-probabilistic integer programming approach for water resources allocation and management. J. Environ. Manag. 2013, 128, 615–624. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Xu, C.-Y.; Guo, S. Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrol. Process. 2015, 29, 1521–1534. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khare, D.; Jat, M.K.; Sunder, J.D. Assessment of water resources allocation options: Conjunctive use planning in a link canal command. Resour. Conserv. Recycl. 2007, 51, 487–506. [Google Scholar] [CrossRef]
- He, S.; Guo, S.; Yang, G.; Chen, K.; Liu, D.; Zhou, Y. Optimizing Operation Rules of Cascade Reservoirs for Adapting Climate Change. Water Resour. Manag. 2019, 34, 101–120. [Google Scholar] [CrossRef]
- Tian, J.; Liu, D.; Guo, S.; Pan, Z.; Hong, X. Impacts of inter-basin water transfer projects on optimal water resources allocation in the Hanjiang River basin, China. Sustainability 2019, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Pablo, B.G.; Patricia, J.S.; Javier, S.A.; Julio, P.S. Impact of climate change on water balance components and droughts in the Guajoyo River Basin (El Salvador). Water 2019, 11, 2360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, Y.; Javed, A.; Arhonditsis, G.B. An ensemble modeling framework to study the effects of climate change on the trophic state of shallow reservoirs. Sci. Total Environ. 2019, 697, 134078. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Shabani, S.; Candelieri, A.; Archetti, F.; Naser, G. Gene expression programming coupled with unsupervised learning: A two-stage learning process in multi-scale, short-term water demand forecasts. Water 2018, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Tennant, D.L. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- Matrosov, E.S.; Harou, J.J.; Loucks, D.P. A computationally efficient open-source water resource system simulator—Application to London and the Thames Basin. Environ. Modell. Softw. 2011, 26, 1599–1610. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chang, J. Development of a coupled quantity-quality-environment water allocation model applying the optimization-simulation method. J. Clean. Prod. 2019, 213, 944–955. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Mango, L.M.; Melesse, A.M.; McClain, M.E.; Gann, D.; Setegn, S.G. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modeling study to support better resource management. Hydrol. Earth Syst. Sci. 2011, 15, 2245–2258. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Liu, D.; Wang, Z.; Zhao, Q.; Zou, H.; Hou, Y.; Liu, P.; Xiong, L. Runoff responses to climate and land use/cover changes under future scenarios. Water 2017, 9, 475. [Google Scholar] [CrossRef] [Green Version]
- Johnson, F.; Sharma, A. Measurement of GCM skill in predicting variables relevant for hydroclimatological assessments. J. Clim. 2009, 22, 4373–4382. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Oleson, K.W.; Strand, W.G.; Lehner, F.; O’Neill, B.C. A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Clim. Chang. 2015, 146, 303–318. [Google Scholar] [CrossRef]
- Brekke, L.D.; Larsen, M.D.; Ausburn, M.; Takaichi, L. Suburban water demand modeling using stepwise regression. J. Am. Water Works Ass. 2002, 94, 65–75. [Google Scholar] [CrossRef]
- Caissie, D.; El-Jabi, N. Comparison and regionalization of hydrologically based instream flow techniques in Atlantic Canada. Can. J. Civ. Eng. 1995, 22, 235–246. [Google Scholar] [CrossRef]
- Loucks, D.P. Interactive River-Aquifer Simulation and Stochastic Analyses for Predicting and Evaluating the Ecologic Impacts of Alternative Land and Water Management Policies; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 169–194. [Google Scholar]
- Yang, G.; Guo, S.; Liu, P.; Li, L.P.; Liu, Z. Multiobjective cascade reservoir operation rules and uncertainty analysis based on PA-DDS algorithm. J. Water Resour. Plan. Manag. 2017, 143, 04017025. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Li, J.; Wang, Z.; Li, W.; Wu, F. How well does BCC_CSM11 reproduce the 20th century climate change over China. Atmos. Ocean. Sci. Lett. 2013, 6, 21–26. [Google Scholar]
- Hubei Provincial Department of Water Resources (HPDWR). Dispatching Schedules of Hubei Provincial Large Reservoirs; Hubei Provincial Department of Water Resources (HPDWR): Wuhan, China, 2014. (In Chinese)
- Hubei Environmental Protection Bureau (HEPB). Ecological Environment Problems in the Middle and Lower Reaches of Hanjiang River; Hubei Environmental Protection Bureau (HEPB): Wuhan, China, 2018. (In Chinese)
- Chinese Academy for Environmental Planning (CAEP). The Technical Key Points of Environmental Capacity of Surface Water in China; Chinese Academy for Environmental Planning (CAEP): Beijing, China, 2004. (In Chinese) [Google Scholar]
- Changjiang Water Resources Commission (CWRC). Integrated Water Resources Planning of Hanjiang River Basin; Changjiang Water Resources Commission (CWRC): Wuhan, China, 2016. (In Chinese) [Google Scholar]
Scheme | Water Resources Allocation | Description |
---|---|---|
I | Yes | History of water availability and water demand in 2016 |
II | Yes | History of water availability and water demand in 2030 |
III | Yes | Future of water availability under RCP4.5 and water demand in 2016 |
IV | Yes | Future of water availability under RCP4.5 and water demand in 2030 |
V | No | History of natural water flow series |
VI | No | Future of natural water flow series under RCP4.5 |
No. | Name | Total Storage | Storage at Normal Water Level | Dead Storage | a Storage at Flood Limiting Water Level |
---|---|---|---|---|---|
➀ | Danjiangkou | 33,910 | 29,050 | 12,690 | 22,910/25,790 |
➁ | Meidian | 162 | 87 | 31 | 87 |
➂ | Shimenji | 154 | 115 | 2 | 99 |
➃ | Sandaohe | 155 | 127 | 0 | 127 |
➄ | Yuntaishan | 123 | 89 | 5 | 89 |
➅ | Zhanghe | 2023 | 924 | 865 | 865 |
➆ | Gonghe | 173 | 105 | 1 | 84 |
b Runoff Gauging Station | Calibration Period (1980–1993) | Validation Period (1994–2000) |
---|---|---|
Ankang | 0.93 | 0.83 |
Baihe | 0.91 | 0.78 |
Danjiangkou | 0.92 | 0.75 |
Huangzhuang | 0.82 | 0.66 |
Area | Type A | Type B | Total | |||
---|---|---|---|---|---|---|
Scenario | History | RCP4.5 | History | RCP4.5 | History | RCP4.5 |
Annual | 3.07 | 4.15 | 3.96 | 3.85 | 7.03 | 8.01 |
Flood season | 2.29 | 3.23 | 2.98 | 3.20 | 5.27 | 6.43 |
Non-flood season | 0.77 | 0.92 | 0.98 | 0.65 | 1.76 | 1.57 |
Scenario | Area | Municipal | Rural | Industrial | Agricultural | Total |
---|---|---|---|---|---|---|
2016 | type A | 136 | 135 | 808 | 5081 | 6160 |
type B | 152 | 48 | 1075 | 2056 | 3331 | |
type C | 658 | − | 1584 | − | 2243 | |
Total | 946 | 184 | 3468 | 7137 | 11,734 | |
2030 | type A | 193 | 137 | 1389 | 4611 | 6330 |
type B | 206 | 33 | 1918 | 1964 | 4122 | |
type C | 779 | − | 2666 | − | 3445 | |
Total | 1178 | 170 | 5973 | 6576 | 13,897 |
Schemes | Variables | Municipal | Rural | Industrial | Agricultural | In-Stream Ecology | Total |
---|---|---|---|---|---|---|---|
Scheme I | Demand | 946 | 184 | 3468 | 7137 | 609 | 12,343 |
Supply | 944 | 182 | 3190 | 6441 | 609 | 11,367 | |
Deficit | 2 | 1 | 278 | 695 | 0 | 977 | |
Deficit rate | 0.20% | 0.70% | 8.02% | 9.74% | 0.03% | 7.91% | |
Scheme II | Demand | 1178 | 170 | 5973 | 6576 | 609 | 14,506 |
Supply | 1171 | 168 | 5224 | 5699 | 609 | 12,871 | |
Deficit | 7 | 1 | 749 | 877 | 1 | 1635 | |
Deficit rate | 0.63% | 0.78% | 12.54% | 13.34% | 0.11% | 11.27% | |
Scheme III | Demand | 946 | 184 | 3468 | 7137 | 609 | 12,343 |
Supply | 938 | 179 | 3095 | 6378 | 594 | 11,183 | |
Deficit | 9 | 4 | 373 | 759 | 15 | 1160 | |
Deficit rate | 0.90% | 2.33% | 10.76% | 10.64% | 2.51% | 9.40% | |
Scheme IV | Demand | 1178 | 170 | 5973 | 6576 | 609 | 14,506 |
Supply | 1161 | 166 | 5107 | 5702 | 590 | 12,726 | |
Deficit | 17 | 4 | 866 | 874 | 19 | 1780 | |
Deficit rate | 1.48% | 2.35% | 14.49% | 13.29% | 3.13% | 12.27% |
River Segment | Scheme I | Scheme II | Scheme III | Scheme IV | Scheme V | Scheme VI |
---|---|---|---|---|---|---|
S1: Huangjiagang~Jiangjiaying | 555 | 550 | 555 | 557 | 221 | 186 |
S2: Jiangjiaying~Yujiahu | 630 | 512 | 621 | 494 | 263 | 232 |
S3: Yujiahu~Huangzhuang | 635 | 513 | 622 | 497 | 263 | 235 |
S4: Huangzhuang~Shayang | 634 | 513 | 621 | 497 | 263 | 236 |
S5: Shayang~Zekou | 637 | 505 | 627 | 498 | 275 | 230 |
S6: Zekou~Yuekou | 634 | 504 | 621 | 496 | 273 | 227 |
S7: Yuekou~Xiantao | 684 | 534 | 625 | 502 | 266 | 233 |
S8: Xiantao~Hankou | 662 | 523 | 622 | 498 | 257 | 226 |
Average value | 634 | 519 | 614 | 505 | 260 | 226 |
Pollutant | Segment | Scheme Ⅰ | Scheme Ⅱ | Scheme Ⅲ | Scheme Ⅳ | Scheme Ⅴ | Scheme Ⅵ |
---|---|---|---|---|---|---|---|
CODMn | S1: Huangjiagang~Jiangjiaying | 38,329 | 37,906 | 38,329 | 38,499 | 20,953 | 19,741 |
S2: Jiangjiaying~Yujiahu | 158,948 | 138,636 | 157,390 | 135,565 | 100,412 | 95,220 | |
S3: Yujiahu~Huangzhuang | 42,535 | 28,844 | 41,070 | 27,793 | 16,322 | 15,469 | |
S4: Huangzhuang~Shayang | 60,067 | 45,259 | 58,474 | 43,305 | 32,341 | 30,361 | |
S5: Shayang~Zekou | 69,918 | 54,787 | 68,772 | 53,984 | 45,599 | 42,857 | |
S6: Zekou~Yuekou | 37,007 | 30,462 | 36,352 | 30,059 | 20,539 | 19,516 | |
S7: Yuekou~Xiantao | 81,951 | 56,607 | 71,960 | 51,231 | 38,858 | 35,494 | |
S8: Xiantao~Hankou | 59,667 | 42,703 | 54,778 | 39,661 | 29,274 | 26,978 | |
Total | 548,422 | 435,204 | 527,126 | 420,096 | 304,299 | 285,637 | |
NH3-N | S1: Huangjiagang~Jiangjiaying | 746 | 737 | 746 | 749 | 404 | 379 |
S2: Jiangjiaying~Yujiahu | 2904 | 2519 | 2875 | 2461 | 1768 | 1663 | |
S3: Yujiahu~Huangzhuang | 828 | 564 | 800 | 543 | 318 | 301 | |
S4: Huangzhuang~Shayang | 1157 | 874 | 1127 | 837 | 617 | 578 | |
S5: Shayang~Zekou | 1340 | 1050 | 1318 | 1035 | 857 | 800 | |
S6: Zekou~Yuekou | 723 | 595 | 710 | 587 | 399 | 377 | |
S7: Yuekou~Xiantao | 1565 | 1086 | 1376 | 984 | 735 | 670 | |
S8: Xiantao~Hankou | 1152 | 827 | 1058 | 768 | 560 | 515 | |
Total | 10,414 | 8252 | 10,009 | 7964 | 5657 | 5283 |
Pollutant | Segment | Scheme Ⅰ | Scheme Ⅱ | Scheme Ⅲ | Scheme Ⅳ | Scheme Ⅴ | Scheme Ⅵ |
---|---|---|---|---|---|---|---|
CODMn | S1: Huangjiagang~Jiangjiaying | 33,025 | 32,602 | 33,025 | 33,194 | 15,649 | 14,437 |
S2: Jiangjiaying~Yujiahu | −65,436 | −85,748 | −66,994 | −88,819 | −123,972 | −129,164 | |
S3: Yujiahu~Huangzhuang | 40,173 | 26,482 | 38,708 | 25,431 | 13,960 | 13,107 | |
S4: Huangzhuang~Shayang | 59,632 | 44,824 | 58,039 | 42,870 | 31,906 | 29,926 | |
S5: Shayang~Zekou | 69,557 | 54,426 | 68,411 | 53,623 | 45,238 | 42,496 | |
S6: Zekou~Yuekou | 35,796 | 29,251 | 35,141 | 28,848 | 19,328 | 18,306 | |
S7: Yuekou~Xiantao | 33,304 | 7960 | 23,313 | 2584 | −9789 | −13,153 | |
S8: Xiantao~Hankou | 35,162 | 18,198 | 30,273 | 15,156 | 4769 | 2473 | |
Total | 241,213 | 127,995 | 219,917 | 112,887 | −2910 | −21,572 | |
NH3-N | S1: Huangjiagang~Jiangjiaying | 591 | 583 | 591 | 594 | 249 | 224 |
S2: Jiangjiaying~Yujiahu | −3641 | −4026 | −3670 | −4085 | −4778 | −4882 | |
S3: Yujiahu~Huangzhuang | 759 | 495 | 731 | 474 | 249 | 232 | |
S4: Huangzhuang~Shayang | 1145 | 861 | 1114 | 824 | 604 | 565 | |
S5: Shayang~Zekou | 1329 | 1040 | 1307 | 1024 | 846 | 789 | |
S6: Zekou~Yuekou | 688 | 559 | 675 | 551 | 363 | 342 | |
S7: Yuekou~Xiantao | 146 | −333 | −43 | −435 | −684 | −749 | |
S8: Xiantao~Hankou | 437 | 112 | 343 | 54 | −155 | −200 | |
Total | 1453 | −709 | 1048 | −998 | −3304 | −3678 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Liu, D.; Guo, S.; Xiong, L.; Liu, P.; Yin, J.; Tian, J.; Deng, L.; Zhang, J. Impacts of Water Resources Allocation on Water Environmental Capacity under Climate Change. Water 2021, 13, 1187. https://doi.org/10.3390/w13091187
Zeng Y, Liu D, Guo S, Xiong L, Liu P, Yin J, Tian J, Deng L, Zhang J. Impacts of Water Resources Allocation on Water Environmental Capacity under Climate Change. Water. 2021; 13(9):1187. https://doi.org/10.3390/w13091187
Chicago/Turabian StyleZeng, Yujie, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, Jing Tian, Lele Deng, and Jiayu Zhang. 2021. "Impacts of Water Resources Allocation on Water Environmental Capacity under Climate Change" Water 13, no. 9: 1187. https://doi.org/10.3390/w13091187
APA StyleZeng, Y., Liu, D., Guo, S., Xiong, L., Liu, P., Yin, J., Tian, J., Deng, L., & Zhang, J. (2021). Impacts of Water Resources Allocation on Water Environmental Capacity under Climate Change. Water, 13(9), 1187. https://doi.org/10.3390/w13091187