Impact of Future Land-Use/Cover Change on Streamflow and Sediment Load in the Be River Basin, Vietnam
Abstract
:1. Introduction
2. The Case Study
3. Data and Methods
3.1. Land Use/Cover Change Modeling Using the Dyna-CLUE Model
3.1.1. The Dyna-CLUE Model–a
3.1.2. Dyna-CLUE Model Set-Up
3.2. Hydrological Modelling Using the Soil and Water Assessment Tool (SWAT) Model
4. Results and Discussion
4.1. Historical LUC Change
4.2. Projected LUC Change
4.3. Performance Evaluation of the SWAT Model
4.4. Projected Resposes of Streamflow and Sediment Load to Changing LUC Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aghsaei, H.; Mobarghaee Dinan, N.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, M.; Copty, N.K.; Saysel, A.K. Modeling the impact of land use change on the hydrology of a rural watershed. J. Hydrol. 2013, 497, 97–109. [Google Scholar] [CrossRef]
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Ni, X.; Parajuli, P.B.; Ouyang, Y.; Dash, P.; Siegert, C. Assessing land use change impact on stream discharge and stream water quality in an agricultural watershed. CATENA 2021, 198, 105055. [Google Scholar] [CrossRef]
- Zare, M.; Nazari Samani, A.A.; Mohammady, M.; Salmani, H.; Bazrafshan, J. Investigating effects of land use change scenarios on soil erosion using CLUE-s and RUSLE models. Int. J. Environ. Sci. Technol. 2017, 14, 1905–1918. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran. Land Use Policy 2020, 90, 104299. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Rientjes, T.H.M.; Hoekstra, A.Y. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol. Process. 2017, 31, 2029–2040. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, R.; Men, C.; Guo, L. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. J. Hydrol. 2018, 560, 86–96. [Google Scholar] [CrossRef]
- Gong, X.; Bian, J.; Wang, Y.; Jia, Z.; Wan, H. Evaluating and Predicting the Effects of Land Use Changes on Water Quality Using SWAT and CA–Markov Models. Water Resour. Manag. 2019, 33, 4923–4938. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water 2019, 11, 914. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci. Total Environ. 2013, 452–453, 181–195. [Google Scholar] [CrossRef]
- Shrestha, M.; Acharya, S.C. Assessment of historical and future land-use–land-cover changes and their impact on valuation of ecosystem services in Kathmandu Valley, Nepal. Land Degrad. Dev. 2020. ldr.3837. [Google Scholar] [CrossRef]
- Lü, D.; Gao, G.; Lü, Y.; Ren, Y.; Fu, B. An effective accuracy assessment indicator for credible land use change modelling: Insights from hypothetical and real landscape analyses. Ecol. Indic. 2020, 117, 106552. [Google Scholar] [CrossRef]
- Quyen, N.T.N.; Liem, N.D.; Loi, N.K. Effect of land use change on water discharge in Srepok watershed, Central Highland, Vietnam. Int. Soil Water Conserv. Res. 2014, 2, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Khoi, D.N.; Thom, V.T. Impacts of climate variability and land-use change on hydrology in the period 1981-2009 in the central highlands of vietnam. Glob. Nest J. 2015, 17, 870–881. [Google Scholar]
- Khoi, D.N.; Nguyen, V.; Sam, T.T.; Nhi, P. Evaluation on Effects of Climate and Land-Use Changes on Streamflow and Water Quality in the La Buong River Basin, Southern Vietnam. Sustainability 2019, 11, 7221. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.S.; Nguyen, D.B. Predicting Land Use and Climate Changes Scenarios Impacts on Runoff and Soil Erosion: A Case Study in Hoa Binh Province, Lower Da River Basin, Northwest Vietnam. Environ. Asia 2020, 13, 62–77. [Google Scholar]
- Ngo, T.S.; Nguyen, D.B.; Rajendra, P.S. Effect of land use change on runoff and sediment yield in Da River Basin of Hoa Binh province, Northwest Vietnam. J. Mt. Sci. 2015, 12, 1051–1064. [Google Scholar] [CrossRef]
- Le Huong, H.; Thanh Son, N. Response of Streamflow and Soil Erosion to Climate Change and Human Activities in Nam Rom River Basin, Northwest of Vietnam. Environ. Nat. Resour. J. 2020, 18, 411–423. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Thang, L.V.; Khoi, D.N.; Phi, H.L. Impact of climate change on streamflow and water quality in the upper Dong Nai river basin, Vietnam. La Houille Blanche 2018, 2018, 70–79. [Google Scholar] [CrossRef]
- Luo, G.; Yin, C.; Chen, X.; Xu, W.; Lu, L. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Babaei, H.; Nazari-Sharabian, M.; Karakouzian, M.; Ahmad, S. Identification of Critical Source Areas (CSAs) and Evaluation of Best Management Practices (BMPs) in Controlling Eutrophication in the Dez River Basin. Environments 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, A.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs-A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dubendorf, Switzerland, 2015. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Tuan, D.A. Drivers of Forest Change in the Greater Mekong Subregion: Vietnam Country Report; USAID Lowering Emissions in Asia’s Forest (LEAF): Washington, DC, USA, 2015. [Google Scholar]
- Khoi, D.N.; Suetsugi, T. The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrol. Process. 2014, 28, 640–652. [Google Scholar] [CrossRef]
- Ranzi, R.; Le, T.H.; Rulli, M.C. A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): Effects of reservoirs and land use changes. J. Hydrol. 2012, 422–423, 17–29. [Google Scholar] [CrossRef]
- Truong, N.; Nguyen, H.; Kondoh, A. Land Use and Land Cover Changes and Their Effect on the Flow Regime in the Upstream Dong Nai River Basin, Vietnam. Water 2018, 10, 1206. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.D.; Bhallamudi, S.M.; Narasimhan, B.; Kantakumar, L.N.; Sudheer, K.P.; Kumar, S.; Schneider, K.; Fiener, P. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Sci. Total Environ. 2016, 539, 153–164. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, R.; Men, C.; Guo, L.; Miao, Y. Effects of dynamic land use inputs on improvement of SWAT model performance and uncertainty analysis of outputs. J. Hydrol. 2018, 563, 874–886. [Google Scholar] [CrossRef]
- Chaplot, V.; Coadou le Brozec, E.; Silvera, N.; Valentin, C. Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos. CATENA 2005, 63, 167–184. [Google Scholar] [CrossRef]
Forest Land | Agriculture | Urban | Grassland | Water | |
---|---|---|---|---|---|
Forest land | 1 | 1 | 0 | 1 | 1 |
Agriculture | 1 | 1 | 1 | 1 | 0 |
Urban | 0 | 0 | 1 | 0 | 0 |
Grassland | 1 | 1 | 1 | 1 | 1 |
Water | 0 | 0 | 0 | 0 | 1 |
Forest Land | Agriculture | Urban | Grassland | Water | |
---|---|---|---|---|---|
Elevation | −0.00329 | 0.0021 | −0.00178 | −0.00088 | |
Slope | 0.03275 | −0.0292 | −0.0243 | −0.229 | |
Precipitation | −0.0064 | −0.0016 | |||
Soil type | 0.00005 | 0.00007 | 0.00006 | −0.000097 | |
Population density | −0.0094 | 0.008 | 0.00124 | −0.0067 | |
Distance from road | 0.000007 | −0.00003 | −0.0012 | ||
Distance from river | −0.0001 | −0.383 | −0.00011 | ||
Distance from town/city center | 0.00015 | −0.00009 | −0.0033 | ||
Constant | 10.87 | 1.96 | −1.148 | −2.192 | 1.595 |
ROC | 0.792 | 0.764 | 0.984 | 0.663 | 0.803 |
LUC Type | Area in 2005 | Area in 2010 | Area in 2015 | |||
---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | |
Forest land | 1591 | 20.30 | 1409 | 17.98 | 1379 | 17.59 |
Agriculture | 5392 | 68.78 | 5554 | 70.85 | 5588 | 71.28 |
Urban | 3 | 0.03 | 6 | 0.07 | 17 | 0.22 |
Grassland | 706 | 9.01 | 722 | 9.21 | 705 | 8.99 |
Water | 147 | 1.89 | 148 | 1.88 | 151 | 1.93 |
Total | 7839 | 100 | 7839 | 100 | 7839 | 100 |
Station | Simulation Type | Time Period | Daily Time-Step | Monthly Time-Step | ||
---|---|---|---|---|---|---|
ENS | PBIAS | ENS | PBIAS | |||
Phuoc Long | Streamflow | Calibration: 1980–1990 | 0.74 | 6% | 0.86 | 6% |
Validation: 1991–1993 | 0.78 | 3% | 0.95 | 3% | ||
Phuoc Hoa | Streamflow | Calibration: 1980–1990 | 0.73 | −24% | 0.86 | −24% |
Validation: 1991–2010 | 0.60 | −5% | 0.71 | −5% | ||
Sediment | Calibration: 1999–2005 | 0.47 | 4% | 0.60 | 4% | |
Validation: 2006–2010 | 0.51 | 28% | 0.73 | 28% |
Streamflow | Sediment Load | |||||
---|---|---|---|---|---|---|
2030 | 2050 | 2070 | 2030 | 2050 | 2070 | |
5th percentile | 0.12 | 0.41 | 1.02 | 0.23 | 6.21 | 12.2 |
95th percentile | 0.33 | 0.47 | 0.72 | 0.02 | 0.07 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoi, D.N.; Loi, P.T.; Sam, T.T. Impact of Future Land-Use/Cover Change on Streamflow and Sediment Load in the Be River Basin, Vietnam. Water 2021, 13, 1244. https://doi.org/10.3390/w13091244
Khoi DN, Loi PT, Sam TT. Impact of Future Land-Use/Cover Change on Streamflow and Sediment Load in the Be River Basin, Vietnam. Water. 2021; 13(9):1244. https://doi.org/10.3390/w13091244
Chicago/Turabian StyleKhoi, Dao Nguyen, Pham Thi Loi, and Truong Thao Sam. 2021. "Impact of Future Land-Use/Cover Change on Streamflow and Sediment Load in the Be River Basin, Vietnam" Water 13, no. 9: 1244. https://doi.org/10.3390/w13091244
APA StyleKhoi, D. N., Loi, P. T., & Sam, T. T. (2021). Impact of Future Land-Use/Cover Change on Streamflow and Sediment Load in the Be River Basin, Vietnam. Water, 13(9), 1244. https://doi.org/10.3390/w13091244