Evaluation of Porous Carbon Adsorbents Made from Rice Husks for Virus Removal in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porous Carbon Materials
2.2. Characterization of Porous Carbon Adsorbents
2.3. Virus Preparation and Plaque Assay
2.4. Batch Experiment for Virus Removal
3. Results and Discussion
3.1. Characterization of Porous Carbon Adsorbents
3.2. Removal of MS2 by Porous Carbon Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO/UNICEF. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Elliott, M.A.; Stauber, C.E.; Koksal, F.; DiGiano, F.A.; Sobsey, M.D. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res. 2008, 42, 2662–2670. [Google Scholar] [CrossRef] [PubMed]
- Pooi, C.K.; Ng, H.Y. Review of low-cost point-of-use water treatment systems for developing communities. Clean Water 2018, 1, 11. [Google Scholar] [CrossRef]
- Fong, T.-T.; Lipp, E.K. Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev. 2005, 69, 357–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locas, A.; Barthe, C.; Barbeau, B.; Carrière, A.; Payment, P. Virus occurrence in municipal groundwater sources in Quebec, Canada. Can. J. Microbiol. 2007, 53, 688–694. [Google Scholar] [CrossRef]
- Chigor, V.N.; Okoh, A.I. Quantitative RT-PCR detection of hepatitis A virus, rotaviruses and enteroviruses in the Buffalo River and source water dams in the Eastern Cape Province of South Africa. Int. J. Environ. Res. Public Health 2012, 9, 4017–4032. [Google Scholar] [CrossRef] [PubMed]
- Lodder, W.J.; Van Den Berg, H.H.J.L.; Rutjes, S.A.; Husman, A.M.D.R. Presence of enteric viruses in source waters for drinking water production in The Netherlands. Appl. Environ. Microbiol. 2010, 76, 5965–5971. [Google Scholar] [CrossRef] [Green Version]
- Prevost, B.; Goulet, M.; Lucas, F.S.; Joyeux, M.; Moulin, L.; Wurtzer, S. Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes. Water Res. 2016, 91, 68–76. [Google Scholar] [CrossRef]
- Asami, T.; Katayama, H.; Torrey, J.R.; Visvanathan, C.; Furumai, H. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand. Water Res. 2016, 101, 84–94. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Quinlivan, P.A.; Li, L.; Knappe, D.R.U. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res. 2005, 39, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Kaleta, J.; Kida, M.; Koszelnik, P.; Papciak, D.; Puszkarewicz, A.; Tchórzewska-Ciealak, B. The use of activated carbons for removing organic matter from groundwater. Arch. Environ. Prot. 2017, 43, 32–41. [Google Scholar] [CrossRef]
- Gerba, C.P.; Sobsey, M.D.; Wallis, C.; Melnick, J.L. Adsorption of poliovirus onto activated carbon in wastewater. Environ. Sci. Technol. 1975, 9, 727–731. [Google Scholar] [CrossRef]
- Oza, P.P.; Chaudhuri, M. Removal of viruses from water by sorption on coal. Water Res. 1975, 9, 707–712. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Suylen, G.M.H.; Bahlman, J.A.; Brouwer-Hanzens, A.; Medema, G.J. GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo)cysts in water treatment. Water Res. 2010, 44, 1224–1234. [Google Scholar] [CrossRef]
- Persson, F.; Långmark, J.; Heinicke, G.; Hedberg, T.; Tobiason, J.; Stenström, T.A.; Hermansson, M. Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water. Water Res. 2005, 39, 3791–3800. [Google Scholar] [CrossRef]
- Matsushita, T.; Suzuki, H.; Shirasaki, N.; Matsui, Y.; Ohno, K. Adsorptive virus removal with super-powdered activated carbon. Sep. Purif. Technol. 2013, 107, 79–84. [Google Scholar] [CrossRef]
- Cookson, J.T. Adsorption of Viruses on Activated Carbon. Adsorption of Escherichia Coli Bacteriophage T4 on Activated Carbon as a Diffused Limited. Process. Environ. Sci. Technol. 1967, 1, 157–160. [Google Scholar] [CrossRef]
- Zdravkov, B.D.; Cermak, J.J.; Sefara, M.; Janku, J. Pore classification in the characterization of porous materials: A perspective. Cent. Eur. J. Chem. 2007, 5, 385–395. [Google Scholar] [CrossRef]
- Tabata, S.; Iida, H.; Horie, T.; Yamada, S. Hierarchical porous carbon from cell assemblies of rice husk for in vivo applications. MedChemComm 2010, 1, 136–138. [Google Scholar] [CrossRef]
- Li, L.; Quinlivan, P.A.; Knappe, D.R.U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 2002, 40, 2085–2100. [Google Scholar] [CrossRef]
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Boudaud, N.; Machinal, C.; David, F.; Fréval-Le Bourdonnec, A.; Jossent, J.; Bakanga, F.; Arnal, C.; Jaffrezic, M.P.; Oberti, S.; Gantzer, C. Removal of MS2, Qb and GA bacteriophages during drinking water treatment at pilot scale. Water Res. 2012, 46, 2651–2664. [Google Scholar] [CrossRef]
- Elhadidy, A.M.; Peldszus, S.; Van Dyke, M.I. An evaluation of virus removal mechanisms by ultrafiltration membranes using MS2 and φx174 bacteriophage. Sep. Purif. Technol. 2013, 120, 215–223. [Google Scholar] [CrossRef]
- Gutierrez, L.; Li, X.; Wang, J.; Nangmenyi, G.; Economy, J.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Nguyen, T.H. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles. Water Res. 2009, 43, 5198–5208. [Google Scholar] [CrossRef]
- Furuse, K.; Sakurai, T.; Hirashima, A.; Katsuki, M.; Ando, A.; Watanabe, I. Distribution of ribonucleic acid coliphages in South and East Asia. Appl. Environ. Microbiol. 1978, 35, 995–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, S.; Hashimoto, T.; Do, A.T.; Furumai, H.; Katayama, H. Repeated pressurization as a potential cause of deterioration in virus removal by aged reverse osmosis membrane used in households. Sci. Total Environ. 2019, 695, 133814. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Scheme to Evaluate Household Water Treatment Technologies. Harmonized Testing Protocol: Technology Non-Specific; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Tadda, M.A.; Ahsan, A.; Shitu, A.; Elsergany, M.; Arunkumar, T.; Jose, B.; Razzaque, M.A.; Daud, N.N.N. A review on activated carbon: Process, application and prospects. J. Adv. Civ. Eng. Pract. Res. 2016, 2, 7–13. [Google Scholar]
- Wang, S.; Lu, G.Q. Effects of acidic treatments on the pore and surface properties of ni catalyst supported on activated carbon. Carbon 1998, 36, 283–292. [Google Scholar] [CrossRef]
- Michen, B.; Graule, T. Isoelectric points of viruses. J. Appl. Microbiol. 2010, 109, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Armanious, A.; Aeppli, M.; Jacak, R.; Refardt, D.; Sigstam, T.; Kohn, T.; Sander, M. Viruses at Solid-Water Interfaces: A systematic assessment of interactions driving adsorption. Environ. Sci. Technol. 2016, 50, 732–743. [Google Scholar] [CrossRef]
- Ilomuanya, M.O.; Nashiru, B.; Ifudu, N.D.; Igwilo, C.I. Effect of pore size and morphology of activated charcoal prepared from midribs of Elaeis guineensis on adsorption of poisons using metronidazole and Escherichia coli O157: H7 as a case study. J. Microsc. Ultrastruct. 2017, 5, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Wick, C.H.; McCubbin, P.E. Characterization of purified MS2 bacteriophage by the physical counting methodology used in the integrated virus detection system (IVDS). Toxicol. Methods 1999, 9, 245–252. [Google Scholar] [CrossRef]
- Nuithitikul, K.; Srikhun, S.; Hirunpradikoon, S. Influences of pyrolysis condition and acid treatment on properties of durian peel-based activated carbon. Bioresour. Technol. 2010, 101, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Jacquin, C.; Yu, D.; Sander, M.; Domagala, K.W.; Traber, J.; Morgenroth, E.; Julian, T.R. Competitive co-adsorption of bacteriophage MS2 and natural organic matter onto multiwalled carbon nanotubes. Water Res. X 2020, 9, 100058. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Snoeyink, V.L.; Mariñas, B.J.; Campos, C. Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: The roles of PAC pore size distribution and NOM molecular weight. Water Res. 2003, 37, 4863–4872. [Google Scholar] [CrossRef] [PubMed]
- Dastgheib, S.A.; Karanfil, T.; Cheng, W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon 2004, 42, 547–557. [Google Scholar] [CrossRef]
- Ding, L.; Snoeyink, V.L.; Mariñas, B.J.; Yue, Z.; Economy, J. Effects of powdered activated carbon pore size distribution on the competitive adsorption of aqueous atrazine and natural organic matter. Environ. Sci. Technol. 2008, 42, 1227–1231. [Google Scholar] [CrossRef]
Carbon Adsorbent | Porous Carbon | Conventional Activated Carbon | ||||||
---|---|---|---|---|---|---|---|---|
Types of Materials | NPC-A a | NPC-B b | NPC-C c | AC-A | AC-B | AC-C | AC-D | AC-E |
Raw materials | Rice husk | Coconut husk | Wood | |||||
Density (g/cm3) | 0.335 | 0.216 | 0.218 | 0.531 | 0.399 | 0.341 | 0.18 | 0.165 |
Particle size | 30/60 mesh (particle size 0.23–0.50 mm) | |||||||
N2-BET surface area (m2/g) | 376 | 960 | 954 | 1016 | 1680 | 1187 | 1958 | 1561 |
MP pore volume (cm3/g) (<2 nm) | 0.14 | 0.36 | 0.30 | 0.47 | 0.79 | 0.50 | 0.97 | 0.72 |
BJH pore volume (cm3/g) (2–200 nm) | 0.27 | 0.63 | 0.69 | 0.0052 | 0.27 | 0.24 | 0.80 | 1.2 |
MIP pore volume (cm3/g) (3–10,000 nm) | 0.89 | 1.62 | 1.71 | 0.36 | 0.59 | 0.74 | 1.41 | 1.62 |
Zeta potential (mV) | −34 | −27 | −13 | −39 | −43 | −25 | −6.3 | −17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canh, V.D.; Tabata, S.; Yamanoi, S.; Onaka, Y.; Yokoi, T.; Furumai, H.; Katayama, H. Evaluation of Porous Carbon Adsorbents Made from Rice Husks for Virus Removal in Water. Water 2021, 13, 1280. https://doi.org/10.3390/w13091280
Canh VD, Tabata S, Yamanoi S, Onaka Y, Yokoi T, Furumai H, Katayama H. Evaluation of Porous Carbon Adsorbents Made from Rice Husks for Virus Removal in Water. Water. 2021; 13(9):1280. https://doi.org/10.3390/w13091280
Chicago/Turabian StyleCanh, Vu Duc, Seiichiro Tabata, Shun Yamanoi, Yoichi Onaka, Toshiyuki Yokoi, Hiroaki Furumai, and Hiroyuki Katayama. 2021. "Evaluation of Porous Carbon Adsorbents Made from Rice Husks for Virus Removal in Water" Water 13, no. 9: 1280. https://doi.org/10.3390/w13091280
APA StyleCanh, V. D., Tabata, S., Yamanoi, S., Onaka, Y., Yokoi, T., Furumai, H., & Katayama, H. (2021). Evaluation of Porous Carbon Adsorbents Made from Rice Husks for Virus Removal in Water. Water, 13(9), 1280. https://doi.org/10.3390/w13091280