A Review on the Application of Isotopic Techniques to Trace Groundwater Pollution Sources within Developing Countries
Abstract
:1. Introduction
2. Overview of Isotope Application in Groundwater Studies
2.1. Using Isotopes of O, H and C to Determine Leachate Migration
2.2. Application of Dual Isotopes of δ15N and δ18O and δ11B to Identify Nitrate Pollution Sources
2.3. Application of δ15N and δ18O to Identify Nitrate Pollution Sources
2.3.1. δ15N and δ18O Fingerprint of Manure and Septic Waste Nitrate sources
2.3.2. δ15N and δ18O Fingerprint of Ammonia in Fertilizer and Precipitation
2.3.3. δ15N and δ18O Fingerprint of Atmospheric Deposition
2.3.4. δ15N and δ18O Fingerprint of Soil Nitrogen/Organic Matter
2.4. Integration of δ¹¹B and δ15N to Identify the Factors Impacting Groundwater Pollution
2.5. Variations in Boron Isotope Abundance (δ¹¹B) in Natural and Anthropogenic Sources
2.6. Applications of δ¹¹B as a Pollution Tracer
3. Quick Guide to Pollution Source Identification Using Isotope Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aboyeji, O.S.; Eigbokhan, S.F. Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Environ. Manag. 2016, 183, 333–341. [Google Scholar] [CrossRef]
- Ahring, B.K.; Biswas, R.; Ahamed, A.; Teller, P.J.; Uellendahl, H. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour. Tech. 2015, 175, 182–188. [Google Scholar] [CrossRef]
- Kumar, S.; Dhar, H.; Nair, V.V.; Rena; Govani, J.; Arya, S.; Bhattacharya, J.K.; Vaidya, A.N.; Akolkar, A.B. Environmental quality monitoring and impact assessment of solid waste dumpsites in high altitude sub-tropical regions. Environ. Manag. 2019, 252, 109681. [Google Scholar] [CrossRef]
- Liu, S.; Wu, F.; Feng, W.; Guo, W.; Song, F.; Wang, H.; Wang, Y.; He, Z.; Giesy, J.P.; Zhu, P.; et al. Using dual isotopes and a Bayesian isotope mixing model to evaluate sources of nitrate of Tai Lake, China. Environ. Sci. Poll. Res. 2018, 25, 32631–32639. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Kang, P.; Sun, Y.A. Stable isotope approach and its application for identifying nitrate source and transformation process in water. Environ. Sci. Poll. 2016, 23, 1133–1148. [Google Scholar] [CrossRef]
- Loague, K.; Corwin, D.L. Point and NonPoint Source Pollution. Encyclo. of Hydro. Sci. 2006, 4, 1–13. [Google Scholar] [CrossRef]
- Nisi, B.; Raco, B.; Dotsika, E. Groundwater Contamination Studies by Environmental Isotopes: A review. Hdb. Environ. Chem. Pollut. Wastes 2014. [Google Scholar] [CrossRef]
- Gugulothu, S.; Dhakate, R.; Sreedhar, K. Geophysical and hydrochemical studies for sustainable development of groundwater resources in northwestern part of Telangana State, India. J. Earth Syst. Sci. 2020, 129, 202. [Google Scholar] [CrossRef]
- Ameloko, A.A.; Ayolabi, E.A. Geophysical assessment for vertical leachate migration profile and physicochemical study of groundwater around the Olusosun dumpsite Lagos, south-west Nigeria. Appl. Water Sci. 2018, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Alfaifi, H.; Kahal, A.; Albassam, A. Integrated geophysical and hydrochemical investigations for seawater intrusion: A case study in southwestern Saudi Arabia. Arab. J. Geosci. 2019, 12, 372. [Google Scholar] [CrossRef]
- Karlık, G.; Kaya, M.A. Investigation of groundwater contamination using electric and electromagnetic methods at an open waste-disposal site: A case study from Isparta, Turkey. Environ. Geol. 2001, 40, 725–731. [Google Scholar] [CrossRef]
- Jia, H.; Howard, K.; Qian, H. Use of multiple isotopic and chemical tracers to identify sources of nitrate in shallow groundwaters along the northern slope of the Qinling. Appl. Geochem. 2020, 113, 104512. [Google Scholar] [CrossRef]
- Oteng, F.; Alo, C.; Yidana, S.M. Evaluation of groundwater recharge estimates in a partially metamorphosed sedimentary basin in a tropical environment: Application of natural tracers. Sci. World J. 2014, 2014, 8. [Google Scholar] [CrossRef]
- Yidana, S.M.; Alo, C.; Addai, M.O.; Fynn, O.F.; Essel, S.K. Numerical analysis of groundwater flow and potential in parts of a crystalline aquifer system in Northern Ghana. Environ. Sci. Tech. 2015, 12, 3805–3818. [Google Scholar] [CrossRef] [Green Version]
- Adomako, D.; Maloszewski, P.; Stumpp, C.; Osae, S.; Akiti, T. Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 2010, 55, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
- Pujiindiyati, E.R.; Sidauruk, P. Study of leachate contamination in bantar gebang landfill to its shallow groundwater using natural isotope tracers of 18O, 2H and 3H. At. Indones. 2015, 41, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhou, X.; Lao, Q.; Wang, S.; Jin, G.; Chen, C.; Zhu, Q. Dual isotopic evidence for nitrate sources and active biological transformation in the Northern South China Sea in summer. PLoS ONE 2019, 14, 1–16. [Google Scholar] [CrossRef]
- Zimmermann, J.L.; Halloran, J.S.; Hunkeler, D. Tracking chlorinated contaminants in the subsurface using compound-specific chlorine isotope analysis: A review of principles, current challenges and applications. Chemosphere 2020, 244, 125476. [Google Scholar] [CrossRef]
- Nigro, A.; Sappa, G.; Barbieri, M. Application of boron and tritium isotopes for tracing landfill contamination in groundwater. Geochem. Explor. 2017, 172, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, W.M. Contribution of isotopic and nuclear tracers to study of groundwaters. Oxf. Cent. Wat. Res. 2005, 171–172. [Google Scholar] [CrossRef]
- Castañeda, S.S.; Sucgang, R.J.; Almoneda, R.V.; Mendoza, N.D.S.; David, C.P.C. Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines. Environ. Radioact. 2012, 110, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Ramaroson, V.; Rakotomalala, C.U.; Rajaobelison, J.; Fareze, L.P.; Razafitsalama, F.A.; Rasolofonirina, M. Tritium as tracer of groundwater pollution extension: Case study of Andralanitra landfill site, Antananarivo–Madagascar. Appl. Wat. Sci. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, B.; Hrad, M.; Huber-Humer, M.; Watzinger, A.; Wyhlidal, S.; Reichenauer, T.G. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste. Waste Manag. 2013, 33, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Sen Gupta, B. Contemporary environmental issues of landfill leachate: Assessment and remedies. Crit. Rev. Environ. Sci. Tech. 2015, 45, 472–590. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Ko, K.S.; Kim, E.Y. Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination. Environ. Geochem. Health 2020, 42, 1387–1399. [Google Scholar] [CrossRef] [PubMed]
- Andrei, F.; Barbieri, M.; Sappa, G. Application of 2H and18O isotopes for tracing municipal solid waste landfill contamination of groundwater: Two Italian case histories. Water 2021, 13, 1065. [Google Scholar] [CrossRef]
- Fenchel, T.; King, G.M.; Blackburn, T.H. Bacterial Metabolism. Bact. Biogeochem. 2012, 1–34. [Google Scholar] [CrossRef]
- Meckenstock, R.U.; Morasch, B.; Griebler, C.; Richnow, H.H. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J. Contam. Hydrol. 2004, 75, 215–255. [Google Scholar] [CrossRef]
- North, J.C.; Frew, R.D.; Van Hale, R. Can stable isotopes be used to monitor landfill leachate impact on surface waters? J. Geochem. Explor. 2006, 88, 49–53. [Google Scholar] [CrossRef]
- Hughes, C.E.; Cendón, D.I.; Harrison, J.J.; Hankin, S.I.; Johansen, M.P.; Payne, T.E.; Vine, M.; Collins, R.N.; Hoffmann, E.L.; Loosz, T. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia. J. Environ. Radioact. 2011, 102, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Kerfoot, H.B.; Baker, J.A.; Burt, D.M. The use of isotopes to identify landfill gas effects on groundwater. J. Environ. Monit. 2003, 5, 896–901. [Google Scholar] [CrossRef]
- Tazioli, A. Landfill investigation using tritium and isotopes as pollution tracers. AQUA Mundi 2011, 18, 83–92. [Google Scholar] [CrossRef]
- Robinson, H.D.; Gronow, J.R. Tritium levels in leachates and condensates from domestic wastes in landfill sites. Water Environ. J. 1996, 100, 391–398. [Google Scholar] [CrossRef]
- Bandeira, J.V.; Mingote, R.M.; Baptista, M.B.; Oliveira, D.M.; Lima, F.P. The use of tritium content as an indicator of the groundwater contamination by sanitary landfills leachates in the region of Belo Horizonte City, Brazil. Water Sci. Tech. 2008, 57, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.S.; Cherry, J.A.; Gillham, R.W.; Sudicky, E.A. Migration of contaminants in groundwater at a landfill: A case study. 1. Groundwater flow and plume delineation. Hydro 1983, 63, 1–29. [Google Scholar] [CrossRef]
- Mutch, R.D.; Mahony, J.D. A study of tritium in municipal solid waste leachate and gas. Fusion Sci. Tech. 2008, 54, 305–310. [Google Scholar] [CrossRef]
- Raco, B.; Dotsika, E.; Battaglini, R.; Bulleri, E.; Doveri, M.; Papakostantinou, K. A quick and reliable method to detect and quantify contamination from MSW landfills: A case study. Water Air Soil Poll. 2013, 224, 1–18. [Google Scholar] [CrossRef]
- Porowska, D. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes. Waste Manag. 2015, 39, 216–225. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T. Dissolved CO2 in Freshwater Systems. In Reference Module in Earth Systems and Environmental Sciences; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Preziosi, E.; Frollini, E.; Zoppini, A.; Ghergo, S.; Melita, M.; Parrone, D.; Rossi, D.; Amalfitano, S. Disentangling natural and anthropogenic impacts on groundwater by hydrogeochemical, isotopic and microbiological data: Hints from a municipal solid waste landfill. Waste Manag. 2019, 84, 245–255. [Google Scholar] [CrossRef]
- Kohl, D.H.; Shearer, G.B.; Commoner, B. Fertilizer nitrogen: Contribution to nitrate in surface water in a corn belt watershed. Science 1971, 24, 1331–1334. [Google Scholar] [CrossRef]
- Charles, B.; Iii, A.C.; Groat, C.G. Use of Stable Isotopes of Carbon, Nitrogen, and Sulfur to Identify Sources of Nitrogen in Surface Waters in the Lower Susquehanna River Basin, Pennsylvania; US Government Printing Office: Washington, DC, USA, 2005. [Google Scholar]
- Curt, M.D.; Aguado, P.; Sánchez, G.; Bigeriego, M.; Fernández, J. Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water Air Soil Pollut. 2004, 151, 135–142. [Google Scholar] [CrossRef]
- Li, X.; Masuda, H.; Koba, K.; Zeng, H. Nitrogen isotope study on nitrate-contaminated groundwater in the Sichuan Basin, China. Water Air Soil Pollut. 2007, 178, 145–156. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, Z.; Zhang, X.; Wang, X.; Sun, X.; Ballantine, D.J.; Wang, S. Nitrogen pollution and source identi fi cation of urban ecosystem surface water in Beijing. Front. Environ. Sci. Eng. 2014, 8, 106–116. [Google Scholar] [CrossRef]
- Minet, E.; Coxon, C.E.; Goodhue, R.; Richards, K.G.; Kalin, R.M.; Meier-Augenstein, W. Evaluating the utility of 15N and 18O isotope abundance analyses to identify nitrate sources: A soil zone study. Water Res. 2012, 46, 3723–3736. [Google Scholar] [CrossRef] [PubMed]
- Luca, D.A. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes. Environ. Sci. Pollut. Res. 2017, 26, 2089–2104. [Google Scholar]
- Benjamin, S.M.; Nyilitya, P.B. Kisumu City and Kano Plains, Kenya. Water 2020, 12, 1–18. [Google Scholar]
- Pastén-Zapata, E.; Ledesma-Ruiz, R.; Harter, T.; Ramírez, A.I.; Mahlknecht, J. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci. Total Environ. 2014, 470–471, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Marchitto, T.M. Nutrient Proxies, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Granger, J.; Sigman, D.M.; Needoba, J.A.; Harrison, P.J. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol. Oceanogr. 2004, 49, 1763–1773. [Google Scholar] [CrossRef] [Green Version]
- Xiaofeng, C.; Liuyan, Y.; Lin, X.; Aijun, M.; Beidou, X. Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. J. Freshw. Eco. 2012, 27, 243–258. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, G.; Sheng, Y.; Zhao, D. Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, Northwestern China. Expo. Health 2016, 8, 389–400. [Google Scholar] [CrossRef]
- Kendall, C.; Elliot, E.M.; Wankel, S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems, 2nd ed.; Blackwell: Hoboken, NJ, USA, 2007; pp. 375–449. [Google Scholar]
- Anornu, G.; Gibrilla, A.; Adomako, D. Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ15N, δ18O]NO3 and 3H). Sci. Total Environ. 2017, 603–604, 687–698. [Google Scholar] [CrossRef]
- Koba, K.; Tokuchi, N.; Wada, E.; Nakajima, T.; Iwatsubo, G. Intermittent denitrification: The application of a 15N natural abundance method to a forested ecosystem. Geochim. Cosmochim. Acta 1997, 61, 5043–5050. [Google Scholar] [CrossRef]
- Marchant, H.K.; Ahmerkamp, S.; Lavik, G.; Tegetmeyer, H.E.; Graf, J.; Klatt, J.M.; Holtappels, M.; Walpersdorf, E.; Kuypers, M.M.M. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017, 11, 1799–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Sanghi, R. Wastewater Reuse and Management; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C. Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate. Water Air Soil Pollut. 2005, 165, 13–35. [Google Scholar] [CrossRef]
- Casciotti, K.L.; Sigman, D.M.; Ward, B.B. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol. J. 2003, 20, 335–353. [Google Scholar] [CrossRef]
- Kendall, C.; Aravena, R. Nitrate Isotopes in Groundwater Systems. Environ. Tracers Subsurf. Hydro. 2000, 261–297. [Google Scholar] [CrossRef]
- Veale, N.; Visser, A.; Esser, B.; Singleton, M.J.; Moran, J.E. Nitrogen cycle dynamics revealed through δ 18 O-NO3−Analysis in California Groundwater. Geosciences 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Mader, M.; Roberts, A.M.; Porst, D.; Schmidt, C.; Trauth, N.; van-Geldern, R.; Barth, J.A.C. River recharge versus O2 supply from the unsaturated zone in shallow riparian groundwater: A case study from the Selke River (Germany). Sci. Total Environ. 2018, 634, 374–381. [Google Scholar] [CrossRef]
- Kendall, C. Tracing Nitrogen Sources and Cycling in Catchments. Elsevier B.V.: Amsterdam, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Mayer, B.; Bollwerk, S.M.; Mansfeldt, T.; Hütter, B.; Veizer, J. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim. Cosmochim. Acta 2001, 65, 2743–2756. [Google Scholar] [CrossRef]
- Shi, J.; Ohte, N.; Tokuchi, N.; Imamura, N.; Nagayama, M.; Oda, T.; Suzuki, M. Nitrate isotopic composition reveals nitrogen deposition and transformation dynamics along the canopy-soil continuum of a suburban forest in Japan. Rapid Commun. Mass Spectro 2014, 28, 2539–2549. [Google Scholar] [CrossRef]
- Ogrinc, N.; Tamše, S.; Zavadlav, S.; Vrzel, J.; Jin, L. Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): A stable isotope perspective. Sci. Total Environ. 2019, 646, 1588–1600. [Google Scholar] [CrossRef]
- Widory, D.; Petelet-Giraud, E.; Négrel, P.; Ladouche, B. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: A synthesis. Environ. Sci. Tech. 2005, 39, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Bronders, J.; Tirez, K.; Desmet, N.; Widory, D.; Petelet-Giraud, E.; Bregnot, A.; Boeckx, P. Use of Compound-Specific Nitrogen (d 15N), Oxygen (d 18O), and Bulk Boron (d 11B) Isotope Ratios to Identify Sources of Nitrate-Contaminated Waters: A Guideline to Identify Polluters. Environ. Forensics 2012, 13, 32–38. [Google Scholar] [CrossRef]
- Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M.E.; Savarino, J.; Escher, P.; Eisenhauer, A.; Erbland, J. Multi-isotope approach for the identification and characterisation of nitrate pollution sources in the Marano lagoon (Italy) and parts of its catchment area. Appl. Geochem. 2013, 34, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Vengosh, A.; Kolodny, Y.; Spivack, A.J. Groundwater Pollution Determined by Boron Isotope Systematics; International Atomic Energy Agency: Vienna, Austria, 1998; pp. 17–37. [Google Scholar]
- Reed, E.M.; Duranceau, S.J. Chemical and isotopic composition of nitrogen and boron in septic tank wastewater samples. Environ. Earth Sci. 2016, 75, 1–7. [Google Scholar] [CrossRef]
- Bassett, R.L. A critical evaluation of the available measurements for the stable isotopes of boron. Appl. Geochem. 1990, 5, 541–554. [Google Scholar] [CrossRef]
- Komor, S.C. Boron Contents and Isotopic Compositions of Hog Manure, Selected Fertilizers, and Water in Minnesota. J. Environ. Qual. 1997, 26, 1212–1222. [Google Scholar] [CrossRef]
- Tirez, K.; Brusten, W.; Widory, D.; Petelet, E.; Bregnot, A.; Xue, D.; Boeckx, P.; Bronders, J. Boron isotope ratio (δ11B) measurements in Water Framework Directive monitoring programs: Comparison between double focusing sector field ICP and thermal ionization mass spectrometry. J. Anal. At. Spectrom. 2010, 25, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Barth, S. Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Res. 1998, 32, 685–690. [Google Scholar] [CrossRef]
- Puig, R.; Soler, A.; Widory, D.; Mas-Pla, J.; Domènech, C.; Otero, N. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach. Sci. Total Environ. 2017, 580, 518–532. [Google Scholar] [CrossRef]
- Fernandes, P.; Carvalho, M.R.; Silva, M.C.; Rebelo, A.; Zeferino, J. Application of nitrogen and boron isotopes for tracing sources of anthropogenic contamination in Monforte-Alter do Chão aquifer system, Portugal. Sustain. Water Resour. Manag. 2019, 5, 249–266. [Google Scholar] [CrossRef]
- Wahl, E.H.; Fidric, B.; Rella, C.W.; Koulikov, S.; Kharlamov, B.; Tan, S.; Kachanov, A.A.; Richman, B.A.; Crosson, E.R.; Paldus, B.A.; et al. Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide. Isot. Environ. Health Stud. 2006, 42, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Pierchala, A.; Rozanski, K.; Dulinski, M.; Gorczyca, Z.; Marzec, M.; Czub, R. High-precision measurements of δ 2H, δ 18O and δ 17O in water with the aid of cavity ring-down laser spectroscopy. Isot. Environ. Health Stud. 2019, 55, 290–307. [Google Scholar] [CrossRef]
- Balslev-Clausen, D.; Dahl, T.W.; Saadd, N.; Rosinga, M.T. Precise and accurate d13C analysis of rock samples using Flash Combustion–Cavity Ring Down Laser Spectroscopy. J. Anal. At. Spectrom. 2013, 28, 413–614. [Google Scholar] [CrossRef]
- Wang, C. Plasma-cavity ringdown spectroscopy (P-CRDS) for elemental and isotopic measurements. J. Anal. At. Spectrom. 2007, 22, 1337–1436. [Google Scholar] [CrossRef]
- Chen, T.; Ober, D.C.; Miri, R.; Bui, T.Q.; Shen, L.; Okumura, M. Optically switched dual-wavelength cavity ring-down spectrometer for high-precision isotope ratio measurements of methane δd in the near infrared. Anal. Chem. 2021, 93, 6375–6384. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Koh, D.; Kim, Y.S.; Jeen, S.; Lee, J. Stable isotopes of water and nitrate for the identification of groundwater flowpaths: A Review. Water 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Bo, J.K.; Supe, Ä.N. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal. Chem. 2001, 73, 4145–4153. [Google Scholar] [CrossRef]
- Dotsika, E.; Poutoukis, D.; Kloppmann, W.; Guerrot, C.; Voutsa, D.; Kouimtzis, T.H. The use of O, H, B, Sr and S isotopes for tracing the origin of dissolved boron in groundwater in Central Macedonia, Greece. Appl. Geochem. 2010, 25, 1783–1796. [Google Scholar] [CrossRef]
Element Symbol | Isotope | Ratio | %Natural Abundance | Application | References |
---|---|---|---|---|---|
H | δ ²H | ²H/¹H | 0.015 | Origin of water | [15] |
H | ³H | Dumpsite leachate | [16] | ||
N | δ ¹⁵N | ¹⁵N/¹⁴N | 0.366 | Source of pollution | [17] |
Cl | δ ³⁷Cl | ³⁷Cl/³⁵Cl | 24.23 | Origin and transformation of chlorinated compounds | [18] |
B | δ ¹¹B | ¹¹B/¹ºB | 80.1 | Anthropogenic and geogenic pollution source | [19] |
O | δ ¹⁸O | ¹⁸O/¹⁶O | 0.204 | Origin of water | [15] |
C | δ ¹³C | ¹³C/¹²C | 1.11 | Carbonate source | |
S | δ ³⁴S | ³⁴S/³²S | 4.21 | Potential sources of sulphate from landfill and acid mine drainage | [7] |
Sample Code | Sample Type | δ²H (‰) Dry Rainy | δ¹⁸O (‰) Dry Rainy | ³H (TU) | Reference |
---|---|---|---|---|---|
BG-LA | Outlet and inlet leachate | −3.6 to +10.3 −21.87 to +7.86 | −0.42 to 0.67 −5.93 to −5.43 | 50.9 to 493.9 | [16] |
BG-MA | Monitoring well down-gradient of Plant A | −37.9 to −30.6 −37.42 to −29.80 | −6.26 to −5.81 −6.02 to −5.96 | 14.9 to 76.7 |
Sample Code | Sample Type | δ²H (‰) | δ¹⁸O (‰) | ³H (TU) | Reference |
---|---|---|---|---|---|
Group 1 | Hand-dug well down-gradient of the landfill | −42.80 to −40.77 | −6.81 to −6.63 | 10.4 to 22.8 | [22] |
Group 2 | Hand-dug well upstream and 700 m downstream from landfills | −46.63 to −39.12 | −7.51 to −5.91 | 0.84–1.46 |
Sample Code | Sample Type | Comment | δ²H (‰) | δ¹⁸O (‰) | δ¹³C (‰) | Reference |
---|---|---|---|---|---|---|
L1-6 | Leachate | Leachate of landfill sites | −38 to −24 | −7.5 to −7.3 | +16.5 to +21.2 | [25] |
GR1 | Well | Up-gradient to landfill | −38.3 to −35.5 | −5.93 to −5.46 | −14.2 to −12.2 | [37] |
GW 6 | Well | Just down-gradient to GW9 and adjacent to SW1 | −42 | −7.0 | +8.9 | [25] |
GR10 | Stream | Far down-gradient to AKL | −6.3 | +0.71 | +8.97 | [37] |
GW8 | Well | Just down-gradient of Leachate | −35 | −6.9 | +11.6 | [25] |
GR9 | Well | Just down-gradient to CKL | −37.0 | −6.17 | −3.3 | [37] |
Stages | Parameters | Methodology | Characteristics Ranges | References | |
---|---|---|---|---|---|
Step 1: The first step to identify the source (s) of water pollution near a landfill site is to determine the percolation of leachate using a stable isotope approach. However, isotopic samples should be collected alongside ongoing chemical analysis to reduce costs. | δ¹⁸O, δ²H δ13C | Equilibration. The method involves equilibrating 5 mL of the samples with
gas for 24 h. at 25 ± 0.1 °C. Cr at 850 °C is utilized for the reduction of to produce . Both the contents are determined using a Liquid Water Isotope Analyzer. Evacuated glass septum vials, pre-filled with phosphoric acid (85%) and a magnetic stirrer are used to collect water samples for analyses. The sealed vacuum sample is acidified, and cryogenic traps are used to purify the produced . Isotope-ratio mass spectrometry (IRMS) is used to measure the isotopic ratio of δ13CDIC Disadvantages of IRMS technique Sampling of soil using IRMS is time-consuming as IRMS is not operated in the field [79]. The IRMS technique requires pretreatment (liquid conversion to gaseous samples), and is not applicable for field measurement; this limits the number of samples that can be analyzed in a given period [80]. Alternative method to measure δ¹⁸O, δ²H & δ13C Cavity Ring-down Spectroscopy (CRDS) (laser absorption technique) is the current alternative measurement to Isotope-ratio mass spectrometry. The principle of CRDS involves the measurement of the rate of decay (ring-down time) of a laser beam’s intensity [80]. Comparable to IRMS, its potability, simple operation, relatively cheap labor and equipment cost (<$50 K) and applicability at remote sites make CRDS technology useful for developing countries [79]. CRDS has a comparable precision to IRMS [81]. CRDS can be used for elemental and isotopic measurements such as C, O, N, and H in organic or inorganic samples [82,83]. The presence of dissolved organic molecules has the disadvantage of degrading the analytical performance of CRDS due to spectral interferences [84]. | Leachate water | Uncontaminated water | [25] |
δ¹⁸O −4.5 to 3.7‰ | δ¹⁸O −4.1 to −4.4‰ | ||||
δ²H −22 to +60‰ | δ²H −23 to −25.5‰ | ||||
(δ²H is enriched due to methanogenesis) | |||||
Note: Unlike δ²H, δ¹⁸O is unaffected by methanogenesis | |||||
Calcite dissolution | Leachate | ||||
δ13C −14 to +1.1‰ | δ13C +16 to +21.2‰ | ||||
Leachate polluted Groundwater | |||||
δ13C +5 to +38‰ | |||||
data are vital to define the status of groundwater and surface water. If the concentration is higher than the WHO limit (50 mg/L), it is necessary to identify its source(s) for further prevention measures. | δ¹⁵N and δ¹⁸O | Bacteria denitrification extraction: online (auto sampler); measurement: IRMS | Precipitation | Soil Nitrogen | [53,54,61,62,65,85] |
δ¹⁵N −0.6 to 31‰ | δ¹⁵N +3 to +8‰ | ||||
δ¹⁸ +30 to 70‰ | δ¹⁸O −8 to +12‰ | ||||
in Fertilizer Synthetic | Fertilizer | ||||
δ¹⁵N −8 to +7‰ | δ¹⁵N −5 to +8‰ | ||||
δ¹⁸O −8 to +12‰ | δ¹⁸O +17 to +25‰ | ||||
Manure, sewage & septic waste | |||||
δ¹⁵N +5 to +25‰ | δ¹⁸O −8 to +12‰ | ||||
Step 3: Following potential scenarios where multiple nitrate sources could be involved, δ¹¹B should be used to further identify the specific nitrate source (s). | δ¹¹B | The boron isotope composition can be determined by using Thermal Ionization Mass-Spectrometry (TIMS). The amberlite IRA-743 boron selective resin method can be employed to isolate the boron. | Uncontaminated Groundwater | [86] | |
δ¹¹B +23.8 to +38.5‰ | |||||
B 0.015 to 0.15 mg/L | |||||
Seawater | Synthetic fertilizer | ||||
δ¹¹B +33 to +70‰ | δ¹¹B −6 to +5‰ | ||||
B 0.07 to 13.9mg/L | B 0.05 to 0.41 mg/L | ||||
Hog Manure | Cattle Manure | ||||
δ¹¹B +7.2 to +42.5‰ | δ¹¹B +22.3 to +24‰ | ||||
B 1.43 to 8.12 mg/L | B 0.05 to 0.41mg/L | ||||
Sewage, landfill and septic leachates | |||||
δ¹¹B +5 to +25‰ B 0.13 to 4.1mg/L | |||||
Step 4: Since all the above techniques cannot be used to differentiate between septic and landfill leachates, 3H isotope could be used to isolate dumpsite leachate. | Tritium | Electrolytic enrichment method. The tritium concentration is then measured via b-particle counting emission using a liquid scintillation counter. | Leachate (50.9 to 159,316 TU) | [16,21,22,30] | |
Groundwater polluted by leachate (2.3 to 76.6 TU) | |||||
Unpolluted water | Precipitation | ||||
(0.04 to 10 TU) | (<10 TU) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankoh, A.A.; Derkyi, N.S.A.; Frazer-williams, R.A.D.; Laar, C.; Kamara, I. A Review on the Application of Isotopic Techniques to Trace Groundwater Pollution Sources within Developing Countries. Water 2022, 14, 35. https://doi.org/10.3390/w14010035
Sankoh AA, Derkyi NSA, Frazer-williams RAD, Laar C, Kamara I. A Review on the Application of Isotopic Techniques to Trace Groundwater Pollution Sources within Developing Countries. Water. 2022; 14(1):35. https://doi.org/10.3390/w14010035
Chicago/Turabian StyleSankoh, Abdul Aziz, Nana Sarfo Agyemang Derkyi, Ronnie A. D. Frazer-williams, Cynthia Laar, and Ishmail Kamara. 2022. "A Review on the Application of Isotopic Techniques to Trace Groundwater Pollution Sources within Developing Countries" Water 14, no. 1: 35. https://doi.org/10.3390/w14010035
APA StyleSankoh, A. A., Derkyi, N. S. A., Frazer-williams, R. A. D., Laar, C., & Kamara, I. (2022). A Review on the Application of Isotopic Techniques to Trace Groundwater Pollution Sources within Developing Countries. Water, 14(1), 35. https://doi.org/10.3390/w14010035