Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Field Studies
2.3.2. Laboratory Analyses
3. Results
3.1. Analysis of Water Level
3.2. Analysis of Physicochemical Conditions, Major Ions, Nutrients and Heavy Metals
3.2.1. Mineralization and Major Ions
3.2.2. Nutrients and Organic Matter
3.2.3. Heavy Metals in Water
3.3. Heavy Metals in Bottom Sediments
3.4. Heavy Metals in Aquatic Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Aller, D.; Rathke, S.; Laird, D.; Cruse, R.; Hatfield, J. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 2017, 307, 114–121. [Google Scholar] [CrossRef]
- Adams, J.K.; Martins, C.C.; Rose, N.L.; Shchetnikov, A.A.; Mackay, A.W. Lake sediment records of persistent organic pollutants and polycyclic aromatic hydrocarbons in southern Siberia mirror the changing fortunes of the Russian economy over the past 70 years. Environ. Pollut. 2018, 242, 528–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchenko, M.V.; Domysheva, V.M.; Pestunov, D.A.; Sakirko, M.V.; Shamrin, A.M.; Shmargunov, V.P. Carbon dioxide in the atmosphere-water system and biogenic elements in the littoral zone of Lake Baikal during period 2004–2018. J. Gt. Lakes Res. 2020, 46, 85–94. [Google Scholar] [CrossRef]
- Popovicheva, O.; Molozhnikova, E.; Nasonov, S.; Potemkin, V.; Penner, I.; Klemasheva, M.; Marinaite, I.; Golobokova, L.; Vratolis, S.; Eleftheriadis, K.; et al. Industrial and wildfire aerosol pollution over world heritage Lake Baikal. J. Environ. Sci. (China) 2021, 107, 49–64. [Google Scholar] [CrossRef]
- Takakura, H.; Fujioka, Y.; Ignatyeva, V.; Tanaka, T.; Vinokurova, N.; Grigorev, S.; Boyakova, S. Differences in local perceptions about climate and environmental changes among residents in a small community in Eastern Siberia. Polar Sci. 2021, 27, 100556. [Google Scholar] [CrossRef]
- Mishra, A.; Alnahit, A.; Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. J. Hydrol. 2021, 596, 125707. [Google Scholar] [CrossRef]
- Goncharov, A.V.; Baturina, N.S.; Maryinsky, V.V.; Kaus, A.K.; Chalov, S.R. Ecological assessment of the Selenga River basin, the main tributary of Lake Baikal, using aquatic macroinvertebrate communities as bioindicators. J. Gt. Lakes Res. 2020, 46, 53–61. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Sinyukovich, V.N.; Netsvetayeva, O.G.; Tomberg, I.V.; Sezko, N.P. The entry of sulfates and nitrogen into Lake Baikal with the waters of its influent rivers. Geogr. Nat. Resour. 2009, 30, 35–39. [Google Scholar] [CrossRef]
- Pellinen, V.; Cherkashina, T.; Gustaytis, M. Assessment of metal pollution and subsequent ecological risk in the coastal zone of the Olkhon Island, Lake Baikal, Russia. Sci. Total Environ. 2021, 786, 147441. [Google Scholar] [CrossRef]
- Tungaraza, C. Long-term climate impact on the Lake Victoria region influences water level fluctuation and resource availability. Int. J. Environ. Sci. 2012, 2, 1717–1732. [Google Scholar] [CrossRef] [Green Version]
- Maihemuti, B.; Aishan, T.; Simayi, Z.; Alifujiang, Y.; Yang, S. Temporal Scaling of Water Level Fluctuations in Shallow Lakes and Its Impacts on the Lake Eco-Environments. Sustainability 2020, 12, 3541. [Google Scholar] [CrossRef]
- Fadova, A.A.; Kucherik, G.V.; Zablotskaya, E.V. Assessment of air quality in the area of accommodation main site of the joint stock company “Inter RAO–Elektrogeneratsiya”. Power Plants Technol. 2020, 6, 138–145. [Google Scholar]
- The State of Lake Baikal and Measures for Its Protection; Report; Ministry of Natural Resources and Ecology of the Russian Federation: Moscow, Russia, 2002–2020. Available online: https://www.mnr.gov.ru/docs/gosudarstvennye_doklady/o_sostoyanii_ozera_baykal_i_merakh_po_ego_okhrane (accessed on 30 September 2021).
- Adushinov, A.; Borisenko, I.; Zonkhoeva, E.; Rezanov, I.; Parfenov, I.; Shaibonov, B.; Abasheeva, N.; Ayushina, T.; Boikov, T.; Litvinov, A.; et al. Ecology of Lake Gusinoye; Buryat Academic Press: Ulan-Ude, Russia, 1994; p. 199. [Google Scholar]
- Pisarsky, B.I.; Hardina, A.M.; Naganawa, H. Ecosystem evolution of Lake Gusinoe (Transbaikal region, Russia). Limnology 2005, 6, 173–182. [Google Scholar] [CrossRef]
- Naganawa, H. Lake Gusinoe to Baikal via Selenga Delta: Protection-destruction spiral. Lakes Reserv. Ponds 2012, 6, 9–19. [Google Scholar]
- Obozhin, V.; Bogdanov, V.; Klikunova, O. Hydrochemistry of Rivers and Lakes in Buryatia; Nauka: Novosibirsk, Russia, 1984; p. 151. [Google Scholar]
- Samarina, A.V.; Khudyakova, R.V. Chemical Characteristics of Lake Gusinoe. In Proceedings of the 2nd Meeting on the Matter and Energy Cycle in Lakes, Novosibirsk, Russia, 6 September 1969. [Google Scholar]
- Domysheva, V.M.; Sinyukovich, V.N.; Hodger, T.V. Water regime and hydrochemistry of Lake Gusinoe in the modern period. Geogr. Nat. Resour. 1995, 2, 73–80. [Google Scholar]
- Lukyanova, A.N.; Lukyanova, O.N.; Yefimova, L.E.; Yefimov, V.A. Influence of natural and anthropogenic factors on water quality in cooling ponds (case study of Lake Gusinoe). Water Sect. Russ. Probl. Technol. Manag. 2020, 146–160. [Google Scholar]
- Galazy, G. Lake Baikal. Atlas; Roskartografiya: Moscow, Russia, 1993; p. 160. [Google Scholar]
- Chebunina, N.S.; Pakhakhinova, Z.Z.; Beshentsev, A.N.; Batoev, V.B. Assessment of impact of the heated water discharge of the Gusinoozersk GRES on the ice regime of Lake Gusinoe (Western Transbaikalia). Polythemat. Netw. Electron. Sci. J. Kuban State Agrar. Univ. 2016, 116, 301–308. [Google Scholar]
- Tsydypov, B.Z.; Andreev, S.G.; Ayurzhanaev, A.A.; Sodnomov, B.V.; Gurzhapov, B.O.; Batotsyrenov, E.A.; Pavlov, I.A.; Shiretorova, V.G.; Ulzetueva, I.D.; Gabeeva, D.A.; et al. Impact of discharges of the Gusinoozersk power plant on thermal and hydrochemical regime of Lake Gusinoe. ISU Bull. 2017, 22, 135–150. [Google Scholar]
- Buryat Center for Hydrometeorology and Environmental Monitoring. Available online: http://www.burpogoda.ru (accessed on 30 September 2021).
- GOST 57162-2016 Water. Determination of Elements Content by Graphite Furnace Atomic Absorption Spectrometry. Available online: https://docs.cntd.ru/document/1200140389 (accessed on 1 January 2018).
- GOST 31861-2012 Water. General Requirements for Sampling. Available online: https://docs.cntd.ru/document/1200097520 (accessed on 1 January 2014).
- GOST 17.1.5.01-80 Nature Protection. Hydrosphere. General Requirements for Sampling of Bottom Sediments of Water Objects for Their Pollution Analysis. Available online: https://docs.cntd.ru/document/120001278 (accessed on 1 January 1982).
- Alekin, O.; Semenov, A.; Skopintsev, B. Guidelines for the Chemical Analysis of Land Waters; Hydrometeorological Publishing: Leningrad, Russia, 1973; p. 269. [Google Scholar]
- Vorobyeva, L.; Lopukhina, O.; Salpagarova, I.; Solvorova, O.; Andreev, D.; Ladonin, D.; Fedorova, N.; Kasatkina, G.; Glebova, G.; Rudakova, T. Theory and Practice of Chemical Analysis of Soils; GEOS: Moscow, Russia, 2006; p. 400. [Google Scholar]
- GOST 2874-82. Drinking Water. Hygienic Requirements and Quality Control. 1982. Available online: http://gostvoda.ru/d/677526/d14-gost-2874-82 (accessed on 30 September 2021).
- Arinushkina, E. Manual of Chemical Analysis of Soils; Moscow State University: Moscow, Russia, 1970; p. 491. [Google Scholar]
- Shpeyzer, G.M.; Mineeva, L.A. Guide to the Chemical Analysis of Waters: Methodical Grant; Irkutsk State University: Irkutsk, Russia, 2006; p. 55. Available online: http://window.edu.ru/catalog/pdf2txt/170/37170/14182?p_page=1 (accessed on 30 September 2021).
- GOST 31859-2012 Water. Method for Determination of Chemical Oxygen Demand; Interstate Council for Standardization, Metrology and Certification: Moscow, Russia, 2014; p. 7. [Google Scholar]
- Technical Documents for Wet Deposition Monitoring in East Asia. March 2000. Available online: http://www.eanet.asia/product/manual/prev/techwet.pdf (accessed on 30 September 2021).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Estimation of Soil and Plant Properties; Institute of Environment Protection Press: Warsaw, Poland, 1991; p. 333. [Google Scholar]
- Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf (accessed on 30 September 2021).
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Andriuk, A.; Afonin, A.; Afonina, E.; Bazarova, B.; Borzenko, S.; Vasilchuk, S.; Gorlacheva, E.; Zamana, L.; Itigilova, M.; Kuklin, A.; et al. The Cooling Reservoir of the Kharanorskaya GRES and Its Life; SB RAS Press: Novosibirsk, Russia, 2005; p. 191. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking Water Quality Recommendations; 1 (2004) 515; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- MAC. Nature Protection. Hydrosphere. Indices of State and Requlation for Valuation Survey of Tisnery Waters. Available online: https://gost.ruscable.ru/Index/33/33538.htm (accessed on 7 November 2011).
- Khazheeva, Z.I.; Plyusnin, A.M. Current state of water resources of Gusinoe Lake (Western Transbaikalia). Water Res. 2018, 45, 104–110. [Google Scholar] [CrossRef]
- Zhambalova, D.I.; Plyusnin, A.M.; Chernyavskii, M.K.; Peryazeva, E.G.; Ukraintsev, A.V. Changing the Hydrochemical Regime of Lake Gusinoe under the Influence of Coal Mining. In Water-Rock Interaction: Geological Evolution; ResearchGate: Ulan-Ude, Russia, 2020; pp. 224–226. Available online: https://www.researchgate.net/publication/346128292_CHANGING_THE_HYDROCHEMICAL_REGIME_OF_LAKE_GUSINOE_UNDER_THE_INFLUENCE_OF_COAL_MINING (accessed on 30 September 2021).
- Forstner, U. Metal concentration in freshwater sediments natural background effects. In Proceedings of the International Conference “Interaction between Sediments and Fresh Water”, The Hague, Amsterdam, 6–10 September 1977; pp. 94–103. [Google Scholar]
- Moore, J.W.; Ramamoorthy, S. Heavy Metals in Natural Waters; Springer: New York, NY, USA, 1984; p. 268. [Google Scholar]
- Chalov, S.R.; Jarsjö, J.; Kasimov, N.S.; Romanchenko, O.A.; Pietroń, J.; Thorslund, J.; Promakhova, E.V. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environ. Earth Sci. 2014, 73, 663–680. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Popovskaya, G.I.; Tomberg, I.V.; Sinyukovich, V.N.; Kravchenko, O.S.; Marinaite, I.I.; Bashenkhaeva, N.V.; Khodzher, T.V. The Selenga River water quality on the border with Mongolia at the beginning of the 21st century. Russ. Meteorol. Hydrol. 2013, 38, 126–133. [Google Scholar] [CrossRef]
- Ma, X.; Yasunari, T.; Ohata, T.; Natsagdorj, L.; Davaa, G.; Oyunbaatar, D. Hydrological regime analysis of the Selenge River basin, Mongolia. Hydrol. Process. 2003, 17, 2929–2945. [Google Scholar] [CrossRef]
- Dugarzhapova, E.V.; Tsydipov, V.T. The water quality assessment of Buryatia reservoirs on the hydrochemical and sanitary bacteriological indices. Bull. KrasSAU 2014, 4, 154–157. [Google Scholar]
- Abidueva, E.Y.; Dagurova, O.P.; Garankina, V.P.; Sambueva, G.B. Seasonal changes of the physico-chemical and microbiological parameters of Lake Gusinoe (Western Transbaikalia). BSU Bull. 2014, 3, 74–76. [Google Scholar]
- Bazarova, B.B.; Kuklin, A.P. On the current state and long-term dynamics of the flora and vegetation of Lake Gusinoe (Republic of Buryatia). Ekosistemy 2021, 25, 72–81. [Google Scholar]
- Kuklin, A.P. Filamentous Algae Lake Kenon as object for bioremediation. Int. J. Appl. Fundam. Res. 2017, 3, 85–88. [Google Scholar]
- Ivanova, E.; Anishenko, O.; Gribovskaya, I.; Zinenko, G.; Nazarenko, N.; Nemchinov, V.; Zuev, I.; Avramov, A. Metal content in higher aquatic plants in a small Siberian water reservoir. Sib. Ecol. J. 2012, 4, 485–495. [Google Scholar] [CrossRef]
- Tsybekmitova, G.T.; Kuklin, A.P.; Tashlykova, N.A.; Afonina, E.Y.; Bazarova, B.B.; Itigilova, M.T.; Gorlacheva, E.P.; Matafonov, P.V.; Afonin, A.V. Ecological state of Lake Kenon as a cooling pond of the Thermal Power Plant-1 (TPP-1) (Zabaykalsky Krai). Novosib. State Pedagog. Univ. Bull. 2017, 7, 194–209. [Google Scholar]
- Bazarova, B. The content of chemical elements in Elodea Canadensis Michx. in the water bodies of Transbaikalia. Water Chem. Ecol. 2015, 7, 43–51. [Google Scholar]
- Kuklin, A.P. Filamentous Algae of Kenon Lake: Variety, indication of water quality. Water Chem. Ecol. 2014, 74, 49–54. [Google Scholar]
- Azovskiy, M.G.; Pastuhov, M.V.; Grebenshchikova, V.I. Mercury accumulation in aqueous plants as water pollution index. Water Chem. Ecol. 2010, 8, 20–24. [Google Scholar]
Element | Determining Threshold | BIL-2 | EK-1 | ||||
---|---|---|---|---|---|---|---|
Certified | Measured | Recovery% | Certified | Measured | Recovery% | ||
Fe * | 4 | 37,700 | 33,800 | 92 | 2600 | 2580 | 99.2 |
Mn * | 0.1 | 929 | 892 | 96 | 520 | 534 | 101.9 |
Zn | 0.1 | 64 | 66 | 103 | 20.6 | 19.66 | 95.4 |
Cu | 0.1 | 18 | 17 | 94 | 11.2 | 10.83 | 96.7 |
Ni | 0.5 | 31 | 24.3 | 97 | 3.7 | 3.77 | 101.9 |
Cr | 0.2 | 158 | 160 | 101 | 5.1 | 5 | 98 |
Pb | 0.2 | 14 | 13 | 93 | - | - | - |
Parameters | Surface Water | Bottom Water | WHO Standard, 2004 [39] | Russian National Standard (MAC) [40] 2 | % of Samples Exceeding MAC | ||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Avg | Max | Min | Avg | ||||
t | 23.8 | 0.1 | 10.74 | 20.6 | 1 | 8.35 | – | – | – |
pH | 9.03 | 8.12 | 8.50 | 8.40 | 8.03 | 8.23 | 6.5–8.5 | 6.5–8.5 | 12 |
Turbidity | 5.5 | 0.41 | 2.28 | 3.66 | 0.80 | 1.62 | 5 | – | – |
DO | 15.59 | 6.28 | 11.55 | 13.6 | 7.55 | 9.45 | 5.0 | 4–6 | 0 |
TDS | 444 | 336 | 384 | 380 | 295 | 320 | 600 | 1000 | 0 |
0.049 | 0.000 | 0.005 | 0.009 | 0.001 | 0.004 | 0.08 | 0 | ||
0.938 | 0.005 | 0.224 | 0.181 | 0.001 | 056 | 50 | 40 | 0 | |
0.072 | 0.001 | 0.015 | 0.045 | 0.003 | 0.023 | 1.5 | 0.5 | 0 | |
0.025 | 0.000 | 0.007 | 0.033 | 0.004 | 013 | – | 0.05 | 0 | |
COD | 73.38 | 8.10 | 33.35 | 71.07 | 17.66 | 35.44 | 30.0 | 58 | |
3.80 | 0.65 | 2.13 | 3.57 | 0.68 | 18 | 1.5 | 0.75 | 96 | |
9.46 | 6.96 | 7.20 | 7.06 | 6.75 | 64 | 200 | 300 | 0 | |
68.47 | 48.01 | 52.44 | 57.24 | 55.79 | 56.66 | 200 | 100 | 0 | |
248.57 | 189.10 | 197.95 | 219.60 | 210.45 | 216.31 | 350 | 0 | ||
59.08 | 45.96 | 47.61 | 52.25 | 51.01 | 51.59 | 200 | 120 | 0 | |
4.67 | 2.30 | 3.31 | 4.28 | 2.78 | 3.53 | 20 | 10 | 0 | |
16.68 | 2.24 | 7.33 | 3.28 | 3.00 | 3.19 | 30 | 40 | 0 | |
36.90 | 13.26 | 19.91 | 15.33 | 14.75 | 15.04 | 75 | 180 | 0 | |
Fe | 0.146 | 0.018 | 0.012 | 0.019 | 0.001 | 0.008 | 0.3 | 0.1 | 5 |
Mn | 0.012 | 0.001 | 0.003 | 0.004 | 0.000 | 0.002 | 0.1 | 0.01 | 3 |
Zn | 0.048 | 0.000 | 0.006 | 0.032 | 0.000 | 0.004 | 4 | 0.01 | 17 |
Cu | 0.009 | 0.001 | 0.003 | 0.003 | 0.000 | 0.001 | 2 | 0.001 | 62 |
Pb | 0.009 | 0.000 | 0.002 | 0.007 | 0.000 | 0.003 | 0.01 | 0.006 | 2 |
Cd | 0.003 | 0.000 | 0.001 | 0.001 | 0.000 | 0.001 | 0.003 | 0.005 | 0 |
Ni | 0.009 | 0.000 | 0.001 | 0.002 | 0.000 | 0.001 | 0.07 | 0.01 | 0 |
Cr | 0.009 | 0.000 | 0.002 | 0.006 | 0.000 | 0.002 | 0.05 | 0.02 | 0 |
Fractions | Type | According to the American System | Corg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1–0.25 | 0.25–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | ˂0.001 | Sand ˃0.05 | Silt 0.002–0.05 | Clay ˂0.002 | |||
Coastal zone (0–10 m) | 80.0–84.0 | 6.1–10.2 | 6.4–7.5 | 0.4–2.1 | 0.5–2.4 | 0.1–0.5 | Unconsolidated sand | 93.4–97.2 | 2.5–6.5 | 0.3–1.3 | 0.07–0.84 |
Deep zone (15–25 m) | – | 9.9–29.0 | 43.3–49.5 | 10.2–15.5 | 14.6–21.4 | 2.9–3.7 | Medium loam | 10.1–29.0 | 63.5–80.0 | 7.5–9.9 | 6.01–9.58 |
Parameters μg/g | Bottom Sediments | CF | CF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Deep Zone | Coastal Zone | Clarke | Deep Zone | Coastal Zone | |||||||||
Max | Min | Avg | Max | Min | Avg | Max | Min | Avg | Max | Min | Avg | ||
Fe * | 58.0 | 27.9 | 43.9 | 12.2 | 4.5 | 8.8 | 43.5 | 1.33 | 0.64 | 1.01 | 0.28 | 0.10 | 0.20 |
Mn * | 1.16 | 0.35 | 0.85 | 0.34 | 0.89 | 0.18 | 0.75 | 1.55 | 0.47 | 1.14 | 0.46 | 0.12 | 0.25 |
Zn | 163.6 | 90.1 | 124.5 | 37.0 | 12.3 | 24.2 | 110 | 1.49 | 0.82 | 1.13 | 0.34 | 0.11 | 0.22 |
Cu | 53.7 | 15.5 | 40.5 | 8.3 | 1.1 | 3.3 | 43 | 1.25 | 0.36 | 0.94 | 0.19 | 0.03 | 0.08 |
Pb | 23.3 | 3.4 | 13.3 | 9.5 | 2.2 | 5.6 | 28 | 0.83 | 0.12 | 0.47 | 0.34 | 0.08 | 0.20 |
Cd | 1.44 | 0.02 | 0.1 | <0.01 | <0.01 | <0.01 | 0.35 | 1.23 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 |
Ni | 31.5 | 9.8 | 19.2 | 4.3 | 2.1 | 2.8 | 55 | 0.57 | 0.18 | 0.35 | 0.08 | 0.04 | 0.05 |
Cr | 61.1 | 27.2 | 42.4 | 15.6 | 2.3 | 6.8 | 96 | 0.64 | 0.28 | 0.44 | 0.16 | 0.02 | 0.07 |
Hg | 0.57 | 0.05 | 0.37 | 0.14 | 0.01 | 0.07 | 0.3 | 1.9 | 0.17 | 1.23 | 0.47 | 0.03 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radnaeva, L.D.; Bazarzhapov, T.Z.; Shiretorova, V.G.; Zhigzhitzhapova, S.V.; Nikitina, E.P.; Dylenova, E.P.; Shirapova, G.S.; Budaeva, O.D.; Beshentsev, A.N.; Garmaev, E.Z.; et al. Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES. Water 2022, 14, 4. https://doi.org/10.3390/w14010004
Radnaeva LD, Bazarzhapov TZ, Shiretorova VG, Zhigzhitzhapova SV, Nikitina EP, Dylenova EP, Shirapova GS, Budaeva OD, Beshentsev AN, Garmaev EZ, et al. Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES. Water. 2022; 14(1):4. https://doi.org/10.3390/w14010004
Chicago/Turabian StyleRadnaeva, Larisa D., Tcogto Zh. Bazarzhapov, Valentina G. Shiretorova, Svetlana V. Zhigzhitzhapova, Elena P. Nikitina, Elena P. Dylenova, Galina S. Shirapova, Olga D. Budaeva, Andrey N. Beshentsev, Endon Zh. Garmaev, and et al. 2022. "Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES" Water 14, no. 1: 4. https://doi.org/10.3390/w14010004
APA StyleRadnaeva, L. D., Bazarzhapov, T. Z., Shiretorova, V. G., Zhigzhitzhapova, S. V., Nikitina, E. P., Dylenova, E. P., Shirapova, G. S., Budaeva, O. D., Beshentsev, A. N., Garmaev, E. Z., Wang, P., Dong, S., Li, Z., & Tulokhonov, A. K. (2022). Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES. Water, 14(1), 4. https://doi.org/10.3390/w14010004