Evaluating Effects of Regulated Deficit Irrigation under Mulched on Yield and Quality of Pumpkin in a Cold and Arid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Field Management
2.4. Experimental Site
2.4.1. Pumpkin Growth Indexes
2.4.2. Yield
2.4.3. Irrigation Amount
2.4.4. Water Consumption
2.4.5. Water Use Efficiency and Irrigation Water Use Efficiency
2.5. Quality
2.5.1. Quality Index
2.5.2. Sugar-Acid Ratio
2.6. Principal Component Analysis
2.7. Statistical Analysis
3. Results
3.1. Effect of RDI on Pumpkin Traits at Harvest
3.1.1. Vine Length
3.1.2. Stem Thickness
3.2. Yield
3.3. Water Consumption, WUE and IWUE
3.3.1. Water Consumption
3.3.2. WUE
3.3.3. IWUE
3.4. Pumpkin Quality
3.4.1. Quality
3.4.2. Principal Component Analysis
3.5. Relationship between Related Indexes
3.5.1. Relationship between Yield and WUE
3.5.2. Relationship between Water Consumption and Yield
3.5.3. Relationship between Water Consumption and IWUE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loy, J.B. Morpho-Physiological Aspects of Productivity and Quality in Squash and Pumpkins (Cucurbita spp.). Crit. Rev. Plant Sci. 2004, 23, 337–363. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition 2020, 78, 110788. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Jain, S.; Tomar, R.; Prasad, G.B.K.S.; Yadav, H. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 2010, 23, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Zhang, M.; Atluri, S.C.; Chen, J.; Gilbert, R.G. Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocoll. 2020, 106, 105894. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). 2021. Available online: http://www.fao.org/faostat/zh/#data/QC (accessed on 22 December 2021).
- Mirás-Avalos, J.M.; Rubio-Asensio, J.S.; Ramírez-Cuesta, J.M.; Maestre-Valero, J.F.; Intrigliolo, D.S. Irrigation-Advisor—A Decision Support System for Irrigation of Vegetable Crops. Water 2019, 11, 2245. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Bai, J.-H.; Yan, M.-H. Problems and countermeasures of water resources for sustainable utilization in China. Chin. Geogr. Sci. 2002, 12, 289–293. [Google Scholar] [CrossRef]
- Lipan, L.; Moriana, A.; Lluch, D.B.L.; Cano-Lamadrid, M.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Corell, M.; Carbonell-Barrachina, A. Nutrition Quality Parameters of Almonds as Affected by Deficit Irrigation Strategies. Molecules 2019, 24, 2646. [Google Scholar] [CrossRef] [Green Version]
- Egea, G.; González-Real, M.M.; Baille, A.; Nortes, P.A.; Sánchez-Bel, P.; Domingo, R. The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees. Agric. Water Manag. 2009, 96, 1605–1614. [Google Scholar] [CrossRef]
- Lenton, R. Irrigation in the twenty-first century: Reflections on science, policy and society. Irrig. Drain. 2014, 63, 154–157. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Comas, L.H.; Trout, T.; DeJonge, K.C.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Martínez-Romero, A.; Domínguez, A.; Landeras, G. Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions. Agric. Water Manag. 2019, 216, 164–176. [Google Scholar] [CrossRef]
- Jha, P.K.; Kumar, S.N.; Ines, A.V. Responses of soybean to water stress and supplemental irrigation in upper Indo-Gangetic plain: Field experiment and modeling approach. Field Crop. Res. 2018, 219, 76–86. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Meléndez-Martínez, A.J.; Moriana, A.; Girón, I.F.; Martín-Palomo, M.J.; Galindo, A.; Pérez-López, D.; Torrecillas, A.; Beltrán-Sinchiguano, E.; Corell, M. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agric. Water Manag. 2019, 213, 212–221. [Google Scholar] [CrossRef]
- Ati, A.S.; Iyada, A.D.; Najim, S.M. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. Ser. 2012, 57, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Guang-Cheng, S.; Na, L.; Zhan-Yu, Z.; Shuang-En, Y.; Chang-Ren, C. Growth, yield and water use efficiency response of greenhouse-grown hot pepper under Time-Space deficit irrigation. Sci. Hortic. 2010, 126, 172–179. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.; Ciampitti, I.; Jha, P. Using crop simulation model to evaluate influence of water management practices and multiple cropping systems on crop yields: A case study for Ethiopian highlands. Field Crop. Res. 2021, 260, 108004. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
- Alrajhi, A.; Beecham, S.; Bolan, N.S.; Hassanli, A. Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production. Agric. Water Manag. 2015, 161, 127–135. [Google Scholar] [CrossRef]
- Waqas, M.S.; Cheema, M.J.M.; Hussain, S.; Ullah, M.K.; Iqbal, M.M. Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters. Agric. Water Manag. 2021, 245, 106576. [Google Scholar] [CrossRef]
- Lipan, L.; Martín-Palomo, M.J.; Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Sendra, E.; Hernández, F.; Burló, F.; Vázquez-Araújo, L.; Andreu, L.; Carbonell-Barrachina, A. Almond fruit quality can be improved by means of deficit irrigation strategies. Agric. Water Manag. 2019, 217, 236–242. [Google Scholar] [CrossRef]
- Li, M.; Du, Y.; Zhang, F.; Bai, Y.; Fan, J.; Zhang, J.; Chen, S. Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model. Agric. Water Manag. 2019, 218, 124–138. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Liu, L.; Wang, Y.; Li, Y. Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area. Agric. Water Manag. 2020, 230, 105953. [Google Scholar] [CrossRef]
- Wang, J.; Du, Y.; Niu, W.; Han, J.; Li, Y.; Yang, P. Drip irrigation mode affects tomato yield by regulating root–soil–microbe interactions. Agric. Water Manag. 2021, 260, 107188. [Google Scholar] [CrossRef]
- Elmaloglou, S.; Diamantopoulos, E. Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation. Agric. Water Manag. 2009, 96, 533–538. [Google Scholar] [CrossRef]
- Chen, W.; Jin, M.; Ferre, T.P.; Liu, Y.; Xian, Y.; Shan, T.; Ping, X. Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crop. Res. 2018, 215, 207–221. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, B.; Guo, L. Soil salinization after long-term mulched drip irrigation poses a potential risk to agricultural sustainability. Eur. J. Soil Sci. 2019, 70, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Dong, B.; Qiao, Y.; Yang, H.; Wang, Y.; Liu, M. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. Field Crop. Res. 2018, 225, 130–140. [Google Scholar] [CrossRef]
- Ghosh, P.; Dayal, D.; Bandyopadhyay, K.; Mohanty, M. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crop. Res. 2006, 99, 76–86. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crop. Res. 2006, 95, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Igbadun, H.E.; Salim, B.A.; Tarimo, A.K.P.R.; Mahoo, H.F. Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrig. Sci. 2008, 27, 11–23. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Li, F.; Deng, H.; Wang, Y.; Li, X.; Chen, X.; Liu, L.; Zhang, H. Potato growth, photosynthesis, yield, and quality response to regulated deficit drip irrigation under film mulching in a cold and arid environment. Sci. Rep. 2021, 11, 15888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Li, J. Photosynthetic physiological characteristics and water use of potato with mulched drip irrigation under water deficit in oasis region. Trans. Chin. Soc. Agric. Mach. 2013, 44, 143–151. [Google Scholar] [CrossRef]
- Howell, T.A.; Cuenca, R.H.; Solomon, K.H. Crop yield response. In Management of Farm Irrigation Systems; Trans; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990; pp. 33–59. [Google Scholar]
- Wang, Z.H.; Chen, X.J.; Lyu, D.S.; Li, W.H.; Wang, T.Y.; Wei, C.L. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation. Trans. Chin. Soc. Agric. Eng. 2020, 36, 66–75. [Google Scholar] [CrossRef]
- Barth, J.; Katumullage, D.; Yang, C.; Cao, J. Classification of Wines Using Principal Component Analysis. J. Wine Econ. 2021, 16, 56–67. [Google Scholar] [CrossRef]
- Nalliah, V.; Ranjan, R.S.; Kahimba, F. Evaluation of a plant-controlled subsurface drip irrigation system. Biosyst. Eng. 2009, 102, 313–320. [Google Scholar] [CrossRef]
- Wang, J.; Long, H.; Huang, Y.; Wang, X.; Cai, B.; Liu, W. Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation. Agric. Water Manag. 2019, 224, 105743. [Google Scholar] [CrossRef]
- Aragüés, R.; Medina, E.; Martínez-Cob, A.; Faci, J. Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard. Agric. Water Manag. 2014, 142, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.L.; Zhang, H.J.; Li, F.Q. Growth photosynthetic characteristics and quality of Isatis indica in Hexi Oasis in response to deficit regulation under film drip irrigation. J. Soil Water Conserv. 2018, 32, 321–327. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Gucci, R.; D’Onofrio, C. The effect of regulated deficit irrigation on growth, yield, and berry quality of grapevines (cv. Sangiovese) grafted on rootstocks with different resistance to water deficit. Irrig. Sci. 2022, 40, 1–15. [Google Scholar] [CrossRef]
- Cui, N.; Du, T.; Kang, S.; Li, F.; Zhang, J.; Wang, M.; Li, Z. Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees. Agric. Water Manag. 2008, 95, 489–497. [Google Scholar] [CrossRef]
- Peng, X.; Li, J.; Sun, L.; Gao, Y.; Cao, M.; Luo, J. Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction. Chemosphere 2022, 294, 133842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, S.; Jia, S.; Du, F.; Qi, H.; Li, J.; Song, X.; Zhao, N.; Nie, L.; Fan, F. Precise soil water control using a negative pressure irrigation system to improve the water productivity of greenhouse watermelon. Agric. Water Manag. 2021, 258, 107144. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Giner, A.; Baixauli, C.; Pascual, B. Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agric. Water Manag. 2019, 212, 99–110. [Google Scholar] [CrossRef]
- Yavuz, D.; Yavuz, N.; Seymen, M.; Türkmen, Ö. Evapotranspiration, crop coefficient and seed yield of drip irrigated pumpkin under semi-arid conditions. Sci. Hortic. 2015, 197, 33–40. [Google Scholar] [CrossRef]
- Yavuz, D.; Seymen, M.; Yavuz, N.; Çoklar, H.; Ercan, M. Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon. Agric. Water Manag. 2021, 246, 106673. [Google Scholar] [CrossRef]
- Chen, F.; Cui, N.; Jiang, S.; Li, H.; Wang, Y.; Gong, D.; Hu, X.; Zhao, L.; Liu, C.; Qiu, R. Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China. Agric. Water Manag. 2022, 262, 107407. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhang, R.; Li, J.; Zhang, M.; Zhou, S.; Wang, Z. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Sci. Total Environ. 2018, 618, 112–120. [Google Scholar] [CrossRef]
- Sharma, S.P.; Leskovar, D.I.; Crosby, K.M.; Volder, A.; Ibrahim, A. Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation. Agric. Water Manag. 2014, 136, 75–85. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Semida, W.M. Effect of deficit irrigation and growing seasons on plant water status, fruit yield and water use efficiency of squash under saline soil. Sci. Hortic. 2015, 186, 89–100. [Google Scholar] [CrossRef]
- Jian, Z.; Huan-Jie, C.A.I.; Xin-Ming, C.H.E.N.; Jian, W.A.N.G. Effect of regulated deficit irrigation on water use efficiency and fruit quality of mini-watermelon in greenhouse. J. Nucl. Agric. Sci. 2009, 23, 159. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.; Qiu, R.; Chen, J.; Wang, F.; Li, Y.; Wang, C.; Gao, L.; Kang, S. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 179, 193–204. [Google Scholar] [CrossRef]
- Yavuz, N. Can grafting affect yield and water use efficiency of melon under different irrigation depths in a semi-arid zone? Arab. J. Geosci. 2021, 14, 1118. [Google Scholar] [CrossRef]
- Wang, R.; Chen, C.; Guo, S. Effects of drying methods on starch crystallinity of gelatinized foxtail millet (α-millet) and its eating quality. J. Food Eng. 2017, 207, 81–89. [Google Scholar] [CrossRef]
Treatment | Water Deficit Timing | Water Deficit Severity | Seedling Stage | Vine Extension Stage | Fruit Expansion Stage | Maturation Stage |
---|---|---|---|---|---|---|
CK | N/A | None | 75–~85% | 75–85% | 75–85% | 75–85% |
LFFF | Seedling stage | Light | 65–75% | 75–85% | 75–85% | 75–85% |
FLFF | Vine extension stage | Light | 75–85% | 65–75% | 75–85% | 75–85% |
FFLF | Fruit expansion stage | Light | 75–85% | 75–85% | 65–75% | 75–85% |
FFFL | Maturation stage | Light | 75–85% | 75–85% | 75–85% | 65–75% |
MFFF | Seedling stage | Moderate | 55–65% | 75–85% | 75–85% | 75–85% |
FMFF | Vine extension stage | Moderate | 75–85% | 55–65% | 75–85% | 75–85% |
FFMF | Fruit expansion stage | Moderate | 75–85% | 75–85% | 55–65% | 75–85% |
FFFM | Maturation stage | Moderate | 75–85% | 75–85% | 75–85% | 55–65% |
Year | Treatment | Irrigation Volume | Water Consumption | Yield | Water Use Efficiency | Irrigation Water Use Efficiency |
---|---|---|---|---|---|---|
(m3·ha−1) | (m3·ha−1) | (kg·ha−1) | (kg·m−3) | (kg·m−3) | ||
2020 | CK | 2568.79 a | 4049.72 a | 46,266.90 a | 11.42b c | 18.01 e |
LFFF | 2180.14 bc | 3643.81 ab | 45,066.89 ab | 12.37 a | 20.67 ab | |
FLFF | 2359.83 ab | 3687.75 ab | 42,900.21 bc | 11.63 ab | 18.18 de | |
FFLF | 2095.08 bcd | 3502.99 bc | 41,200.21 c | 11.76 ab | 19.67 bcd | |
FFFL | 2204.47 b | 3647.57 ab | 43,900.22 abc | 12.04 ab | 19.91 bc | |
MFFF | 2085.08 bcd | 3492.99 bc | 41,266.87 c | 11.81 ab | 19.79 bc | |
FMFF | 1804.65 de | 3205.06 c | 34,300.17 d | 10.70 cd | 19.01 cde | |
FFMF | 1639.46 e | 3053.21 c | 32,250.16 d | 10.56 d | 19.67 bcd | |
FFFM | 1885.16 cde | 3522.72 b | 41,400.21 c | 11.75 ab | 21.96 a | |
2021 | CK | 3235.77 a | 4118.64 a | 47,150.24 a | 11.45 b | 14.57 e |
LFFF | 2619.76 c | 3729.39 bc | 46,866.90 a | 12.57 a | 17.89 b | |
FLFF | 2998.66 b | 3797.07 b | 43,266.88 bc | 11.39 b | 14.43 e | |
FFLF | 2575.37 c | 3524.74 cde | 41,200.21 c | 11.69 ab | 16.00 d | |
FFFL | 2804.92 bc | 3652.41 bcd | 45,733.56 ab | 12.52 a | 16.30 cd | |
MFFF | 2316.95 d | 3426.16 def | 40,500.20 c | 11.82 ab | 17.48 bc | |
FMFF | 2284.00 d | 3362.43 def | 37,450.19 d | 11.14 b | 16.40 cd | |
FFMF | 1932.87 e | 3180.53 f | 30,400.15 e | 9.56 d | 15.73 d | |
FFFM | 1975.52 e | 3473.86 cde | 41,530.21 c | 11.96 ab | 21.02 a | |
Average | CK | 2902.28 a | 4084.18 a | 46,708.57 a | 11.44 bc | 16.29 d |
LFFF | 2399.95 cd | 3686.60 b | 45,966.90 ab | 12.47 a | 19.28 b | |
FLFF | 2679.24 ab | 3742.41 b | 43,083.55 bc | 11.51 bc | 16.30 d | |
FFLF | 2335.22 cd | 3513.87 bc | 41,200.21 c | 11.73 abc | 17.83 c | |
FFFL | 2504.69 bc | 3649.99 b | 44,816.89 ab | 12.28 ab | 18.11 bc | |
MFFF | 2201.01 de | 3459.57 bc | 40,883.54 c | 11.82 ab | 18.64 bc | |
FMFF | 2044.32 ef | 3283.74 cd | 35,875.18 d | 10.92 c | 17.70 c | |
FFMF | 1786.16 f | 3116.87 d | 31,325.16 e | 10.06 d | 17.70 c | |
FFFM | 1930.34 f | 3498.29 bc | 41,465.21 c | 11.85 ab | 21.49 a |
Years | Treatment | Soluble Sugar | Organic Acid | Protein | Vitamin C | Soluble | Ratio of Sugar to Acid |
---|---|---|---|---|---|---|---|
Solids | |||||||
(g/100 g) | (g/100 g) | (g/100 g) | (mg/100 g) | (%) | |||
2020 | CK | 7.81 de | 0.21 cd | 1.06 e | 21.03 de | 10.61 cd | 37.99 ab |
LFFF | 7.78 de | 0.20 d | 1.12 de | 21.77 cd | 11.24 c | 39.20 ab | |
FLFF | 7.80 de | 0.21 bcd | 1.03 e | 21.28 de | 10.75 cd | 36.45 a | |
FFLF | 8.12 cd | 0.23 bc | 1.32 ab | 23.82 b | 11.42 d | 36.03 ab | |
FFFL | 8.31 bc | 0.23 ab | 1.33 ab | 22.36 c | 12.49 b | 36.06 ab | |
MFFF | 7.62 e | 0.22 bcd | 1.23 bc | 20.33 e | 11.23 c | 34.76 ab | |
FMFF | 7.61 e | 0.22 bcd | 1.15 cd | 22.36 c | 10.22 d | 34.83 b | |
FFMF | 8.68 ab | 0.23 ab | 1.37 a | 24.09 ab | 13.08 ab | 38.11 ab | |
FFFM | 8.89 a | 0.25 a | 1.41 a | 24.91 a | 13.58 a | 35.86 b | |
2021 | CK | 6.47 c | 0.23 cd | 0.85 d | 19.57 d | 10.35 e | 27.87 ab |
LFFF | 6.54 c | 0.22 d | 1.08 bc | 20.11 cd | 10.79 de | 30.39 a | |
FLFF | 6.31 cd | 0.24 bcd | 0.96 cd | 20.12 cd | 10.27 e | 26.68 bc | |
FFLF | 6.49 c | 0.24 bc | 1.22 ab | 22.43 ab | 11.87 bc | 26.71 bc | |
FFFL | 6.86 b | 0.26 abc | 1.33 a | 21.62 bc | 12.43 b | 26.66 bc | |
MFFF | 6.29 cd | 0.24 bcd | 1.01 c | 18.88 d | 11.38 cd | 26.86 b | |
FMFF | 6.12 d | 0.26 ab | 0.82 d | 22.13 ab | 10.12 e | 23.59 c | |
FFMF | 7.11 ab | 0.24 bc | 1.28 a | 21.43 bc | 12.41 b | 29.37 ab | |
FFFM | 7.37 a | 0.27 a | 1.36 a | 23.31 a | 13.28 a | 26.93 b | |
Average | CK | 7.14 de | 0.22 de | 0.96 d | 20.30 de | 10.48 de | 32.62 ab |
LFFF | 7.16 de | 0.21 e | 1.10 c | 20.94 d | 11.02 cd | 34.56 a | |
FLFF | 7.06 de | 0.23 cd | 1.00 d | 20.70 d | 10.51 de | 31.32 b | |
FFLF | 7.31 cd | 0.23 bc | 1.27 b | 23.13 b | 11.65 c | 31.16 b | |
FFFL | 7.59 bc | 0.24 b | 1.33 ab | 21.99 c | 12.46 b | 31.05 b | |
MFFF | 6.96 e | 0.23 cd | 1.12 c | 19.61 e | 11.31 c | 30.66 bc | |
FMFF | 6.87 e | 0.24 bc | 0.99 d | 22.25 bc | 10.17 e | 28.71 c | |
FFMF | 7.90 ab | 0.24 bc | 1.33 ab | 22.76 bc | 12.75 b | 33.56 a | |
FFFM | 8.13 a | 0.26 a | 1.39 a | 24.11 a | 13.43 a | 31.13 b |
Indicator Variables | Factor Loading | |
---|---|---|
Primary Principal Component | Secondary Principal Component | |
Soluble sugar X1 | 0.935 | 0.276 |
Organic acid X2 | 0.846 | −0.507 |
Protein X3 | 0.939 | 0.156 |
Vitamin C X4 | 0.857 | −0.204 |
Soluble solids X5 | 0.951 | 0.211 |
Ratio of sugar to acid X6 | −0.001 | 0.989 |
Characteristic values | 4.112 | 1.421 |
Variance contribution/% | 68.529 | 23.683 |
Cumulative/% contribution rates/% | 68.529 | 92.212 |
Treatments | Composite Scores | Comprehensive Ranking |
---|---|---|
CK | −0.62 | 7 |
LFFF | −0.11 | 5 |
FLFF | −0.69 | 8 |
FFLF | 0.19 | 4 |
FFFL | 0.50 | 3 |
MFFF | −0.59 | 6 |
FMFF | −0.94 | 9 |
FFMF | 0.98 | 2 |
FFFM | 1.27 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, H.; Li, F.; Deng, H.; Wang, Z.; Chen, X. Evaluating Effects of Regulated Deficit Irrigation under Mulched on Yield and Quality of Pumpkin in a Cold and Arid Climate. Water 2022, 14, 1563. https://doi.org/10.3390/w14101563
Li X, Zhang H, Li F, Deng H, Wang Z, Chen X. Evaluating Effects of Regulated Deficit Irrigation under Mulched on Yield and Quality of Pumpkin in a Cold and Arid Climate. Water. 2022; 14(10):1563. https://doi.org/10.3390/w14101563
Chicago/Turabian StyleLi, Xuan, Hengjia Zhang, Fuqiang Li, Haoliang Deng, Zeyi Wang, and Xietian Chen. 2022. "Evaluating Effects of Regulated Deficit Irrigation under Mulched on Yield and Quality of Pumpkin in a Cold and Arid Climate" Water 14, no. 10: 1563. https://doi.org/10.3390/w14101563
APA StyleLi, X., Zhang, H., Li, F., Deng, H., Wang, Z., & Chen, X. (2022). Evaluating Effects of Regulated Deficit Irrigation under Mulched on Yield and Quality of Pumpkin in a Cold and Arid Climate. Water, 14(10), 1563. https://doi.org/10.3390/w14101563