Genesis of Geothermal Waters in Suichuan County, China: An Integrated Method Constrained by the Hydrochemical and Isotopic Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Investigation
2.3. Data Processing
2.3.1. Experimental Analysis
2.3.2. Geothermometry
- (1)
- Quartz geothermometer: TSiO2 = [1309/(5.19 − lgS)] − 273.15 and
- (2)
- Chalcedony geothermometer: TSiO2 = [1032/(4.69 – lgS)] – 273.15 [23];
- (3)
- Improved SiO2 geothermometer: TSiO2 =–44.119 + 0.24469S – 1.7414 × 10–4 + 79.305lgS [24];
- (4)
- K-Mg: TK-Mg = 4410/[14 – lg(k2/Mg)] – 273.15 and
- (5)
- Na-K: TNa-K = 1390/[1.75 – lg(Na/K)] – 273.15 [25];
- (6)
- Na-Li: 1049/[lg(Na/Li) + 0.44] – 273.15 [26];
- (7)
- Na-K-Ca-Mg: 14920/[3lg(Na/K) + 3lg(Ca/Na2) – lg(Mg/Na) + 40.91] – 273.15 [27]. S denotes the concentration of SiO2. All of the concentrations are in mg/L.
2.3.3. Depth of Circulation
2.3.4. Recharge Altitude and Annual Air Temperature (Average)
3. Results
3.1. Physicochemical Characteristics
3.2. Geothermometry and Reservoir Temperature
3.3. Stable Isotope Composition
3.4. Saturation Indices
4. Discussion
4.1. Hydrochemical Characteristics of Thermal and Non-Thermal Groundwater
4.2. Isotopes of H and O and Origin of Thermal Groundwaters
4.3. Reservior Temperature
4.4. Mineral Saturation Dynamics
4.5. Circulation Mechanism and Genetic Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Glover, R.B. Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field, New Zealand. Geothermics 1992, 21, 121–140. [Google Scholar] [CrossRef]
- Craw, D.; Chamberlain, C.P.; Zeitler, P.K.; Koons, P.O. Geochemistry of a dry steam geothermal zone formed during rapid uplift of Nanga Parbat, northern Pakistan. Chem. Geol. 1997, 142, 11–22. [Google Scholar] [CrossRef]
- Xilai, Z.; Armannsson, H.; Yongle, L.; Hanxue, Q. Chemical equilibria of thermal waters for the application of geothermometers from the Guanzhong basin, China. J. Volcanol. Geotherm. Res. 2002, 113, 119–127. [Google Scholar] [CrossRef]
- Deng, Y.; Nordstrom, D.K.; McCleskey, R.B. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation. Geochim. Cosmochim. Acta 2011, 75, 4476–4489. [Google Scholar] [CrossRef]
- Bouchaou, L.; Warner, N.R.; Tagma, T.; Hssaisoune, M.; Vengosh, A. The origin of geothermal waters in Morocco: Multiple isotope tracers for delineating sources of water-rock interactions. Appl. Geochem. 2017, 84, 244–253. [Google Scholar] [CrossRef]
- Pasvanoğlu, S. Genesis of thermal waters from the Taşkesti-Sarıot geothermal prospect in Mudurnu (Bolu, NW Turkey). Geothermics 2021, 96, 102199. [Google Scholar] [CrossRef]
- Oyuntsetseg, D.; Ganchimeg, D.; Minjigmaa, A.; Ueda, A.; Kusakabe, M. Isotopic and chemical studies of hot and cold springs in western part of Khangai Mountain region, Mongolia, for geothermal exploration. Geothermics 2015, 53, 488–497. [Google Scholar] [CrossRef]
- Xun, Z.; Bin, F.; Haiyan, Z.; Juan, L.; Ying, W. Isotopes of deuterium and oxygen-18, in thermal groundwater in China. Environ. Geol. 2009, 57, 1807–1814. [Google Scholar] [CrossRef]
- Aydin, H.; Karaku, H.; Mutlu, H.; Karakuş, H.; Mutlu, H. Hydrogeochemistry of geothermal waters in eastern Turkey: Geochemical and isotopic constraints on water-rock interaction. J. Volcanol. Geotherm. Res. 2020, 390, 106708. [Google Scholar] [CrossRef]
- Huang, C.S.; Hou, B.Q.; Yi, C.Y.; Li, L.; Zhang, S.N.; Zhou, Y.; Waseem, A.; Wang, F.T. Discussion on the formation conditions of geothermal water in southern Jiangxi province and the target area of geothermal water exploration in Ganxian district. South China Geol. 2021, 37, 64–74. (in Chinese). [Google Scholar] [CrossRef]
- Ahmad, M.; Rafiq, M.; Iqbal, N.; Akram, W.; Tasneem, M.A.; Ali, M. Investigation of major geothermal fields of Pakistan using isotope and chemical techniques. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Zhang, Y.; Zhou, X.; Liu, H.; Yu, M.; Hai, K.; Tan, M.; Huo, D. Hydrogeochemistry, geothermometry, and genesis of the hot springs in the Simao Basin in southwestern China. Geofluids 2019, 2019, 7046320. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Cheng, Q.; Xie, S.; Wang, J.; Chang, L.; Yu, Q.; Zhan, Z.; Chen, F. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China. J. Hydrol. 2017, 549, 50–61. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, Y.; Wang, Z.; Regenauer-Lieb, K.; Zhang, K.; Liu, J. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China. J. Hydrol. 2018, 567, 339–350. [Google Scholar] [CrossRef]
- Wang, G.; Li, K.; Wen, D.; Lin, W.; Lin, L.; Liu, Z.; Zhang, W.; Ma, F.; Wang, W. Assessment of geothermal resources in China. In Proceedings of the Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 11–13 February 2013. [Google Scholar]
- Zhang, X.; Hu, Q. Development of geothermal resources in China: A review. J. Earth Sci. 2018, 29, 452–467. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Z.; Ford, D.; Zhao, M.; Bao, Q.; Zeng, C.; Gong, X.; Wei, Y.; Cai, X.; Chen, J. Conservation of oxygen and hydrogen seasonal isotopic signals in meteoric precipitation in groundwater: An experimental tank study of the effects of land cover in a summer monsoon climate. Geochim. Cosmochim. Acta 2020, 284, 254–272. [Google Scholar] [CrossRef]
- Zhao, X.; Wan, G. Current situation and prospect of China’s geothermal resources. Renew. Sustain. Energy Rev. 2014, 32, 651–661. [Google Scholar] [CrossRef]
- Borzenko, S.V.; Zippa, E.V. Isotopic composition and origin of sulfide and sulfate species of sulfur in thermal waters of Jiangxi Province (China). Aquat. Geochem. 2019, 25, 49–62. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Denver, CO, USA, 2013; p. 497. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, groundwater and pollution. Geochem. Groundw. Pollut. 1993, 58, 1212. [Google Scholar] [CrossRef]
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1977, 5, 41–50. [Google Scholar] [CrossRef]
- Verma, S.P.; Santoyo, E. New improved equations for Na/K, Na/Li and SiO2, geothermometers by outlier detection and rejection. J. Volcanol. Geotherm. Res. 1997, 79, 9–23. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Fouillac, C.; Michard, G. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 1981, 10, 55–70. [Google Scholar] [CrossRef]
- Nieva, D.; Nieva, R. Developments in geothermal energy in Mexico-part twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Recovery Syst. CHP 1987, 7, 243–258. [Google Scholar] [CrossRef]
- Yang, P.; Dan, L.; Groves, C.; Xie, S. Geochemistry and genesis of geothermal well water from a carbonate—Evaporite aquifer in Chongqing, SW China. Environ. Earth Sci. 2019, 78, 1–14. [Google Scholar] [CrossRef]
- Moxiang, C.; Yiyang, W. Formation characteristics and potential assessment. In Geothermal Resources in China; Science Press: Beijing, China, 1994. [Google Scholar]
- Shvartsev, S.L.; Sun, Z.; Borzenko, S.V.; Gao, B.; Tokarenko, O.G.; Zippa, E.V. Geochemistry of the thermal waters in Jiangxi Province, China. Appl. Geochem. 2018, 96, 113–130. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Vaselli, O.; Muchez, P.; Claes, H.; Capezzuoli, E.; Swennen, R. Hydrogeochemistry, stable isotope composition and geothermometry of CO2-bearing hydrothermal springs from Western Iran: Evidence for their origin, evolution and spatio-temporal variations. Sediment. Geol. 2020, 404, 105676. [Google Scholar] [CrossRef]
- Nagarajan, R.; Rajmohan, N.; Mahendran, U.; Senthamilkumar, S. Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environ. Monit. Assess. 2010, 171, 289–308. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Akram, W.; Hussain, S.D.; Sajjad, M.I.; Zafar, M.S. Origin and subsurface history of geothermal water of Murtazabad area, Pakistan—An isotopic evidence. Appl. Radiat. Isot. 2001, 55, 731–736. [Google Scholar] [CrossRef]
- Alam, B.Y.C.S.S.S.; Itoi, R.; Taguchi, S.; Saibi, H.; Yamashiro, R. Hydrogeochemical and isotope characterization of geothermal waters from the Cidanau geothermal field, West Java, Indonesia. Geothermics 2019, 78, 62–69. [Google Scholar] [CrossRef]
- Hussain, S.D.; Ahmad, M.; Sajjad, M.I.; Akram, W.; Ahmad, N.; Tasneem, M.A.; Rafiq, M. Isotopic and Chemical Studies of Geothermal Waters of Northern Areas of Pakistan; Pakistan Institute of Nuclear Science and Technology: Nilore, Pakistan, 1994; Volume 52, pp. 127–147. [Google Scholar]
- Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H. Isotopic and chemical composition of Parbati valley geothermal discharges, north-west Himalaya, India. Geothermics 1983, 12, 199–222. [Google Scholar] [CrossRef]
- Apollaro, C.; Vespasiano, G.; de Rosa, R.; Marini, L. Use of mean residence time and flowrate of thermal waters to evaluate the volume of reservoir water contributing to the natural discharge and the related geothermal reservoir volume. Application to Northern Thailand hot springs. Geothermics 2015, 58, 62–74. [Google Scholar] [CrossRef]
- Vespasiano, G.; Marini, L.; Muto, F.; Auqué, L.F.; Cipriani, M.; de Rosa, R.; Critelli, S.; Gimeno, M.J.; Blasco, M.; Dotsika, E.; et al. Chemical, isotopic and geotectonic relations of the warm and cold waters of the Cotronei (Ponte Coniglio), Bruciarello and Repole thermal areas, (Calabria—Southern Italy). Geothermics 2021, 96, 102228. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Z.; Wang, T.; Zhou, G.; Martin, J.B.; Zhang, L. Origins and mixing contributions of deep warm groundwater in a carbonate- hosted ore deposit, Sichuan-Yunnan-Guizhou Pb-Zn triangle, southwestern China. J. Hydrol. 2020, 590, 125400. [Google Scholar] [CrossRef]
- Hem, J.D. Study and interpretation of the chemical characteristics of natural water. In US Geological Survey Water-Supply Paper 2254; US Geological Survey: Washington, DC, USA, 1985. [Google Scholar]
- Mao, X.; Zhu, D.; Ndikubwimana, I.; He, Y.; Shi, Z. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes. J. Hydrol. 2021, 593, 125889. [Google Scholar] [CrossRef]
- Millot, R.; Hegan, A.; Négrel, P. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization. Appl. Geochem. 2012, 27, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Stelling, P.; Shevenell, L.; Hinz, N.; Coolbaugh, M.; Melosh, G.; Cumming, W. Geothermal systems in volcanic arcs: Volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide. J. Volcanol. Geotherm. Res. 2016, 324, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, G.; Lu, C.; Gan, H.; Liu, Z. Evolution of deep parent fluids of geothermal fields in the Nimu–Nagchu geothermal belt, Tibet, China. Geothermics 2018, 71, 118–131. [Google Scholar] [CrossRef]
- Mwiathi, N.F.; Gao, X.; Li, C.; Rashid, A. The occurrence of geogenic fluoride in shallow aquifers of Kenya Rift Valley and its implications in groundwater management. Ecotoxicol. Environ. Saf. 2022, 229, 113046. [Google Scholar] [CrossRef]
- Rashid, A.; Guan, D.; Farooqi, A.; Khan, S.; Zahir, S.; Jehan, S. Science of the total environment fluoride prevalence in groundwater around a fl uorite mining area in the fl ood plain of the River Swat, Pakistan. Sci. Total Environ. 2018, 635, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Jacks, G. Controls on the genesis of some high-fluoride groundwaters in India. Appl. Geochem. 2005, 20, 221–228. [Google Scholar] [CrossRef]
- Noor, S.; Rashid, A.; Javed, A.; Khattak, J.A.; Farooqi, A. Hydrogeological properties, sources provenance, and health risk exposure of fluoride in the groundwater of Batkhela, Pakistan. Environ. Technol. Innov. 2022, 25, 102239. [Google Scholar] [CrossRef]
- Carroll, D. Rainwater as a Chemical Agent of Geologic Processes—A Review. U.S. Geol. Surv. Water-Supply Pap. 1962, 1535, 1–18. [Google Scholar]
- Pradhan, B. Hydro-chemical analysis of the ground water of the basaltic catchments: Upper Bhatsai region, Maharastra. Open Hydrol. J. 2011, 4, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Sun, Z.; Gao, B.; Shvartsev, S.; Tokarenko, O.; Zippa, E. The thermal water geochemistry in Jiangxi Province (SE-China). Procedia Earth Planet. Sci. 2017, 17, 940–943. [Google Scholar] [CrossRef]
- Wei, Z.A.; Shao, H.; Tang, L.; Deng, B.; Li, H.; Wang, C. Hydrogeochemistry and geothermometry of geothermal waters from the Pearl River Delta region, South China. Geothermics 2021, 96, 102164. [Google Scholar] [CrossRef]
- Thomas, J.M.; Rose, T.P. Environmental isotopes in hydrogeology. Environ. Earth Sci. 2003, 43, 532. [Google Scholar] [CrossRef]
- Ahmad, M.; Tasneem, M.A.; Akram, W.; Hussain, S.D.; Zafar, M.S.; Sajjad, M.I. Isotopic investigations of Tatta Pani and Tato thermal springs: Insights to their origin, age and subsurface history. JSNM (Nucl. Sci. J. Malays.) 2000, 18, 1–16. [Google Scholar]
- Li, X.; Qi, J.; Yi, L.; Xu, M.; Zhang, X.; Zhang, Q.; Tang, Y. Hydrochemical characteristics and evolution of geothermal waters in the eastern Himalayan syntaxis geothermal field, southern Tibet. Geothermics 2021, 97, 102233. [Google Scholar] [CrossRef]
- Ndikubwimana, I.; Mao, X.; Zhu, D.; He, Y.; Shi, Z. Geothermal evolution of deep parent fluid in Western Guangdong, China: Evidence from water chemistry, stable isotopes and geothermometry. Hydrogeol. J. 2020, 28, 2947–2961. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Marini, L. Theoretical geothermometers and PCO2, indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks. Application to the thermal springs of the Etruscan Swell, Italy. Appl. Geochem. 1995, 10, 337–346. [Google Scholar] [CrossRef]
- Abdelali, A.; Nezli, I.E.; Kechiched, R.; Attalah, S.; Benhamida, S.A.; Pang, Z. Geothermometry and geochemistry of groundwater in the Continental Intercalaire aquifer, southeastern Algeria: Insights from cations, silica and SO4–H2O isotope geothermometers. Appl. Geochem. 2020, 113, 104492. [Google Scholar] [CrossRef]
- Li, J.; Sagoe, G.; Li, Y. Geothermics applicability and limitations of potassium-related classical geothermometers for crystalline basement reservoirs. Geothermics 2019, 84, 101728. [Google Scholar] [CrossRef]
- Ndikubwimana, I.; Mao, X.; Niyonsenga, J.D.; Zhu, D.; Mwizerwa, S. Water-rock interaction, formation and circulation mechanism of highly bicarbonate groundwater in the northwestern geothermal prospects of Rwanda. Episodes 2022, 45, 73–86. [Google Scholar] [CrossRef]
- Peikam, E.N.; Jalali, M. Application of inverse geochemical modelling for predicting surface water chemistry in Ekbatan watershed, Hamedan, western Iran. Hydrol. Sci. J. 2016, 61, 1124–1134. [Google Scholar] [CrossRef] [Green Version]
- Apollaro, C.; Caracausi, A.; Paternoster, M.; Randazzo, P.; Aiuppa, A.; de Rosa, R.; Fuoco, I.; Mongelli, G.; Muto, F.; Vanni, E.; et al. Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern Apennines chain (Italy). J. Geochem. Explor. 2020, 219, 106618. [Google Scholar] [CrossRef]
- Shahid, S.A.; Taha, F.K.; Abdelfattah, M.A. Developments in soil classification, land use planning and policy implications. In Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Pastorelli, S.; Marini, L.; Hunziker, J.C. Water chemistry and isotope composition of the Acquarossa thermal system, Ticino, Switzerland. Geothermics 1999, 28, 75–93. [Google Scholar] [CrossRef]
- Peckmann, J.; Thiel, V.; Michaelis, W.; Clari, P.; Gaillard, C.; Martire, L.; Reitner, J. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): Microbially induced authigenic carbonates. Int. J. Earth Sci. 1999, 88, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Santhanam, H.; Karthikeyan, A.; Raja, M. Saturation indices of aqueous mineral phases as proxies of seasonal dynamics of a transitional water ecosystem using a geochemical modeling approach. Modeling Earth Syst. Environ. 2021, 7, 1813–1829. [Google Scholar] [CrossRef]
- Datta, P.S.; Tyagi, S.K. Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. J. Geol. Soc. India 1996, 47, 179–188. [Google Scholar]
- Brodsky, E.E.; Xue, L.; Nale, S.M.; Parker, B.L.; Cherry, J.A. Situ permeability: A comparison with long-term pumping tests. Water Resour. Res. 2016, 3113–3126. [Google Scholar] [CrossRef]
- Anderson, T.R.; Fairley, J.P. Relating permeability to the structural setting of a fault-controlled hydrothermal system in southeast Oregon, USA. J. Geophys. Res. Solid Earth 2008, 113, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Wang, Y.; Zhan, H.; Feng, L. Geochemical and isotopic characteristics of geothermal springs hosted by deep-seated faults in Dongguan Basin, Southern China. J. Geochem. Explor. 2015, 158, 112–121. [Google Scholar] [CrossRef]
- Kim, Y.S.; Sanderson, D.J. Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves. J. Struct. Geol. 2010, 32, 1305–1316. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, X.; Wang, J.; Li, X.; Liu, H. Occurrence, genesis and travertine deposition of the Adong hot springs in northwestern Yunnan of China. Geothermics 2020, 87, 101851. [Google Scholar] [CrossRef]
- Zhu, Z.-X. Hot spring in the Reshuizhou region of Jiangxi Province. Geol. Miner. Resour. South China 2007, 3, 63–69. (In Chinese) [Google Scholar]
- Xiao, Z.-Y.; Wang, J.; Hou, H.-M. Analysis of characteristics and causes of geothermal water in the east of Southern Jiangxi Province. J. East China Univ. Technol. 2018, 41, 251–261. (In Chinese) [Google Scholar] [CrossRef]
- Agosta, F.; Kirschner, D.L. Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. J. Geophys. Res. Solid Earth 2003, 108, 1–13. [Google Scholar] [CrossRef]
- Curewitz, D.; Karson, J.A. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. J. Volcanol. Geotherm. Res. 1997, 79, 149–168. [Google Scholar] [CrossRef]
- Bense, V.F.; Gleeson, T.; Loveless, S.E.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth-Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
- Farhat, N.; Hussain, S.; Faisal, F.; Batool, I.; Noreen, M. Physico-chemical characteristics and therapeutic potential of Chutrun thermal springs in Shigar Valley, Gilgit-Baltistan (Pakistan). Appl. Water Sci. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Pérez-Moreno, R.; Reich, M.; Daniele, L.; Morata, D.; Held, S.; Kleinsasser, J. Stable isotope and anthropogenic tracer signature of waters in an Andean geothermal system. Appl. Geochem. 2021, 128, 104953. [Google Scholar] [CrossRef]
Sample ID | Depth (m) | EC µS/cm | T (°C) | pH | TDS | K+ | Na+ | Ca2+ | Mg2+ | HCO3− | SO42− | Cl− | NO3− | F− | CBE% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZM-1 Thermal well | 285 | 333 | 41 | 9.6 | 199.55 | 2.11 | 59.83 | 0.88 | 0.02 | 47.46 | 24.05 | 6.3 | 0.1 | 13.4 | 11 |
XZK-1 Thermal well | 240 | 289 | 39 | 7.24 | 173.59 | 4.05 | 19.51 | 19.37 | 0.66 | 80 | 14.46 | 1.77 | 0.12 | 7.52 | −2 |
TH-1Thermal well | 297 | 400 | 80 | 7.52 | 240.27 | 2.63 | 63.49 | 4.44 | 0.03 | 119 | 12.87 | 4.19 | 0.16 | 12.9 | 0 |
GYZL06-1 Thermal well | 519 | 169 | 42 | 6.65 | 101.52 | 3.48 | 12.39 | 7.02 | 0.3 | 40.68 | 3.77 | 0.44 | 0.82 | 2.1 | 6 |
RSZ01-1 Thermal well | 321 | 200 | 62 | 7.72 | 120.24 | 3.58 | 7.52 | 9.86 | 1.01 | 53.76 | 6 | 11.5 | 0.5 | 4.48 | −22 |
RSZ04-1 Thermal well | 321 | 283 | 72 | 9.02 | 169.66 | 5.15 | 12.81 | 11.93 | 1.19 | 53.76 | 8 | 12.2 | 0.5 | 0.04 | 0 |
LX-1 Cold well | 340 | 134 | 23 | 6.95 | 80.69 | 3.47 | 3.48 | 9.93 | 2.46 | 33.9 | 6.2 | 0.27 | 0.36 | 5.3 | −1 |
RSZ02-1 Cold well | 321 | 212 | 20 | 6.92 | 127.2 | 3.53 | 2.6 | 14.02 | 4.68 | 49.39 | 2 | 3.28 | 3.25 | 5.6 | 0 |
RSZ 01 River water | ND | 92 | 20 | 6.88 | 55.3 | 0.81 | 3.29 | 3.55 | 0.41 | 26.15 | 2 | 3.75 | 3.5 | 0.26 | −26 |
RSZ 02 River water | ND | 90 | 20 | 6.96 | 53.82 | 0.96 | 3.79 | 3.55 | 0.51 | 20.34 | 3 | 5.15 | 4 | 0.3 | −20 |
GYZL01 River water | ND | 93 | 20 | 8.87 | 55.51 | 0.21 | 1.84 | 6.95 | 0.31 | 36.27 | 3 | 4.11 | 1.5 | 0.46 | −28 |
GYZL02 River water | ND | 94 | 20 | 9.15 | 56.67 | 0.51 | 2.48 | 7.44 | 0.26 | 30.23 | 5 | 2.74 | 0.5 | 0.31 | −15 |
GYZL03 River water | ND | 89 | 20 | 8.98 | 53.56 | 0.21 | 2.63 | 6.95 | 0.36 | 24.18 | 7 | 3.65 | 1.5 | 0.28 | −15 |
Sample ID | SiO2 | Li | Sr |
---|---|---|---|
ZM-1 | 21.44 | 0.24 | 0.01 |
XZK-1 | 26.13 | 0.25 | 0.09 |
TH-1 | 20.56 | 0.42 | 0.02 |
GYZL06-1 | 30.52 | 0.07 | 0.04 |
RSZ01-1 | 53.28 | 0.04 | 0.02 |
RSZ01-4 | 83.04 | 0.05 | 0.02 |
LX-1 | 16.14 | 0.08 | 0.03 |
RSZ02-1 | 38.85 | 0.06 | 0.02 |
RSZ 01 | 11.58 | 0.01 | 0.01 |
RSZ 02 | 12.22 | 0.01 | 0.01 |
GYZL01 | 12.84 | 0.01 | 0.01 |
GYZL02 | 16.15 | 0.01 | 0.00 |
GYZL03 | 12.84 | 0.01 | 0.01 |
Sample | δ18O | δD |
---|---|---|
ZM-1 | −8.6 | −57 |
XZK-1 | −8.0 | −53 |
TH-1 | −8.6 | −56 |
GYZL06-1 | −7.5 | −47 |
RSZ01-1 | −7.8 | −46 |
RSZ04-1 | −7.5 | −48 |
LX-1 | −7.7 | −47 |
RSZ02-1 | −7.5 | −49 |
Sample | Anhydrite | Aragonite | Calcite | Celestite | CO2 | Dolomite | Fluorite | Gypsum | H2O | Halite |
---|---|---|---|---|---|---|---|---|---|---|
ZM-1 | −4.11 | −0.36 | −0.22 | −4.22 | −5 | −1.6 | −0.79 | −3.98 | −1.12 | −8.01 |
XZK-1 | −3 | −0.85 | −0.72 | −3.44 | −2.16 | −2.44 | 0.11 | −2.86 | −1.16 | −7.05 |
TH-1 | −3.16 | −0.51 | −0.4 | −3.63 | −1.95 | −2.59 | −0.31 | −3.39 | −0.31 | −8.24 |
GYZL06-1 | −3.85 | −2.04 | −1.91 | −4.18 | −1.82 | −4.7 | −1.36 | −3.73 | −1.09 | −9.83 |
RSZ01-1 | −3.33 | −0.47 | −0.35 | −4.16 | −2.63 | −1.19 | −0.73 | −3.37 | −0.66 | −8.67 |
RSZ04-1 | −3.08 | 0.73 | 0.84 | −4.14 | −4.07 | 1.16 | −4.88 | −3.21 | −0.46 | −8.44 |
LX-1 | −3.62 | −1.95 | −1.8 | −4.15 | −2.33 | −3.89 | −0.21 | −3.39 | −1.56 | −10.55 |
RSZ02-1 | −4 | −1.73 | −1.58 | −4.86 | −2.16 | −3.35 | 0 | −3.76 | −1.64 | −9.59 |
Sample | Quartz | Chalcedony | Improved SiO2 | K-Mg | Na-K | Na-Li | Na-K-Ca-Mg |
---|---|---|---|---|---|---|---|
ZM-1 | 66 | 34 | 66 | 105 | 4401 | 96 | 120 |
XZK-1 | 73 | 42 | 74 | 76 | 1029 | 176 | 94 |
TH-1 | 64 | 32 | 65 | 105 | 3512 | 127 | 104 |
GYZL06-1 | 80 | 48 | 81 | 82 | 8867 | 118 | 98 |
RSZ01-1 | 104 | 75 | 105 | 68 | 700 | 108 | 95 |
RSZ04-1 | 127 | 99 | 128 | 75 | 753 | 91 | 102 |
Sample | δD | Recharge Altitude(m) | Annual Average Air Temperature | Circulation Depth |
---|---|---|---|---|
ZM-1 | −57 | 1000 | 11 | 1296 |
XZK-1 | −53 | 870 | 12 | 1488 |
TH-1 | −56 | 970 | 11 | 2448 |
GYZL06-1 | −47 | 670 | 14 | 1712 |
RSZ01-1 | −46 | 630 | 15 | 2578 |
RSZ04-1 | −48 | 700 | 14 | 2578 |
Mean Value | −51 | 810 | 13 | 2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, W.; Chen, W.; Huang, C.; Hou, B.; Wang, X.; Bai, X.; Feng, S.; Arifullah; Hussain, H.; Hussain, J.; et al. Genesis of Geothermal Waters in Suichuan County, China: An Integrated Method Constrained by the Hydrochemical and Isotopic Characteristics. Water 2022, 14, 1591. https://doi.org/10.3390/w14101591
Akram W, Chen W, Huang C, Hou B, Wang X, Bai X, Feng S, Arifullah, Hussain H, Hussain J, et al. Genesis of Geothermal Waters in Suichuan County, China: An Integrated Method Constrained by the Hydrochemical and Isotopic Characteristics. Water. 2022; 14(10):1591. https://doi.org/10.3390/w14101591
Chicago/Turabian StyleAkram, Waseem, Wei Chen, Changsheng Huang, Baoquan Hou, Xianguang Wang, Ximin Bai, Shuangshou Feng, Arifullah, Hadi Hussain, Javid Hussain, and et al. 2022. "Genesis of Geothermal Waters in Suichuan County, China: An Integrated Method Constrained by the Hydrochemical and Isotopic Characteristics" Water 14, no. 10: 1591. https://doi.org/10.3390/w14101591
APA StyleAkram, W., Chen, W., Huang, C., Hou, B., Wang, X., Bai, X., Feng, S., Arifullah, Hussain, H., Hussain, J., Han, W., & Hussain, S. (2022). Genesis of Geothermal Waters in Suichuan County, China: An Integrated Method Constrained by the Hydrochemical and Isotopic Characteristics. Water, 14(10), 1591. https://doi.org/10.3390/w14101591