Metal Removal Kinetics, Bio-Accumulation and Plant Response to Nutrient Availability in Floating Treatment Wetland for Stormwater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Selection and Acclimatization
2.2. Experimental Set-Up
2.3. Preparation of Experimental Water
2.4. Water Sampling and Measurements
2.5. Plant Tissue Sample Analysis
2.6. Statistical Analysis
2.7. Kinetic Analysis
3. Results and Discussion
3.1. Role of Plants in Metal Removal
3.2. Impact of Nutrients on Metal Removal
3.3. Kinetic Analysis
3.4. Plant Tissue Analysis
Location | Type of Study | Type of Water | Plant | Maximum Metal Bio-Accumulation (mg/kg) | Reference |
---|---|---|---|---|---|
Thailand | Lab | Wastewater | Heliconia psittacorum | Cd: 1010, Zn: 4500 | [55] |
Echinodorus cordifolius | Cd: 3386, Zn: 5326 | ||||
Pontederia cordata | Cd: 3306, Zn: 3826 | ||||
Thailand | Lab | Wastewater | Typha angustifolia | Cd: 1261, Zn: 2743 | [56] |
Pandanus amaryllifolius | Cd: 260, Zn: 1109 | ||||
Acorus calamus | Cd: 2954, Zn: 2578 | ||||
Pakistan | Lab | River water | Brachia mutica | Fe: 97, Mn: 33, Ni:24, Ni: 6, Cr: 21 | [27] |
Typha domingensis | Fe: 127, Mn: 50, Ni:43, Pb:12, Cr: 33 | ||||
Phragmites australis | Fe: 142, Mn: 60, Ni:53, Pb:14, Cr: 39 | ||||
Leptochala fusca | Fe: 87, Mn:31, Ni: 21, Pb: 6, Cr: 6 | ||||
Australia | Field | Stormwater | Carex appressa | Cu: 25, Fe: 10,047, Mn: 6667, Zn: 250 | [13] |
China | Lab | Wastewater | Oenanthe javanica | Ca: 21, K: 71, Mg: 6 | [23] |
Rumex japonicas | Ca: 31, K: 80, Mg: 7 | ||||
Phalaris arundinacea | Ca: 19, K: 60, Mg: 8 | ||||
Reineckia carnea | Ca: 31, K: 53, Mg: 7 | ||||
Thailand | Lab | Wastewater | Pistia straitiotes Eichhornia crassipes Cyperus alternifolius Vetiveiria zizanioides Canna indica Thalia geniculate | Cd: 10,133, Zn: 22,686 (roots only) Cd: 9001, Zn: 19,111 (roots only) Cd: 3195, Zn: 9138 (roots only) Cd: 1723, Zn: 3311 (roots only) Cd: 2376, Zn: 8605 (roots only) Cd; 3663, Zn: 7207 (roots only) | [28] |
India | Lab | Wastewater | Phragmites australis | Cu: 8.2, Cd: 2.6, Cr: 5.4, Ni: 3.0, Fe: 71, Pb: 3.8, Zn: 50 | [24] |
Typha latifolia | Cu: 8.2, Cd: 2.3, Cr: 4.8, Ni: 2.9, Fe: 68.4, Pb: 6.3, Zn: 50 | ||||
France | Field | Stormwater | Juncus effusus | Cd: 0.4, Ni: 154, Zn: 290 | [57] |
Carex riparia | Cd: 0.21, Ni: 144, Zn: 213 | ||||
Indonesia | Lab | Wastewater | Pistia stratiotes | Cu: 900, Pb: 38,000 | [26] |
Portugal | Field | River water | Fontinalis antipyretica | U: 4950 | [22] |
Callitriche stagnalis | U: 2060 | ||||
Typha latiofolia | U: 400 | ||||
Oenanthe crocata | U: 30 | ||||
India | Lab | Wastewater | Lemna minor | Cd: 4734 | [3] |
Spirodela polyrhiza | Cd: 7711 | ||||
New Zealand | Field | Stormwater | Carex virgata | Cu: 78, Zn: 285 | [6] |
France | Lab | Stormwater | Juncus effusus | Cd: 7, Ni: 65, Zn: 137 | [25] |
Carex riparia | Cd: 7.1, Ni: 15, Zn: 105 | ||||
New Zealand | Field | Stormwater | Carex virgata | - | [20] |
New Zealand | Lab | Stormwater | Schoenoplectus tabernaemontani | Fe: 266, Mn: 280, Zn: 1070, Cu: 53 | [33] |
Juncus edgariae | Fe: 654, Mn: 212, Zn: 1100, Cu: 41 | ||||
Carex virgate | Fe: 311, Mn: 263, Zn: 574, Cu: 29 | ||||
Cyperus ustilatus | Fe: 803, Mn: 214, Zn: 1732, Cu: 54 | ||||
Belgium | Lab | Wastewater | Carex spp. | - | [58] |
Lythrum salicaria | |||||
Phragmites australis | |||||
Juncus effusus | |||||
Nigeria | Field | Estuarine water | Eichornia crassipes | As: 0.54, Cd: 0.69, Cu: 78, Cr: 16, Fe: 927, Mn: 1050, Ni: 2.13, Pb: 0.94, V: 5, Zn: 354 | [21] |
3.5. Physico-Chemical Parameters of Water
3.6. Plant Biomass Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
List of Symbols | |
Mshoot | total metal accumulation in dry plant shoots |
Mroot | total metal accumulation in dry plant rhoots |
Mtissue | metal concentration in whole dry plant tissue (mg/kg) |
Ci | initial metal concentration (mg/L) |
Ct | metal concentration (mg/L) after time t (days) |
t | Time (days) |
k1 | first-order kinetic rate constant (per day) |
k2 | second-order kinetic rate constant (L/mg/day) |
R2 | coefficient of determination. |
List of Abbreviations | |
AAS | Atomic Absorption Spectrophotometer |
ANOVA | Analysis of variance |
ANZECC | Australian and New Zealand Environment Conservation Council |
APHA | American Public Health Association |
BCF | Bio-Concentration factor |
BP | Baumea preissii |
CF | Carex fascicularis |
CFW | Constructed floating wetland |
Ctr | Control |
DO | Dissolved oxygen |
EA | Eleocharis acuta |
EC | Electrical conductivity |
Eh | Redox potential |
FTI | Floating treatment island |
FTW | Floating treatment wetland |
HRT | Hydraulic retention time |
JK | Juncus kraussii |
RMSE | Root mean square error |
SE | Standard error |
TF | Translocation factor |
References
- Barbosa, A.; Fernandes, J.; David, L.M. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Alam, Z.; Anwar, A.F.; Heitz, A.; Sarker, D.C. Improving stormwater quality at source using catch basin inserts. J. Environ. Manag. 2018, 228, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, D.; Majumder, A.; Misra, A.K.; Bandyopadhyay, K. Cadmium removal by Lemna minor and Spirodela poly-rhiza. Int. J. Phytoremediat. 2014, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Ashoori, N.; Teixido, M.; Spahr, S.; LeFevre, G.H.; Sedlak, D.L.; Luthy, R.G. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Res. 2019, 154, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Xie, T.; Dastgheibi, S. Removal of heavy metals from urban stormwater runoff using different filter materials. J. Environ. Chem. Eng. 2014, 2, 282–292. [Google Scholar] [CrossRef]
- Borne, K.E.; Fassman-Beck, E.A.; Tanner, C.C. Floating Treatment Wetland influences on the fate of metals in road runoff retention ponds. Water Res. 2014, 48, 430–442. [Google Scholar] [CrossRef]
- Zgheib, S.; Moilleron, R.; Chebbo, G. Influence of the land use pattern on the concentrations and fluxes of priority pollutants in urban stormwater. Water Sci. Technol. 2011, 64, 1450–1458. [Google Scholar] [CrossRef]
- Beck, H.J.; Birch, G.F. Spatial and temporal variance of metal and suspended solids relationships in urban storm-water—Implications for monitoring. Water. Air. Soil Pollut. 2012, 223, 1005–1015. [Google Scholar] [CrossRef]
- Department of Environment of Western Australia. Stormwater Management Manual for Western Australia; Government of Western Australia: Perth, Australia, 2004.
- Goonetilleke, A.; Egodawatta, P.; Kitchen, B. Evaluation of pollutant build-up and wash-off from selected land uses at the Port of Brisbane, Australia. Mar. Pollut. Bull. 2009, 58, 213–221. [Google Scholar] [CrossRef] [Green Version]
- ANZECC. Australian and New Zealand Guidelines for Fresh and Marine Water Quality; Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand: Canberra, Australia, 2000; Volume 1, pp. 1–314. [Google Scholar]
- Kayhanian, M.; Stransky, C.; Bay, S.; Lau, S.-L.; Stenstrom, M. Toxicity of urban highway runoff with respect to storm duration. Sci. Total Environ. 2008, 389, 386–406. [Google Scholar] [CrossRef]
- Schwammberger, P.F.; Yule, C.M.; Tindale, N.W. Rapid plant responses following relocation of a constructed floating wetland from a construction site into an urban stormwater retention pond. Sci. Total Environ. 2019, 699, 134372. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Anwar, A.H.M.F.; Sarukkalige, R.; Sarker, D.C. Review of hydraulics of Floating Treatment Is-lands retrofitted in waterbodies receiving stormwater. Sci. Total Environ. 2021, 149526. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.J.; Arslan, M.; Ali, S.; Siddique, M.; Afzal, M. Floating Wetlands: A Sustainable Tool for Wastewater Treatment. CLEAN Soil Air Water 2018, 46. [Google Scholar] [CrossRef]
- Afzal, M.; Arslan, M.; Müller, J.A.; Shabir, G.; Islam, E.; Tahseen, R.; Anwar-Ul-Haq, M.; Hashmat, A.J.; Iqbal, S.; Khan, Q.M. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat. Sustain. 2019, 2, 863–871. [Google Scholar] [CrossRef]
- Samal, K.; Kar, S.; Trivedi, S. Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance. J. Environ. Manag. 2019, 251, 109550. [Google Scholar] [CrossRef]
- Sharma, R.; Vymazal, J.; Malaviya, P. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Sci. Total Environ. 2021, 777, 146044. [Google Scholar] [CrossRef]
- Headley, T.R.; Tanner, C.C. Constructed Wetlands with Floating Emergent Macrophytes: An Innovative Stormwater Treatment Technology. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2261–2310. [Google Scholar] [CrossRef]
- Borne, K.E.; Fassman, E.A.; Tanner, C.C. Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecol. Eng. 2013, 54, 173–182. [Google Scholar] [CrossRef]
- Agunbiade, F.O.; Olu-Owolabi, B.I.; Adebowale, K.O. Phytoremediation potential of Eichornia crassipes in met-al-contaminated coastal water. Bioresour. Technol. 2009, 100, 4521–4526. [Google Scholar] [CrossRef]
- Favas, P.J.; Pratas, J.; Varun, M.; D’Souza, R.; Paul, M.S. Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation. Sci. Total Environ. 2014, 470–471, 993–1002. [Google Scholar] [CrossRef]
- Han, W.; Ge, Y.; Ren, Y.; Luo, B.; Du, Y.; Chang, J.; Wu, J. Removal of metals and their pools in plant in response to plant diversity in microcosms of floating constructed wetlands. Ecol. Eng. 2018, 113, 65–73. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, B. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol. Environ. Saf. 2015, 112, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Ladislas, S.; Gérente, C.; Chazarenc, F.; Brisson, J.; Andrès, Y. Performances of Two Macrophytes Species in Floating Treatment Wetlands for Cadmium, Nickel, and Zinc Removal from Urban Stormwater Runoff. Water. Air. Soil Pollut. 2013, 224, 1–10. [Google Scholar] [CrossRef]
- Putra, R.S.; Cahyana, F.; Novarita, D. Removal of Lead and Copper from Contaminated Water Using EAPR System and Uptake by Water Lettuce (Pistia Stratiotes L.). Procedia Chem. 2015, 14, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.J.; Ali, S.; Shabir, G.; Siddique, M.; Rizwan, M.; Seleiman, M.F.; Afzal, M. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere 2019, 243, 125353. [Google Scholar] [CrossRef] [PubMed]
- Sricoth, T.; Meeinkuirt, W.; Saengwilai, P.; Pichtel, J.; Taeprayoon, P. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ. Sci. Pollut. Res. 2018, 25, 14964–14976. [Google Scholar] [CrossRef]
- Darajeh, N.; Idris, A.; Masoumi, H.R.F.; Nourani, A.; Truong, P.; Sairi, N.A. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J. Environ. Manag. 2016, 181, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Paul, B.; Afrin, R.; Al-Muyeed, A.; Sun, G. Floating constructed wetland for the treatment of polluted river water: A pilot scale study on seasonal variation and shock load. Chem. Eng. J. 2016, 287, 62–73. [Google Scholar] [CrossRef]
- Urakawa, H.; Dettmar, D.L.; Thomas, S. The uniqueness and biogeochemical cycling of plant root microbial com-munities in a floating treatment wetland. Ecol. Eng. 2017, 108, 573–580. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, Y.; Li, S.; Peng, S.; Zhao, H. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresour. Technol. 2016, 211, 451–456. [Google Scholar] [CrossRef]
- Tanner, C.C.; Headley, T.R. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol. Eng. 2011, 37, 474–486. [Google Scholar] [CrossRef]
- Xavier, M.L.M.; Janzen, J.G.; Nepf, H. Numerical modeling study to compare the nutrient removal potential of different floating treatment island configurations in a stormwater pond. Ecol. Eng. 2018, 111, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, J.; Li, Y. A Monsoon-Like Southwest Australian Circulation and Its Relation with Rainfall in Southwest Western Australia. J. Clim. 2010, 23, 1334–1353. [Google Scholar] [CrossRef] [Green Version]
- Silberstein, R.; Aryal, S.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S.; Boniecka, L.; Hodgson, G.; Bari, M.; Viney, N.; et al. Climate change and runoff in south-western Australia. J. Hydrol. 2012, 475, 441–455. [Google Scholar] [CrossRef]
- Duncan, H.P. Urban Stormwater Quality: A Statistical Overview; Cooperative Research Centre for Catchment Hydrology: Canabera, Australia, 1999. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; Water Environment Federation (WEF): Washington, DC, USA, 2005. [Google Scholar]
- ISO; NFEN. Water Quality—Determination of Trace Elements Using Atomic Absorption Spectrometry with Graphite Furnace; AFNOR: Saint-Denis, France, 2004; p. 15586. [Google Scholar]
- Zhang, Z.; Rengel, Z.; Meney, K. Cadmium Accumulation and Translocation in Four Emergent Wetland Species. Water. Air. Soil Pollut. 2010, 212, 239–249. [Google Scholar] [CrossRef]
- Ben Salem, Z.; Laffray, X.; Al-Ashoor, A.; Ayadi, H.; Aleya, L. Metals and metalloid bioconcentrations in the tissues of Typha latifolia grown in the four interconnected ponds of a domestic landfill site. J. Environ. Sci. 2017, 54, 56–68. [Google Scholar] [CrossRef]
- Liu, H.; Chen, F.; Hartmann, V.; Khalid, S.G.; Hughes, S.; Zheng, D. Comparison of different modulations of pho-toplethysmography in extracting respiratory rate: From a physiological perspective. Physiol. Meas. 2020, 41, 94001. [Google Scholar] [CrossRef]
- Luepsen, H. Comparison of nonparametric analysis of variance methods: A vote for van der Waerden. Commun. Stat. Simul. Comput. 2017, 47, 2547–2576. [Google Scholar] [CrossRef]
- Valová, Z.; Jurajda, P.; Janáč, M.; Bernardová, I.; Hudcová, H. Spatiotemporal trends of heavy metal concentrations in fish of the River Morava (Danube basin). J. Environ. Sci. Health Part A 2010, 45, 1892–1899. [Google Scholar] [CrossRef]
- McKight, P.E.; Najab, J. Kruskal-wallis test. Corsini Encycl. Psychol. 2010, 1. [Google Scholar]
- Ostertagová, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M. Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- McKnight, P.E.; Najab, J. Mann-Whitney U Test. Corsini Encycl. Psychol. 2010, 1. [Google Scholar]
- Emiliani, J.; Llatance Oyarce, W.G.; Bergara, C.D.; Salvatierra, L.M.; Novo, L.A.B.; Pérez, L.M. Variations in the Phy-toremediation Efficiency of Metal-polluted Water with Salvinia biloba: Prospects and Toxicological Impacts. Water 2020, 12, 1737. [Google Scholar] [CrossRef]
- Mosoarca, G.; Vancea, C.; Popa, S.; Boran, S. Adsorption, bioaccumulation and kinetics parameters of the phy-toremediation of cobalt from wastewater using Elodea canadensis. Bull. Environ. Contam. Toxicol. 2018, 100, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Cronk, J.K.; Fennessy, M.S. Wetland Plants: Biology and Ecology; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Baker, A.J.M.; Brooks, R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Vymazal, J.; Březinová, T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chem. Eng. J. 2016, 290, 232–242. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Woraharn, S.; Meeinkuirt, W.; Phusantisampan, T.; Avakul, P. Potential of ornamental monocot plants for rhizofiltration of cadmium and zinc in hydroponic systems. Environ. Sci. Pollut. Res. 2021, 28, 35157–35170. [Google Scholar] [CrossRef]
- Woraharn, S.; Meeinkuirt, W.; Phusantisampan, T.; Chayapan, P. Rhizofiltration of cadmium and zinc in hydroponic systems. Water Air Soil Poll. 2021, 232, 1–17. [Google Scholar] [CrossRef]
- Ladislas, S.; Gérente, C.; Chazarenc, F.; Brisson, J.; Andrès, Y. Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol. Eng. 2015, 80, 85–91. [Google Scholar] [CrossRef]
- Van de Moortel, A.M.K.; Meers, E.; De Pauw, N.; Tack, F.M. Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air Soil Poll. 2010, 212, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Coakley, S.; Cahill, G.; Enright, A.-M.; O’Rourke, B.; Petti, C. Cadmium hyperaccumulation and translocation in Impatiens glandulifera: From foe to friend? Sustainability 2019, 11, 5018. [Google Scholar] [CrossRef] [Green Version]
- Spangler, J.T.; Sample, D.J.; Fox, L.J.; Owen, J.S., Jr.; White, S.A. Floating treatment wetland aided nutrient removal from agricultural runoff using two wetland species. Ecol. Eng. 2019, 127, 468–479. [Google Scholar] [CrossRef]
- Bi, R.; Zhou, C.; Jia, Y.; Wang, S.; Li, P.; Reichwaldt, E.S.; Liu, W. Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. J. Environ. Manag. 2019, 238, 484–498. [Google Scholar] [CrossRef]
- Yi, N.; Gao, Y.; Long, X.-H.; Zhang, Z.-Y.; Guo, J.-Y.; Shao, H.-B.; Zhang, Z.-H.; Yan, S.-H. Eichhornia crassipes Cleans Wetlands by Enhancing the Nitrogen Removal and Modulating Denitrifying Bacteria Community. CLEAN Soil Air Water 2013, 42, 664–673. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Sample, D.J.; Day, S.D.; Grizzard, T.J. Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecol. Eng. 2015, 78, 15–26. [Google Scholar] [CrossRef]
- Barakat, M. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Hillel, D.; Hatfield, J.L. Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Vymazal, J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci. Total Environ. 2016, 544, 495–498. [Google Scholar] [CrossRef]
- Geng, Y.; Han, W.; Yu, C.; Jiang, Q.; Wu, J.; Chang, J.; Ge, Y. Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecol. Eng. 2017, 107, 110–119. [Google Scholar] [CrossRef]
- Sricoth, T.; Meeinkuirt, W.; Pichtel, J.; Taeprayoon, P.; Saengwilai, P. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ. Sci. Pollut. Res. 2017, 25, 5344–5358. [Google Scholar] [CrossRef]
Water Type | Nutrient-Deficient Water | Nutrient-Rich Water |
---|---|---|
Source | Tap | Lake |
Used in | Exp. 1 (day 0–16) Exp. 3 (day 43–59) | Exp. 2 (day 16–43) Exp. 4 (day 59–86) |
Concentrations | Low and High | Low and High |
HRT (days) | 16 | 27 |
Sampling events | 7 | 9 |
Parameter | Mean Removed Concentration (mg/L) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment Wise | Concentration Wise | Treatment | Concentration | Interaction | ||||||
CF | JK | EA | BP | Ctr | Low | High | ||||
Cu | 0.097 bc | 0.074 bc | 0.119 ab | 0.113 ab | 0.048 c | 0.039 b | 0.142 a | 0.0038 | 2 × 10−18 | 0.058 |
Zn | 0.348 bc | 0.210 cd | 0.504 ab | 0.478 ab | 0.178 d | 0.168 b | 0.518 a | 2 × 10−7 | 3 × 10−16 | 0.525 |
Equation | Parameter | Treatment | Kinetic Rate (Mean ± SE) | Data Fitting Indicators (Mean ± SE) | ||
---|---|---|---|---|---|---|
Tap Water | Lake Water | RMSE (mg/L) | R2 | |||
1st Order Kinetics (per day) | Copper | CF | 0.100 ± 0.017 | 0.013 ± 0.004 | 0.003 ± 0.001 | 0.756 ± 0.066 |
JK | 0.080 ± 0.007 | 0.006 ± 0.003 | 0.002 ± 0.001 | 0.706 ± 0.103 | ||
EA | 0.124 ± 0.033 | 0.025 ± 0.005 | 0.003 ± 0.001 | 0.874 ± 0.036 | ||
BP | 0.115 ± 0.033 | 0.020 ± 0.011 | 0.002 ± 0.001 | 0.881± 0.040 | ||
Ctr | 0.024 ± 0.006 | 0.019 ± 0.006 | 0.003 ± 0.002 | 0.630 ± 0.097 | ||
Zinc | CF | 0.031 ± 0.006 | 0.017 ± 0.003 | 0.034 ± 0.016 | 0.874 ± 0.023 | |
JK | 0.019 ± 0.006 | 0.008 ± 0.001 | 0.036 ± 0.011 | 0.653 ± 0.054 | ||
EA | 0.044 ± 0.005 | 0.019 ± 0.004 | 0.069 ± 0.031 | 0.816 ± 0.038 | ||
BP | 0.040 ± 0.005 | 0.021 ± 0.002 | 0.036 ± 0.016 | 0.881 ± 0.033 | ||
Ctr | 0.011 ± 0.005 | 0.015 ± 0.003 | 0.032 ± 0.013 | 0.608 ± 0.080 | ||
2nd order kinetics (L/mg/day) | Copper | CF | 0.699 ± 0.056 | 0.041 ± 0.008 | 0.002 ± 0.0003 | 0.789 ± 0.060 |
JK | 0.586 ± 0.156 | 0.018 ± 0.007 | 0.002 ± 0.004 | 0.758 ± 0.078 | ||
EA | 0.825 ± 0.089 | 0.088 ± 0.029 | 0.001 ± 0.0005 | 0.906 ± 0.025 | ||
BP | 0.791 ± 0.107 | 0.081 ± 0.014 | 0.001 ± 0.0002 | 0.914 ± 0.025 | ||
Ctr | 0.143 ± 0.053 | 0.074 ± 0.025 | 0.002 ± 0.001 | 0.648 ± 0.096 | ||
Zinc | CF | 0.035 ± 0.018 | 0.015 ± 0.006 | 0.030 ± 0.013 | 0.880 ± 0.025 | |
JK | 0.025 ± 0.015 | 0.005 ± 0.001 | 0.034 ± 0.010 | 0.657 ± 0.055 | ||
EA | 0.052 ± 0.023 | 0.018 ± 0.007 | 0.048 ± 0.020 | 0.842 ± 0.041 | ||
BP | 0.048 ± 0.024 | 0.017 ± 0.007 | 0.026 ± 0.012 | 0.895 ± 0.029 | ||
Ctr | 0.015 ± 0.010 | 0.014 ± 0.007 | 0.031 ± 0.012 | 0.616 ± 0.082 |
Parameter | Plant | Concentration | Metal Bio-Accumulation (mg/kg) | Translocation Factor (TF) | Bio-Concentration Factor (BCF) |
---|---|---|---|---|---|
Copper | CF | Low | 262 ± 27 | 0.16 ± 0.01 | 1379 ± 143 |
High | 492 ± 47 | 0.38 ± 0.09 | 1273 ± 121 | ||
JK | Low | 398 ± 61 | 0.05 ± 0.01 | 2089 ± 320 | |
High | 687 ± 141 | 0.05 ± 0.01 | 1777 ± 366 | ||
EA | Low | 884 ± 281 | 0.23 ± 0.07 | 4643 ± 1478 | |
High | 1279 ± 86 | 0.26 ± 0.07 | 3311 ± 233 | ||
BP | Low | 798 ± 235 | 0.13 ± 0.07 | 4196 ± 1233 | |
High | 1240 ± 63 | 0.14 ± 0.04 | 2174 ± 163 | ||
Zinc | CF | Low | 513 ± 45 | 0.39 ± 0.04 | 647 ± 57 |
High | 1310 ± 85 | 1.10 ± 0.26 | 437 ± 28 | ||
JK | Low | 536 ± 76 | 0.34 ± 0.06 | 676 ± 96 | |
High | 824 ± 295 | 0.21 ± 0.06 | 275 ± 98 | ||
EA | Low | 1096 ± 119 | 0.45 ± 0.07 | 1381 ± 150 | |
High | 2818 ± 262 | 0.35 ± 0.06 | 939 ± 87 | ||
BP | Low | 1190 ± 439 | 0.36 ± 0.03 | 1499 ± 553 | |
High | 2062 ± 248 | 0.41 ± 0.09 | 687 ± 83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuruzzaman, M.; Anwar, A.H.M.F.; Sarukkalige, R. Metal Removal Kinetics, Bio-Accumulation and Plant Response to Nutrient Availability in Floating Treatment Wetland for Stormwater Treatment. Water 2022, 14, 1683. https://doi.org/10.3390/w14111683
Nuruzzaman M, Anwar AHMF, Sarukkalige R. Metal Removal Kinetics, Bio-Accumulation and Plant Response to Nutrient Availability in Floating Treatment Wetland for Stormwater Treatment. Water. 2022; 14(11):1683. https://doi.org/10.3390/w14111683
Chicago/Turabian StyleNuruzzaman, Md, A. H. M. Faisal Anwar, and Ranjan Sarukkalige. 2022. "Metal Removal Kinetics, Bio-Accumulation and Plant Response to Nutrient Availability in Floating Treatment Wetland for Stormwater Treatment" Water 14, no. 11: 1683. https://doi.org/10.3390/w14111683
APA StyleNuruzzaman, M., Anwar, A. H. M. F., & Sarukkalige, R. (2022). Metal Removal Kinetics, Bio-Accumulation and Plant Response to Nutrient Availability in Floating Treatment Wetland for Stormwater Treatment. Water, 14(11), 1683. https://doi.org/10.3390/w14111683